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Inpainting Radar Missing Data via Denoising
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Abstract—The issue of missing radar data has long presented
a challenge for meteorologists. Meteorological radars often suffer
from data gaps and poor quality due to various factors, such as
random partial beam blockage (PBB), instrument malfunctions,
or irregular blind spots in detection locations. Therefore, it is
essential that low-quality weather radar observations be reme-
died. Traditional deep learning methods are not well suited to this
task, as they are incompatible with pixel-level remote sensing data
and struggle to identify discrete features, leading to inaccurate
repairs in areas of high reflectivity. In light of the aforementioned
challenges, in this article, we propose a method for radar data
restoration using a noise-guided diffusion probability model driven
by known information. The aim of this approach is to effectively
address missing and poor-quality radar data in various scenarios.
We performed experiments in the central region of the United
States using seamlessly blended scanning reflectivity radar data
provided by the National Oceanic and Atmospheric Administra-
tion. We simulated two data gap types: random PBB and short
radar outage periods. We tested our method on data from different
years and compared its performance to those of other deep learning
models under the same missing data conditions. The experimental
results indicate that, compared with other methods, our method
improves the inpainting accuracy index by approximately 30% and
the inpainting quality index by approximately 10% on the missing
inpainting of outage. Moreover, it shows excellent inpainting effects
on beam blockage, highlighting its considerable potential to im-
prove quantitative applications and various tasks under inclement
weather conditions.

Index Terms—Diffusion model, high echo, inpainting, radar
reflectivity data.

I. INTRODUCTION

THE absence and poor quality of data from the scanning
area of meteorological radar are common issues that are

influenced by various factors including weather conditions, such
as heavy fog, thick clouds, strong winds, or interference from
solar radiation during dawn and dusk, which can affect radar
echo results and impact precipitation forecasting [1]. Radar
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malfunctioning or maintenance may also result in missing areas
in the scanning region [2].

Topographical obstacles, such as high mountains, deep
canyons, the topography of the scanned area, and ground clutter,
caused by anomalous propagation of radar signals can result in
regions with missing data [3], while echoes from wind farms
can also interfere with radar returns [4].

The most common interferences are beam blockage or partial
beam blockage (PBB) [5] and short outages [6]. This article’s
primary focus is the recovery of random and widespread beam
blockage and short radar outage periods caused by physical
obstacles and multipath effects. Researchers have proposed
various traditional data correction and completion methods to
address the low-quality or missing radar data caused by the
factors mentioned above. Correction methods typically involve
the use of digital elevation models [7] or polarimetric radar [8]
to correct low-quality data, while completion methods often
rely on low-level data features, such as texture and color, to
infer missing pixel values, commonly using interpolation [9],
[10], [11] or nearest-neighbor filling methods [12]. Correc-
tion and completion methods are generally simple and com-
putationally fast, but due to the lack of high-level semantic
information, their restoration results may not be sufficiently
accurate.

Simultaneously, radar data may be approximated as a form of
image data; image inpainting is an important research direction
in computer vision, aimed at automatically restoring missing
or low-quality regions in images [13]. As deep learning tech-
niques continue to evolve, the emergence of convolutional neural
network architectures, such as UNet [14], and self-attention
mechanism-based neural network architectures, such as Trans-
former [15], has significantly advanced the computer vision
field, and such architectures have been widely applied to image
inpainting tasks. In 2016, Pathak et al. [16] proposed a deep
neural network-based image inpainting algorithm that utilized
a CNN-based autoencoder to learn low-level features and high-
level semantics of images and achieved automatic completion by
alternately training known and unknown regions. In 2017, Iizuka
et al. [17] introduced a generative adversarial network (GAN)-
based image inpainting algorithm, which employed a GAN
framework with global and local discriminators to generate high-
quality and diverse inpainted images. In 2021, Deng et al. [18]
proposed a fully convolutional network with attention modules
that better modeled the affinity between different regions in
an image and improved the effectiveness and quality of image
inpainting. In the field of radar-data inpainting, researchers have
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explored the use of convolutional neural networks, such as
fully convolutional neural networks [19], U-Net [20], UNet++
[21], GANs [21], and conditional GANs [22], [23] for mul-
tisource data fusion for data recovery [24]. By utilizing deep
learning methods, it is possible to train neural networks to
learn higher level semantic information, generate high-quality
inpainted results, and achieve performances that significantly
surpass current correction methods in radar data inpainting
tasks [21].

However, deep neural methods continue to face certain chal-
lenges when applied to radar data-inpainting tasks. Owing to the
disparities between traditional image data and pixel-level remote
sensing data, such as satellite and radar data, which possess
complex spatial features and high spatial resolution [25], [26],
with each feature often having complex structures and surface
roughness at a small scale–these features can be measured using
quality evaluation metrics, such as peak signal-to-noise ratio
(PSNR) [27] and structural similarity index (SSIM) [27]. Deep
learning models often struggle to learn discrete features, which
can lead to over-smoothing of inpainted regions [28], loss of
significant discrete information, and higher false-positive rates.
Researchers have acknowledged this issue and the proposed
solutions aimed at mitigating over-smoothing [29]. This work
suggests employing a conditional denoising diffusion probabil-
ity model (CDDPM) as a means of mitigating over-smoothing.
Denoising diffusion probabilistic models (DDPM) [30] are a
popular, recently developed deep learning approach in the field
of image generation. This is a generative model that exhibits
outstanding performance in the field of image inpainting [31],
[32] They employ deep neural networks to model the joint
distribution of images with the aim of achieving denoising and
image generation [33]. Inspired by DDPM [30] and noise con-
ditional score networks [34], [35], we propose a novel approach
to radar data inpainting based on conditional guidance. The
basic idea is to perform a stepwise iterative restoration process,
in which a specific conditional guides the transformation of
a standard normal distribution into the desired empirical data
distribution, similar to Langevin dynamics [35], [36]. We have
made simple yet effective modifications to the original denoising
target UNet by incorporating additional conditional information
for learning. This allows the DDPM to predict noise through the
UNet network and achieve data generation for missing regions
through inverse denoising iterations. Our approach outperforms
the aforementioned deep-learning methods in radar data in-
painting, thus yielding more realistic and effective inpainted
results.

Our main contributions are the proposal of a novel data-repair
method (CDDPM) and the addition of pixel-level modification
of the loss function. The CDDPM method uses known infor-
mation as a condition to guide the generative model to repair
areas of missing data, and improves the attention mechanism
of the original model, greatly reducing the amount of calcula-
tions required. Compared with the existing deep-learning-based
radar-data recovery methods, the proposed model produces more
realistic and accurate results. The pixel-level modification of
the loss function improves the accuracy of pixel-wise inpainting
results.

Fig. 1. Geographical location of the study area, which has a Bsk-Semiarid
Steppe climate.

II. METHODOLOGY

A. Data

The analyses reported herein used the Seamless Hybrid Scan
Reflectivity radar data provided by the multiradar/multisensor
system (MRMS) [37], a product of the National Severe
Storms Laboratory under the National Oceanic and Atmospheric
Administration [38] in the United States. The data coverage
includes selected regions in the southern United States and
Canada, with a total area of 7000 km × 3500 km. As Fig. 1
illustrates, this article focused on meteorological features and
missing regions in the central United States to evaluate the
effectiveness with which it inpainted the missing regions. The
region is adjacent to multiple climatic zones and experiences
frequent occurrences of severe convective weather, which makes
it conducive to capturing the characteristics of intense convective
phenomena. The dataset’s spatial resolution was 1 km, while its
temporal resolution was set at 2 min.

We selected the MRMS data from March to August 2017–
2021. We cropped a region of 256 × 256 in the central United
States to simulate the effective scanning range of an individual
radar [37], simulating scenarios with random PBB and short
radar outage periods. The region is adjacent to several climatic
zones and can thus take into account a range of climatic features.
As Fig. 1 illustrates, to ensure a higher-quality dataset, we
selected regions in which the reflectivity was greater than 10
dBZ [39] and covered 30 pixels or more with reflectivity greater
than 35 dBZ [40]. This dataset includes a diverse range of
high- and low-reflectivity information and was normalized to
the range (0,1). To eliminate the effect of meaningless maxima
and minima, we set radar reflectivity values >80 to 80, and
reflectivity values <0 to 0. Then, we uniformly divided the
values by 80 to normalize the data to (0, 1). We used data from
2017–2020 for model training and data from 2021 as the test
dataset.

B. Method

1) Introduction: We considered the occluded data and the
original data as forming dataset D = {xi,yi}Ni=1 composed of
data pairs, where xi represents a sample obtained by sampling
from an unknown conditional data distribution p(y | x) where
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Fig. 2. Process of adding random Gaussian noise and removing Gaussian noise
to the radar data region.

x is a set of xi. We mapped the occluded image x to the
target inpainted image y through an inverse iterative process
and approximate learning to fit the conditional data distribution
p(y | x). To achieve this goal, we employed a DDPM [34]
to generate the missing regions of the image by incorporating
conditional guidance.

As Fig. 2 illustrates, the data-restoration process includes
two stages: forward perturbation and inverse denoising. The
forward-perturbation process, considered the training phase,
treats the forward diffusion as a Markov chain process denoted as
q(yt | yt−1). Starting from the original data y0, Gaussian noise
is gradually added in each step until it transforms into isotropic
pure Gaussian noise. The model takes the masked data x and
the result yt from the previous denoising iteration as inputs and
is trained to estimate the added noise at each step. The inverse
process is the inference stage, during which the model is used
to approximate the inverse of the forward diffusion process.
The CDDPM generates the target data y through an inverse
denoising iteration process with a time length of T . Starting
from the original pure Gaussian noise data yT ∼ N (0, I), data
restoration is performed through continuous denoising iterations
to generate missing regions. The goal is to obtain the target data
y0 that fit the conditioned data distribution y0 ∼ p(y | x).

In general, as Fig. 3 indicates, during the diffusion process,
Gaussian noise is incrementally added to the original data,
ultimately transforming it into isotropic Gaussian noise. In the
model training phase, training is performed for each time step.
At any time step t during the training process, missing data
and information obtained by adding noise at each time step are
concatenated. The current time step t’s time label is incorporated
as input to the model. The model was trained to learn the noise
added at each time step during the diffusion process. In the
inverse process, we utilized the trained model to obtain the noise
for removal at each time step. This iterative denoising process
is performed step by step, ultimately producing the desired
restoration results. We shall provide a detailed derivation and
specific algorithms for both the diffusion and inverse processes.

2) Gaussian Diffusion Process: Based on the Gaussian dif-
fusion process of DDPM [34], [30] in the forward process, we
first define a forward Markov diffusion process q. In each time
step T of this process, we gradually add random Gaussian noise
of the corresponding scale to the original data image y0

q (y1:T | y0) =
T∏

t=1

q (yt | yt−1) (1)

q (yt | yt−1) = N
(
yt;

√
1− βtyt−1, βtI

)
. (2)

The standard deviation of the Gaussian noise distribution is
determined using a predefined βt. The mean is determined based
on a fixed value βt and the current time step t of the data yt. It is
important to note that as t varies, the final data distribution tends
to converge to an isotropic Gaussian distribution. In addition,
at any time step t, yt can also be obtained through parameter
renormalization, calculated directly from y0 and βt, as shown
in (3), where αt = 1− βt, ᾱt =

∏T
i=1 αi

q (yt | y0) = N (
yt;

√
ᾱty0, (1− ᾱt) I

)
. (3)

Subsequently, in the computation of the posterior distribution
during the inverse diffusion process, given (y0, yt), through
certain mathematical operations, it is possible to derive the
posterior distribution of yt−1 along with its mean and variance,
as indicated in (4), where ᾱt =

∏T
i=1 αi

q (yt−1 | y0,yt) = N (
yt−1 | μ, σ2I

)
μ =

√
ᾱt−1 (1− αt)

1− ᾱt
y0 +

√
αt (1− ᾱt−1)

1− ᾱt
yt

σ2 =
(1− ᾱt−1) (1− αt)

1− ᾱt
. (4)

This posterior distribution can help compute the variational
lower bound of the log-likelihood of the target data distribution.
Next, we describe how the data distribution of the inverse
diffusion process may be fitted using a neural network.

3) Inverse Diffusion Process: The inverse diffusion process,
as shown in Fig. 4, incorporates additional side information in
the form of the original data, x. We optimized a denoising neural
network model based on UNet, which takes the image with
occluded regions and the currently perturbed image as inputs. At
any given time yt, the perturbed image can be directly obtained
by adding noise to the original data y0, as expressed in (5) [30]

yt =
√
ᾱty0 +

√
1− ᾱtz z ∼ N (0, I). (5)

The objective is to recover noise-free target completion data
y0. The definition of noisy target datayt differs from the marginal
distribution of noise data in various steps of the forward diffusion
process. The denoising model εθ(x, yt, t) takes the original data
x and the target data with added noise yt as inputs. Through
training, it predicts noise. By adjusting the scalar noise scale βt,
the model can perceive the level of noise. The objective function
for training the model is given by (6), aiming to minimize the
expected error between εθ(x, yt, t) and the added noise–that is,
minimizing the expectation of d given x, y, αt, squared l2 norm
with the target ε, allows the model to learn the estimation of
noise

E(x,y)Eε,ᾱt

∥∥∥∥∥∥∥εθ(x,
√
ᾱty0 +

√
1− ᾱtz︸ ︷︷ ︸

yt

, t)− ε

∥∥∥∥∥∥∥
2

2

. (6)

The model inference process refers to the inverse diffusion
process, which is represented by (7). The denoising iteration
process is defined as the conditional probability distribution
pθ(y0:T | x), achieved by iteratively denoising information at
each time step t to obtain the desired probability distribution.



10718 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 3. Framework of the proposed inpainting model.

Fig. 4. Inverse diffusion process is progressively iterated to repair the data.

The denoising process at each time step is formulated in (9),
where pθ(yt-1 | yt,x) is determined by the noise information
μθ(x,yt) learned by the model, resulting in yt-1, as per (12).
This process is defined as an inverse Markov chain process, as
shown in (8). It starts from a random Gaussian noise yt; predicts
y0 through the noise in the model estimates; iteratively predicts
yt-1 in inverse, gradually removing noise; and ultimately gen-
erates the final result, satisfying the expected target conditional
distribution

pθ (y0:T | x) = p (yT )

T∏
t=1

pθ (yt−1 | yt,x) (7)

p (yT ) = N (yT | 0, I) (8)

pθ (yt−1 | yt,x) = N (
yt−1 | μθ (x,yt) , σ

2
t I

)
. (9)

We define the inference process as a conditional probability
distribution, pθ(yt−1 | yt,x) assuming an isotropic Gaussian
conditional distribution. The mean of the probability distribu-
tion, μθ(x,yt), is learned by the model. If we set the noise

variance in the forward process to be as small as possible, the
inverse diffusion process pθ(yt−1 | yt,x)may be approximated
as a Gaussian distribution. Therefore, we can interpret the entire
forward–backward process as being governed by a random
Gaussian conditional distribution. It is important to maintain
a sufficiently large noise scale such that yt approximates the
prior Gaussian distribution, allowing us to start the conditional
sampling from random Gaussian white noise. Because our de-
noising model is trained to estimate noise, we rewrite (5) as a
form of predicting y0

y0 =
1√
ᾱt

(
yt −

√
1− ᾱtμθ (x,yt)

)
. (10)

By substituting and computing the mean of the conditional
probability distribution, we obtain

μ =
1√
αt

(
yt −

βt√
1− ᾱt

μθ (x,yt)

)
. (11)

Therefore, by parameterizing, we can obtain the iteratively
generated results at each time step in the posterior conditional
probability distribution of the inverse diffusion process learned
by the model such as in (12), where zt ∼ N (0, I) represents a
specific quantity or characteristic of the generated results

yt−1 =
1√
αt

(
yt −

1− αt√
1− ᾱt

μθ (x,yt)

)
+
√
1− αtzt.

(12)

In the end, the model consists of two stages: training and
inference. In the training stage, as shown in Algorithm 1, given
that x, y0 follows the distribution p(x,y0), the model is trained
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Fig. 5. Neural network architecture to learn the denoising process.

Algorithm 1: Training a Denoising Model εθ.
1: repeat
2: (x,y0) ∼ p(x,y0)
3: t ∼ Uniform({1, . . . , T})
4: ε ∼ N (0, I)
5: Take gradient descent step on

∇θ‖ε− εθ(x, yt, t)‖2
+∇θ‖y0 − 1√

ᾱt

(
yt −

√
1− ᾱtεθ(x, yt, t)

) ‖2
6: until converged

Algorithm 2: Sample in T Iterative Inpaint Steps.

1: yT ∼ N (0, I)
2: for t = T, . . . , 1 do
3: z ∼ N (0, I) if t > 1, else z = 0

4: yt−1 = 1√
αt

(
yt − 1−αt√

1−ᾱt
εθ(x, yt, t)

)
+
√
1− αtz

5: end for
6: return y0

to learn the randomly added Gaussian noise from y0 to yt at any
given time step t, initialized according to a uniform distribution.
Through iterative learning, the model acquires knowledge of the
randomly added Gaussian noise at all time stepsT , allowing it to
approximate the noise needed to estimate the inverse diffusion
process.

In the sampling process of inverse diffusion, as shown in
Algorithm 2, we randomly initialize a random Gaussian white
noise z ∼ N (0, I) from the last time step. We use the noise
predicted by our trained model to obtain the predicted y0. Using
y0, along with the mean and standard deviation of the posterior

conditional probability distribution, we predict the result of the
previous time step, yt−1. Through iterative steps, we ultimately
generate a more diverse data distribution for the desired y0.

4) Network Architecture: The neural network architecture
designed to fit the denoising diffusion process is illustrated in
Fig. 5. Taking a combination of real and occluded data and
the time token of the current time step as input, the model
consists of four layers. It effectively represents features by
compressing the input into a latent space vector using multiple
downsampling modules and employing 3× 3 convolutions with
a stride of 2. Subsequently, upsampling modules reconstruct the
expected predicted noise data using deconvolution operations.
Each residual module between the upsampling and downsam-
pling modules features skip connections to facilitate information
flow, enhancing the model’s ability to capture both local and
global features.

As depicted in Fig. 6, each sampling module includes two
residual blocks, which are crucial for preserving important in-
formation during the encoding and decoding processes. Each
residual block consists of two group normalization layers, a
Swish activation function, dropout, and a 3× 3 convolution
operation, along with a residual connection. The residual con-
nection enables the module’s output to combine original and
learned information, strengthening feature representation. Each
set of residual modules contains a set of attention switches to
decide whether to apply a self-attention operation in this layer.
The model learns input information in different time steps, which
are embedded in the model through a process that we term time
projection.

This helps enhance global feature interactions, expanding the
receptive field and ultimately bolstering the model’s robustness.
By leveraging self-attention mechanisms, the model gains the
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Fig. 6. Residual module.

Fig. 7. CF-Attention: Self-attention mechanism based on channel fusion.

Fig. 8. Compare the effect of different methods to inpainting random short
radar outage periods. (a) Observed data along with the restoration results of
(b) UNet, (c) UNet++, (d) GAN, (e) ViT, (f) FFM, (g) CDDPM, and (h) extreme
outage conditions.

ability to selectively focus on relevant features at different spa-
tial positions, thereby promoting the interaction of contextual
information.

To address the computational demands associated with the
self-attention mechanism [41], a channel fusion-based approach
is proposed in Fig. 7. In addition, to mitigate the significant com-
putational overhead introduced by self-attention mechanisms,
we propose the use of an adaptive channel fusion self-attention

TABLE I
COMPARISON OF COMPUTATION AND PARAMETERS BETWEEN CF-ATTENTION

AND ATTENTION

mechanism. For input features, we employed 1× 1 convolution
operations for channel fusion, followed by group normalization
to reduce the feature dimensionality in the latent space during
self-attention computations. After performing self-attention op-
erations, the data dimensionality is restored through channel
convolution. We initialized a set of learnable adaptive parameters
to balance the results of self-attention. The computed features
undergo a residual connection prior to output. Self-attention
operations of this nature effectively reduce the computational
burden traditionally associated with self-attention mechanisms.
As given in Table I, we compared the computational and param-
eter costs of the model’s CF-Attention module with traditional
self-attention methods. For latent space variables with an input
size of 64×128×128, it can be observed that compared to
traditional self-attention methods, the computational and param-
eter costs of the CF-attention module are significantly reduced.
This substantial reduction contributes to significant decreases in
computational expenses and training costs. This approach effec-
tively alleviates the computational burden typically associated
with conventional self-attention mechanisms. The restored data
dimension is achieved through channel convolutions, ensuring
the preservation of important information while mitigating com-
putational complexity.

By incorporating these architectural components and tech-
niques, the neural network aims to effectively learn and ap-
proximate the inverse diffusion process by predicting noise
vectors [42], [43]. The trained model can then be utilized in the
inference phase to generate samples that adhere to the desired
target conditional distribution.

In the training preparation phase, for each iteration time step
t, we chose a time step length of 500 steps, and adopted a
linear increase strategy for the noise scale, with a maximum
noise scale of 0.02. In terms of the choice of loss function,
unlike conventional denoising loss functions, we introduced
new constraint terms to form a comprehensive loss function. In
addition to noise learning loss, we added loss terms for the real
image and one-step prediction results. The specific loss function
includes two parts: the noise loss and prediction loss terms. The
noise loss term is used to measure the model’s noise estimation
capability, while the prediction loss term is used to evaluate
the model’s prediction accuracy for the real image and one-step
prediction results. The predicted ŷ0 was obtained using (10), and
we minimized the L1 loss between the predicted and the ground
truth ŷ0. The specific formulas are as follows:

Lmodel = ‖z − μθ(x,yt)‖2

+

∥∥∥∥y0 − 1√
ᾱt

(
yt −

√
1− ᾱtμθ(x,yt)

)∥∥∥∥
2

. (13)
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Fig. 9. Inpainting effects of different methods under PBB at four angles are compared.

During the training process, for each batch of data, we
generated random time steps within the maximum time step
range equal to the batch size. We directly trained the model
using these time steps and corresponding data pairs. During the
inference process, we experimented with a sampling approach
using 50 spans of 10 time steps for DDIM [44] to generate the
final completion results. The batch size was set to 4. We used
the Adam optimizer with a fixed learning rate of 1e-4 for the
completion model.

III. RESULTS

A. Introduction to the Evaluation Indicators

To evaluate the model’s overall data generation quality and
assess its performance, we used several commonly used metrics
in data completion tasks, including mean squared error (MSE),
PSNR, and the SSIM. MSE is a metric used to measure regres-
sion models’ performance. It effectively quantifies the pixel-
level differences between the generated results and the ground
truth data. The PSNR is based on the ratio of the peak signal
intensity to the MSE. It measures the error sensitivity between
corresponding labeled pixels, providing a quality evaluation of
image sharpness and distortion levels. The specific formulas for
these metrics are as follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (14)

PSNR = 10× log10

(
MAX2

MSE

)

= 20× log10

(
MAX√

MSE

)
(15)

where MAX represents the maximum possible pixel value in
data, typically set at 255 for 8-bit images or 1 for normalized
floating-point images. MSE quantifies the average squared dif-
ference between the pixel values of the original data and those
of the reconstructed/compressed data.

In terms of measuring absolute errors, SSIM differs from
MSE and PSNR. SSIM is a perceptual model that combines
brightness, contrast, and structural information, taking into ac-
count the image’s structural similarity. It better approximates
the human perception of image quality. The specific formulas
for these metrics are as follows:

SSIM =
(2μpμg + c1) (2δpg + c2)(

μ2
g + μ2

p + c1
) (

δ2p + δ2g + c2
) (16)

where μp and μg represent the mean pixel values of the two
images, respectively; δp and δg represent the pixel variances of
the two images, respectively; δpg is the covariance of the pixels
of the two images; and c1 and c2 are constants.

Due to the importance of high reflectivity radar data in meteo-
rological research, particularly in the study of severe convection,
and the sparsity of severe weather events, the distribution of
direct echo data is highly imbalanced, particularly with a scarcity
of high reflectivity data. Therefore, we take into account the
completion performance of missing high reflectivity regions and
utilize the critical success index (CSI), probability of detection
(POD), and false alarm rate (FAR) [45] as evaluation metrics
to assess completion effectiveness in high reflectivity regions.
These metrics provide essential information regarding the con-
sistency between the generated high reflectivity regions and the
ground truth, detection accuracy, and the rate of false alarms.



10722 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

The specific formulas for these metrics are as follows:

CSI =
TP

TP+FN+FP
(17)

POD =
TP

TP+FN
(18)

FAR =
FP

FP+TP
(19)

where TP is true positive (prediction = 1 and truth = 1), FN
is false negative (prediction = 0 and truth = 1), FP is false
positive (prediction = 1 and truth = 0), and TN is true negative
(prediction = 0 and truth = 0).

Subsequently, we conducted a comparative analysis of
restoration performance metrics for various deep-learning meth-
ods, including U-Net [14], U-Net++ [46], GAN [47], and
ViT [48], and traditional image-inpainting methods, such as the
fast-marching method (FMM) [49] under two scenarios: PBB
and short radar outage periods.

B. Comparative Experiments With Different Methods in
Outage Case

We chose to assess performance under short radar outage
periods by randomly obstructing specific regions in the test
dataset. We randomly selected 95% of the data as training and
the rest as testing. We also separately evaluated our method’s
restoration effectiveness in extreme blockage scenarios, utiliz-
ing a radar reflectivity threshold greater than 35 dBZ [50] to
evaluate the performance metrics of CSI, POD, and FAR. This
decision was motivated by the significant impact of extreme
weather events, such as thunderstorms, tornadoes, and heavy
precipitation, on various meteorological research fields. A radar
reflectivity exceeding 35 dBZ is considered a crucial indicator
of severe convective weather and plays a vital role in meteoro-
logical forecasting [50].

During the training process, we randomly selected initial
column numbers within the range (100, 150) in a 256×256
data area, and then randomly added a number between 30 and
60 to the initial column number to determine the terminating
obscured column number. Then, we obscured the region between
the initial and terminating column numbers. We applied the same
obscuring method during the testing phase. The input consisted
of obscured information, and the output comprised the restored
information

Existing radar data restoration methods, including UNet [20],
UNet++ [21], and GAN [22], and so forth, continue to be beset
by various challenges. Fig. 8 illustrates the (a) observed data
along with the restoration results of (b) UNet, (c) UNet++, (d)
GAN, (e) ViT, (f) FFM, and (g) CDDPM under outage occlusion
while also showcasing the restoration performance of CDDPM
under (h) extreme outage conditions.

The FFM method only partially extended the image according
to edge information, resulting in unrealistic restoration results.
By contrast, deep-learning-based methods effectively overcame
this problem and produced more realistic repairs.

It should be noted that while UNet and ViT effectively recover
high-intensity echo information, they exhibit over-smoothing
features. These models tend to overlook discrete characteristics

TABLE II
EVALUATION METRICS FOR THE RESTORATION PERFORMANCE UNDER OUTAGE

CONDITIONS, ESPECIALLY THE HIGH ECHO REGION (>35 DBZ)

in the edge regions, resulting in a completion that appears less
realistic. Meanwhile, GAN networks improve the realism of
completed features in the occluded area but are notably inaccu-
rate. Furthermore, due to the adversarial nature of GANs, their
training tends to exhibit some degree of instability, which results
in high training costs and makes it difficult for them to converge
to an ideal state [51].

Compared to these deep learning models, our CDDPM lever-
ages sampled data to generate restoration in a highly effective
manner. Moreover, compared with GANs, our DDPM-based
method is easier to train [52]. It excels at restoring discrete
features and accurately recovering missing high-intensity echo
regions, demonstrating outstanding authenticity and precision.
Furthermore, in extreme large-scale random outage scenarios,
our approach demonstrates outstanding radar data restoration
performance.

As Table II tabulates, we compared different methods’ restora-
tion performance in missing regions. Our approach evidently
outperforms other deep learning methods in terms of data re-
construction metrics. Furthermore, compared with the other
methods, our proposed technique exhibits significantly higher
accuracy in restoring high reflectivity regions. This method’s
performance metrics in terms of repairing extreme data gaps
(CDDPM-E) are also outstanding. To minimize pixel-level loss
in the restored results to the greatest extent possible, we have
added an image-to-image L2 loss-constraint term to the loss
function. We conducted additional ablation experiments by re-
training the model without the constraint term, to demonstrate
the effectiveness of this modification. As given in the Table II
(CDDPM-MSE), we obtained lower pixel-level loss without the
constraint term than with the constraint term, which confirmed
the effectiveness of our loss-function modification.

C. Comparative Experiments With Different Methods in
Random PBB

For PBB scenarios, we performed tests to evaluate the restora-
tion performance and image reconstruction metrics of different
models at varying angles (5◦, 10◦, 15◦, and 20◦) of PBB obstruc-
tion. Owing to the missing regions’ irregular shapes as a result
of beam blocking, it is challenging to conduct tests exclusively
on restoration areas. Therefore, to compare the performance
differences in correction under different echo intensities, we
examined the CSI, POD, and FAR metrics for the repaired
complete data at the 10 and 35 dBZ thresholds.
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TABLE III
INPAINTING EFFECT OF DIFFERENT METHODS IN 5◦, 10◦, 15◦, AND 20◦ PBB

Fig. 10. Evaluation results of the beam blockage correction performance under various restoration methods, blockage sizes, and reflectance threshold levels.

Fig. 9 illustrates the comparative restoration results of our
method against other models under different obstruction angles.
It is evident that our approach consistently achieves more real-
istic and accurate restoration results under PBB at any angle.
As the obstruction angle increases, all models’ restoration per-
formance tends to decline, with the results becoming smoother
or less accurate. Our method effectively addresses both of these
challenges, which makes it highly adaptable to various complex
scenarios.

In Table III, we present the data reconstruction metrics for
different obstruction angles. From the results, it is evident that
our method excels in reconstructing fine details with greater
realism. ViT also exhibits excellent performance in restoration
under smaller angle obstructions but exhibits issues with exces-
sive smoothing (as shown in Fig. 9), resulting in its low PSNR
and SSIM. The evaluation of restoration quality metrics, such
as PSNR and SSIM, still indicates subpar performance. As the
obstruction angle increases, the other methods’ performances

show a notable decline, while our approach maintains excep-
tional performance metrics.

Fig. 10 displays the accuracy of reflectivity information
restoration for thresholds greater than 10 dBZ and 35 dBZ at four
different obstruction angles. While GAN manages to overcome
the smoothing issue in the restoration results (as illustrated by
Fig. 9), it suffers from significant inaccuracies. Compared with
the other models, our approach consistently exhibits superior
performance metrics.

IV. DISCUSSION

The proposed CDDPM demonstrates significant performance
advantages in radar data completion tasks, effectively capturing
complex data distributions and correlations. Compared with the
other deep learning methods, our model exhibits remarkable
performance improvements. Moreover, our research findings
yield valuable insights for further exploration in the field of
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condition-guided remote sensing data generation. DDPM has
been empirically demonstrated on discrete remote sensing data,
specifically radar data.

Future research directions could investigate the application
of condition-guided diffusion models in various remote sensing
tasks, including data fusion, data evolution, and accurate fore-
casting of strong convective meteorological events. In addition,
efforts to enhance the model’s robustness and generalization
capabilities are warranted to address more intricate and realistic
scenarios.

It is worth noting that our approach employed a simplistic
MSE loss function without assigning specific weights to ar-
eas with high echo loss. The fixed learning rate configuration
also leaves room for further model performance optimization.
Furthermore, the validation process was restricted to a limited
geographical area, which potentially limited the results’ gener-
alizability, considering regional variation in convective weather
conditions. Future investigations should extend testing and val-
idation to broader geographic regions encompassing diverse
climate conditions to ascertain the proposed model’s feasibility
and practicality. Our research outcomes are relevant to a broad
range of remote sensing applications, facilitating the repair of
low-quality radar data and improving the accuracy of severe
convective weather predictions.

Although our findings demonstrate the great potential of gen-
erative models for inpainting missing areas in radar data, such
models may hallucinate unreal features, have serious ethical con-
siderations, and may cause harm in the real world. Researchers
must carefully consider these risks in implementing generative
models.

V. CONCLUSION

Seamless fusion of radar imagery is crucial for data processing
and quantitative applications in the field of meteorology. In
this study, we have developed and implemented a CDDPM for
radar data restoration in the presence of missing information.
To address the computational challenges posed by self-attention
mechanisms, we employed channel fusion in our model. We
trained our restoration model using radar reflectivity data from
the midwestern region of Kansas, USA, sourced from MRMS,
and conducted testing on an independent dataset from a different
year. We also compared our approach with various other deep
learning methods. The key findings of this research may be
summarized as follows.

1) Visually, our model effectively addresses the issues of
excessive smoothing and inaccuracies commonly encoun-
tered when applying traditional deep learning methods to
radar data. It also demonstrates outstanding restoration
performance in cases of extreme radar outage and exten-
sive beam blockage.

2) According to the evaluation results, our method shows
excellent repair performance on radar data with large-scale
missing regions.

This study’s most significant finding is that the conditionally
guided diffusion model is highly effective for radar reflectivity
data with highly discrete data distributions, demonstrating ef-
fective restoration of details and accuracy in high-echo regions
while simultaneously addressing the smoothing issue in the

restoration results while addressing the issue of smoothness in
the generated results. Both characteristics have highly significant
implications for the remote sensing and meteorology fields.
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