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Abstract—The existence of adversarial examples highlights the
vulnerability of deep neural networks, which can change the recog-
nition results by adding well-designed perturbations to the original
image. It brings a great challenge to the remote sensing images
(RSI) scene classification. RSI scene classification primarily relies
on the spatial and texture feature information of images, making
attacks in the feature domain more effective. In this study, we
introduce the feature approximation (FA) strategy, which generates
adversarial examples by approximating clean image features to
virtual images that are designed to not belong to any category. Our
research aims to attack image classification models that are trained
with RSI and discover the common vulnerabilities of these models.
Specifically, we benchmark the FA attack using both featureless
images and images generated via data augmentation methods. We
then extend the FA attack to multimodel FA (MFA), improving the
transferability of the attack. Finally, we show that the FA strategy
is also effective for targeted attacks by approximating the input
clean image features to the target category image features. Exten-
sive experiments on the remote sensing classification datasets UC
Merced and AID demonstrate the effectiveness of the methods in
this article. The FA attack exhibits remarkable attack performance.
Furthermore, the proposed MFA attack outperforms the success
rate achieved by existing advanced targetless black-box attacks
by an average of over 15%. The FA attack also performs better
compared to multiple existing targeted white-box attacks.

Index Terms—Adversarial examples, feature approximation
(FA), remote sensing, scene classification.

I. INTRODUCTION

R EMOTE sensing technologies have undergone significant
advancements in recent years, resulting in diverse acqui-

sition methods for remote sensing images (RSI) and increased
availability of such imagery. This has greatly contributed to
significant advancements in remote sensing studies [1], [2], [3],
[4], such as object detection [5], [6], [7], scene classification [8],
[9], [10], and object tracking [5], [11], [12], [13]. The application
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of deep neural networks (DNNs) has demonstrated greater po-
tential compared to traditional image processing methods, and
therefore, the implementation of these tasks largely relies on
DNNs.

However, in recent studies, it has been found that DNNs are
susceptible to some intentional or unintentional perturbations.
Adversarial examples can be created by adding subtle perturba-
tions to the original image [14], [15], and DNNs have little resis-
tance to attacks from adversarial examples. This phenomenon
questions the security of neural networks. Since DNNs has been
widely used in both Earth sciences and remote sensing [16], [17],
[18], it is essential to study adversarial examples in remote sens-
ing. By studying digital attacks, we can find the vulnerabilities
of DNNs, and research based on this can improve the robustness
of DNNs [19]. It can also provide research benchmarks for
researchers afterward and indirectly enrich the amount of data
in RSI.

Czaja et al. [20] conducted pioneering research and discov-
ered the presence of adversarial examples in classification tasks
of satellite RSI. They demonstrated that by introducing adver-
sarial perturbations in a small part of the RSI, it is possible to
deceive DNNs. Xu and Ghamisi [21] first investigated universal
adversarial examples in RSI and formed an adversarial example
dataset called UAE-RS. Zhang et al. [22] proposed a generalized
adversarial patch generation method for multiscale objects in
implemented the attack in the physical world.

Currently, white-box attacks are the primary method used
in research on remote sensing and Earth sciences [21], [23],
[24]. These approaches presuppose that the parameters of the
target model are known, and the researchers can carry out an
attack with these parameters. However, these methods are highly
idealized. In practice, the relevant information about the target
model are unknown or we only have access to a small portion of
the information. Under these circumstances, studying black-box
attacks or gray-box attacks is more reliable. A black-box attack
refers to an attack where the attacker possesses no prior infor-
mation about the target model [25]. On the other hand, there
is also an attack that is somewhere between the black-box and
the white-box, we call it gray-box attack [26]. In the gray-box
attack, the attacker has a certain degree of knowledge about
the target system, and may have some, but not all, knowledge
about the system architecture, some of the code, or configura-
tion information. As mentioned earlier, traditional adversarial
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Fig. 1. Illustration of the FA attack is used for both targetless attack and
targeted attack. Red lines indicate targeted attack process and blue lines indicate
targetless attack process.

example generation methods are typically designed to attack
specific DNNs, while these methods often fail to deceive other
models, especially those that differ significantly from the origi-
nal model. Furthermore, once the principles behind these white-
box attack methods are understood, corresponding and effective
defense mechanisms can be developed, rendering the attack
methods ineffective. For example, defense distillation methods
[27] have been successful in countering JSMA [28] and FGSM
[15] algorithms, but subsequently, the C&W [29] adversarial
attack algorithm managed to bypass defense distillation models.

The task of RSI classification is mainly based on the spatial
and texture feature of the images. Therefore, for digital attacks,
as long as the spatial texture feature of the image is changed, the
image classification model can be successfully fooled. And the
key to achieving black-box attacks lies in identifying common
vulnerabilities between different network models. Yosinski et al.
[30] found that different models have similar feature repre-
sentations, and share common vulnerabilities. Based on this,
Xu and Ghamisi [21] proposed a black-box attack, specifically
using models for which complete knowledge is available as
a springboard for attacks. After learning enough knowledge,
the unknown model can be attacked. The method enhanced the
transferability of the attack, however, it did not perform well
in terms of the overall effectiveness of the attack. Inspired by
the above-mentioned research works, we propose the feature
approximation (FA) attack and benchmark its attack capability
using multiple virtual images. Based on this, we incorporate
the idea of multimodel fusion and propose the multimodel
feature approximation (MFA) attack, dramatically improving
the transferability of targetless attack. In addition, we found the
effectiveness of FA for targeted attacks and realized targeted
white-box attacks with a high success rate (SR). The flowchart
of FA attack to realize targeted and targetless attacks is shown
in Fig. 1.

This article presents several key contributions, which are
summarized as follows.

1) We propose the FA attack, which approximates the input
clean image features to a virtual image that do not belong

to any category. We benchmark it using various featureless
and featured images to verify its attack capability.

2) We combine the idea of multimodel fusion with FA to
propose an MFA attack so that the generated adversarial
examples consider the features of multiple models, effec-
tively improving the transferability of targetless attack.

3) We apply the FA attack to targeted white-box attacks by
randomly selecting a target category image as a virtual
image. We conduct experiments on four models to achieve
attacks with a higher SR than other methods.

The rest of this article is organized as follows. The research
relating to this topic is reviewed in Section II. Section III
describes the implementation details of the proposed adversarial
attack methods. The results of the experiments and datasets used
in this study are presented in Section IV. Finally, Section V
concludes this article.

II. RELATED WORK

A. Adversarial Attacks

1) L-BFGS: Szegedy et al. [14] proposed the box-cons-
trained L-BFGS algorithm, which is the first adversarial at-
tack method. Modeling the process of generating adversarial
examples as an optimization problem to be handled. Due to the
difficulty in solving the optimization problem, it is transformed
into a box-constrained form. The ultimate mission is to find a
minimal input perturbation within the constrained input space
that is imperceptible. The minimization formula for the adver-
sarial examples is

argmin
r

c · ||r||2 + J (x′,θ, t) , s.t. : x′ ∈ [0, 1]n (1)

where all elements of the input image x are regularized in
[0, 1]n, n denotes the pixels of x, J(x′,θ, t) is the final loss
function of the target model, θ indicates the parameters of the
model, t is the misclassification label of the target. r refers to the
perturbation, x′ = x+ r. For objectives with parameter c > 0
or more there is no guarantee that they are adversarial examples.
The above-mentioned optimization process is performed in an
iterative form.

2) Fast Gradient Sign Method (FGSM): Goodfellow et al.
[15] proposed the FGSM. By overlaying the original image
with the inverse gradient of the loss function, this technique
produces effective adversarial examples. They also provide a
rationalization for the existence of adversarial examples. Before
them, DNNs were thought to be nonlinear, but they thought
adversarial examples existed mainly because of the linear nature
of these models high-dimensional spaces. Assuming an image
x, whose true label is y, we can calculate the perturbation by

δ = ε · sign(�xJ (θ,x, y)) (2)

where ε denotes the perturbation strength, sign(·) refers to
the symbolic function, �xJ(·) denotes the computation of the
gradient of the loss function.

Kurakin et al. [31] proposed the I-FGSM attack. Unlike the
FGSM, which applies the gradient computation and updates only
once, the I-FGSM increases the adversarial nature by iteratively
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applying the perturbations of the FGSM. The iterative formula
for the adversarial examples is as follows:

xt+1
adv = clip

(
xt

adv + α · sign (∇xadvJ
(
θ,xt

adv, y
)))

(3)

where clip denotes the clipping of the perturbation size to keep
it within a finite range and α denotes the step size, when t = 0,
xt

adv is the clean image of the original input.
3) C&W: Carlini and Wagner [29] proposed the C&W attack

algorithm, which successfully attacked the defense distillation
model that was the most advanced at that time. The algorithm
views the adversarial examples as a variable and transforms
such problems into constraint minimization problems, which
is defined as

argmin
xadv

‖xadv − x‖∞ − μ · J (θ,xadv, y) (4)

where μ refers to the weight coefficient.

B. Black-Box Attacks

Currently, most research on adversarial attacks are white-box
attacks [15], [32], [33]. White-box attack methods generally
have a high SR, but their practical utility is limited because it
is challenging to obtain any information from the target model
in real-world scenarios. Researchers have proposed black-box
attack [34], [35], [36] methods in response to this, which assume
that the information of the target model are unknown or only
partially known. On the contrary, black-box attacks are generally
more challenging but also more practical compared to white-box
attacks. There are three main black-box attacks: Query-based
attacks, transfer-based attacks, and decision-boundary-based at-
tacks [37]. In this study, we primarily utilized the transfer-based
attack approach.

1) Query-Based Attacks: It mainly uses querying the input–
output information of the target model to get its approximate
gradient by constantly approximating the attacked model nu-
merically, and later using the estimated gradient to counter the
attack. Chen et al. [38] proposed the zero-order-optimization
attack, which is the first black-box attack based on gradient
estimation. Su et al. [39] investigated the single-pixel attack and
introduced a differential evolutionary lookup strategy to improve
the attacking ability. Bai et al. [40] proposed a black-box attack
based on a neural process that reduces the number of queries
while improving the attack performance against samples.

2) Transfer-Based Attacks: The attack logic is extended by
white-box attacks. As a general method, there will usually be a
white-box model used as a surrogate model for the attack, and
the adversarial examples will generally be migration-aggressive
to other models as well. Papernot et al. [41] investigated the local
surrogate model attack (LSMA) which is the earliest black-box
attack. In this attack scenario, the attacker is granted access to
a portion of the original training data and can also query and
access the classification models. This information allows the
attacker to craft specific attacks using the training data and test
the effectiveness of these attacks by querying the model. The
idea of integration was incorporated into the LSMA algorithm
by Liu et al. [42]. They select multiple models at once and
combine their loss values to carry out an attack. Shi et al.

[43] inspired by the MI-FGSM attack approach, proposed the
Curls&Whey black-box attack approach, which improves the
adversarial examples transferability. Xu and Ghamisi [21] used
the information of known models to discover the vulnerabilities
of unknown models, and generated generic adversarial samples
with good migration.

3) Decision-Boundary-Based Attacks: This method neither
relies on an surrogate model nor requires a confidence score
vector. It represents a more restricted adversarial scenario where
only using the category labels from the output of the black-box
classifier can achieve a successful attack. It is more in line with
real-world scenarios, but the attack is more difficult and usually
requires more queries. The pioneering decision-boundary-based
attack boundary attack was introduced by Brendel et al. [44].
The attack relies only on the category labels output by the
classification model and does not require information, such as
gradient or confidence scores. Cheng et al. [45] proposed the opt-
attack, which solves the problem that a boundary attack requires
supermultiple model queries and cannot guarantee convergence
improves the attack query efficiency. Li et al. [46] discovered
that queries can be generated by introducing perturbations to the
image and proposed query-efficient boundary-based blackbox
attack, which greatly reduces the queries number.

C. Data Augmentation

Data augmentation refers to the process of generating addi-
tional training images by applying many variations to the orig-
inal images, thereby increasing their diversity [47]. These vari-
ations do not drastically alter the features of the original image,
but rather adjust the positioning of the featured components of
the image accordingly, altering their distribution. The discovery
of data augmentation techniques has greatly enhanced the model
generalization ability and data robustness. Data augmentation
methods mainly include traditional data augmentation and deep
learning-based data augmentation [48]. This article focuses on
using traditional data augmentation methods.

1) Traditional Data Augmentation: These methods are tech-
niques commonly utilized in traditional computer vision tasks
to enhance the data in several ways. They are categorized into
single-sample transformation and multisample fusion [48]. The
former refers to transforming and expanding a single sample to
generate more diverse training data. These methods are usually
used when the dataset is small or the sample is insufficient to
generate additional samples by transforming operations on a
single sample to enrich the variety and size of datasets. The
specific measures are rotating, flipping, cropping, translating,
scale changing, brightness adjusting, noise addition, and other
operations. The latter refers to the method of extracting mul-
tiple images and ultimately fusing them into a new image
to expand the dataset and improve the training effect. Zhang
et al. [49] proposed the Mixup data augmentation method, in
which two images with different categories are proportionally
superimposed to form a new sample, and the labeling categories
of the new sample are also proportionally composed of the
original two labels. Yun et al. [50] proposed the CutMix method,
whose idea is to splice the images of different categories after
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Algorithm 1: Targetless Black-Box Attack MFA.
Input:

-The image x to be attacked and the true label y.
-Parameters of the surrogate model θsi, feature extrac-
tion function gsi, prediction function psi.
-Virtual image x̃ generated by the data enhansement
methods.

1: g0 ← 0, x0
adv ← x, I ← 5, α← 1, β ← 0.1.

2: for t in range(0, I) do
3: Calculate the mix loss LMixs(θs,x, x̃) and

predicted loss LCEs(θ,x, y) through Eqs. (11) and
(12).

4: Calculate the overall loss L(θ,x, y) through Eq.
(13).

5: The momentum term mt+1 is updated through (9)
and the adversarial example xt

adv is updated through
Eq. (10).

6: end for
7: return xt

adv

Algorithm 2: Targeted White-Box Attack FA.
Input:

-The attacked image x and the target category image T ,
and the true label y and the target label t.
-Parameters of the surrogate model θsi, feature extrac-
tion function gsi, prediction function psi.

1: g0 ← 0,x0
adv ← x, I ← 5, α← 1, β ← 0.1, γ ← 0.4.

2: for t in range(0, I) do
3: Calculate the mix loss LMix_T (θs,x, T̃ ), true

pre-dicted loss LCE(θ,x, y) and target prediction
loss LT (θ,x, t) through Eqs. (14), (6) and (15).

4: Calculate the overall loss L(θ,x, y) through Eq.
(16).

5: The momentum term mt+1 is updated through Eq.
(9) and the adversarial example xt

adv is updated
through Eq. (10).

6: end for
7: return xt

adv

intercepting them, which improves the Mixup method and makes
the generated images more natural. Harris et al. [51] proposed the
FMix method, which fourier samples the low-frequency images
to obtain binary templates, and uses this as the basis for the
image interpolation, which outperforms both the Mixup and the
CutMix methods.

2) Deep Learning-Based Data Augmentation: These meth-
ods aim to increase the diversity and complexity of training by
expanding the training dataset in the same way as traditional
methods. Still, the two are entirely different in terms of their
implementation methods. The former performs random trans-
formations and deformations on the images to make the training
more complex and diverse. It does not require labeling informa-
tion, also known as unsupervised data augmentation. Goodfel-
low et al. [52] proposed the generative adversarial networks. The

Fig. 2. Original input image and feature maps extracted by three surrogate
models respectively. (a) Origin. (b) Alexnet. (c) ResNet. (d) DenseNet.

network consists of a generator, which tries to generate samples
that resemble actual samples, and a discriminator, which dis-
tinguishes between generated and actual samples. Adversarial
training of generators and discriminators allows for generating
samples with a high degree of diversity. Cubuk et al. [53]
proposed the AutoAugment method, which automatically finds
the best data augmentation strategy through a search algorithm,
including rotations, clipping, scaling, flipping, etc., as well as
other more complex distortions and deformations.

III. METHODOLOGY

Modifying the pixel data of images is a common adversarial
attack method, which can cause the surrogate model to produce
false predictions [39]. However, the impact of this attack on the
victim model may be limited because of the differences between
different neural networks [25]. To enhance the transferability of
adversarial attack, it is possible to consider attacking the shallow
features of the surrogate model. Shallow features share similar
representations in different networks and preserve detailed spa-
tial information of images [30]. Therefore, they may also contain
more similar vulnerabilities. Feature maps extracted by various
models are shown in Fig. 2.

Based on this, we propose the FA strategy to generate ad-
versarial examples. The idea is to approximate the input clean
image features to a virtual image by minimizing the distance
between them. Since this virtual image is carefully designed by
us and does not belong to any category, this method can realize
the adversarial attack. We first benchmark FA attack by varying
the virtual image to determine its effect on the capability of
FA attack. To enhance the attack transferability, we propose the
MFA attack, where three models with different architectures are
chosen as surrogate models and learned simultaneously so that
the adversarial examples take into account multimodel features.
In addition, we found the effectiveness of FA attack in realizing
the targeted attack by using the image of the target category as the
virtual image. The targeted attack is done by making the input
image features approximate to the target image. This section
details the proposed methodology.

A. FA Benchmark

First, we examine the impact of various virtual images on FA
attack to form a benchmark for relevant researchers.

1) Generate Virtual Image: Xu and Ghamisi [21] studied the
impact of Mixup and CutMix data augmentation methods, based
on which we perform an extended study. This test is split into
two parts. In the first part, we use six featureless images as the
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Fig. 3. Virtual images generated by three data augmentation methods respec-
tively. (a) FMix. (b) Mosaic. (c) AugMix.

virtual images to approximate the features of the input clean
images to the featureless images for attack. The featureless
images are pure color images of black, white, red, green, and
blue and random Gaussian noise images. In the second part, we
use three multisample data augmentation methods to generate
virtual images for testing, they are FMix [51], Mosaic [54], and
AugMix [55].

FMix [51] data augmentation method: Two categories are
randomly selected in the dataset, one image is taken from each
category. The mask image is binarized according to the high
and low-frequency regions of the image, then the pixels are
combined in a weighted manner using this mask. For the mask
image we use the example mask in text.

Mosaic [54] data augmentation method: Four categories are
randomly selected in the dataset, one image is extracted from
each category. The four images are randomly flipped, scaled,
color gamut transformed, and other operations are performed.
The final images are placed according to the order of the first
image on the top-left, the second image on the top-right, the third
image on the bottom-left, and the last image on the bottom-right.
The final image should be the same scale of size as the original
image.

AugMix [55] data augmentation method: The original method
is to process one image, we use multiple images superimposed
here. Four categories are randomly selected from the dataset,
and for each category we select one image. The first image is not
subjected to any operation. The last three images are subjected to
translation, rotation, and color gamut transformation operations,
after which the last three images are superimposed according to
the random weights, but make sure the weights sum up to 1. The
combined image formed is superimposed with the first image
according to the weights of 0.5 and 0.5 to create the virtual
image we need. The virtual images formed by the three methods
are shown in Fig. 3.

2) Design Loss Function: For the adversarial examples to
have close features to our well-designed virtual image, we need
to minimize the difference in distribution between them. We
design the mixture loss function as

LMix (θs,x, x̃) = −
nr∑
r=1

nc∑
c=1

nk∑
k=1

gs(x)
(r,c,k) log

gs(x)
(r,c,k)

gs(x̃)(r,c,k)

(5)
where nr, nc, nk denotes the number of rows, columns, and
channels of the feature map, respectively. θs refers to the pa-
rameters of the surrogate model, and x is the clean image, x̃
for the well-designed virtual image. gs(x) denotes the mapping

function for extracting shallow features. The first pooling layer
of the model is used to extract the shallow features of the image.
We only need to minimize the distances between the virtual
image x̃ and the clean image x to achieve our goal. We utilize
KL-divergence to calculate the distance.

In addition, we need to do an auxiliary attack against the
predictions of model, which we compute using the cross-entropy
loss

LCE (θs,x, y) = −
nj∑
i=1

y(i) log qs(x)
(i) (6)

where nj denotes the number of categories in the classification
mission, and y is the one-hot encoding of the true label of the
input image x. qs(x) s denotes the prediction function of the
model for the input image x.

The final loss function L is the combination of LMix and LCE

L (θs,x, y) = LMix (θs,x, x̃) + β · LCE (θs,x, y) (7)

where β is the weight parameter of the cross-entropy loss.
We can attain the adversarial example by adding the gradient

of the final loss to the input image

xt+1
adv = clip

(
xt

adv + α · ∇xL(θs ,x
t
adv, y)

‖∇xL(θs ,xt
adv, y)‖∞

)
(8)

where clip(·) denotes the example is clipped to keep it within
a certain range. xt

adv denotes the adversarial example formed in
the tth iteration. When t = 0, adversarial example is the input
clean image and α is the step size.

We introduce the momentum attack [56] to enhance the attack
transferability, which can stabilize the updating direction of the
gradient and eliminate the worst local maxima. We set the mo-
mentum term of the tth iteration to bemt. When t = 0,mt = 0.
After that, using the gradient direction of the velocity vector to
update mt

mt+1 = mt +
∇xL(θs,x

t
adv , y)

||∇xL(θs,xt
adv , y)||1

. (9)

Use this as a basis for updating the adversarial example

xt+1
adv = clip

(
xt

adv + α · mt+1

||mt+1||∞

)
. (10)

B. Targetless Black-Box Attack

We combine the idea of FA with multimodel fusion to propose
the MFA attack. Fig. 4 shows the flowchart of the targetless
black-box attack MFA.

1) Generate Virtual Image: For comparison, we use the vir-
tual images of the Mixup and Mixcut attacks as our virtual
images. We refer to these approaches as MFA+Mixup and
MFA+Mixcut.

The Mixup attack generates the virtual image in an easy-to-
understand way, one image is extracted from each of the ten
different categories of the training set, and then the ten images are
superimposed, and the transparency of each image is set to 0.1
to form a mixed image. The virtual image of the Mixcut attack
was stitched together from ten different categories of images,
and one-tenth of the image is cut from each image, and different
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Fig. 4. Flowchart of targetless black-box attack MFA. The green and black lines indicate the feature extraction process, the orange lines indicate the model
prediction process, the blue lines indicate the loss computation (the left-hand side is the prediction loss, and the right-hand side is the feature loss), the purple lines
indicate the computation of perturbation, and the red lines indicate the final generation of the adversarial example.

positions of each image are selected depending on the order of
the cuts. The width of the image is kept constant when cutting,
and the height is intercepted as one-tenth of the height of the
image, and the size of the formed hybrid image is consistent
with the original image.

2) Design Loss Function: We define the mixture loss func-
tion as

LMixs (θ,x, x̃) =
1

nModels

nModels∑
i=1

LMix (θsi,x, x̃) (11)

where nModels denotes the number of surrogate models, x̃i de-
notes the image features extracted by the ith model.

Each iteration involves calculating the distance between the
input and virtual image features extracted by different models
and approximating them simultaneously.

In addition, we use the cross-entropy loss between the clean
image prediction logits values of the multimodel and the true la-
bels to carry out ancillary attack. The cross-entropy loss function
is

LCEs(θ,x, y) =
1

nModels

nModels∑
i=1

LCE (θsi,x, y) . (12)

The final loss functionL is the combination ofLMixs andLCEs

L(θ,x, y) = LMixs(θ,x, x̃) + β · LCEs(θ,x, y). (13)

The adversarial example is generated by adding the gradient
of final loss function to the original clean image. In addition, we
also use the momentum attack to stabilize the gradient direction.

Algorithm 1 shows the implementation details of the targetless
black-box attack MFA.

Fig. 5. Flowchart of targeted white-box attack FA. Using one model as
the surrogate model. Compared to the targetless attack, the targeted attack
incorporates the true label of the target as the forward direction of the prediction
iteration and the true label of the original image as the reverse direction of the
prediction iteration.

C. Targeted White-Box Attack

We also found the effectivity of FA attack for targeted attack.
Fig. 5 shows the flowchart of the targeted white-box attack FA.

1) Generate Virtual Image: To realize the targeted attack,
we need to approximate the features of the clean image x to the
target image T . Therefore, we randomly select a target category
image as the virtual image.

2) Design Loss Function: We define the mixture loss func-
tion as

LMix−T (θs,x,T ) = LMix (θs,x, x̃)|x̃=˜T . (14)

The cross-entropy loss function is divided into two parts. For the
first part, we maximize the cross-entropy loss LCE between the
predicted logits values of the clean images and the true labels as
before. The next part, we minimize the cross-entropy loss LT
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between the predicted logits values of the clean images and the
target class labels. The target cross-entropy loss function is

LT (θs,x, t) = − LCE (θs,x, y)|y=t (15)

where tdenotes the one-hot encoding of the target category label.
The final loss function L is

L(θs,x, y,T , t) = LMix_T + β · LCE + γ · LT (16)

where β is the weight of the true cross-entropy loss function and
γ is the weight of the target cross-entropy loss function.

The adversarial example is generated by adding the gradient
of final loss function to the original clean image. In addition, we
also use the momentum attack to stabilize the gradient direction.

Algorithm 2 shows the implementation details of the targeted
white-box attack FA.

In order to attack the entire dataset, we need to traverse
all the images in the dataset, each with a different adversarial
perturbation. The larger the dataset, the longer the algorithm
takes to run.

IV. EXPERIMENTS

A. Dataset

We used two RSI datasets for scene classification, UC Merced
(UCM)1 and AID.2

1) UC Merced Dataset: The UCM [62] dataset comprises a
high-resolution RSI encompassing 21 distinct scene categories.
It includes a total of 2100 images, with 100 images per category.
The dataset is derived from large images in the USGS National
Map Urban Areas image set and represents urban areas across
different regions in the United States. Each image in the UCM
dataset has a resolution of 256×256 pixels and is supplied in a
lossless compressed format.

2) AID Dataset: The AID [63] dataset is a recently compiled
collection of aerial images by Google Earth. It encompasses 30
distinct scene categories, with varying image counts for each
category, ranging from a minimum of 220 to a maximum of
400. It comprises 10 000 images, each with a resolution of
600 × 600 pixels, and saved in PNG format.

B. Experimental Settings

For comparison experiments, we use six adversarial attacks,
which are FGSM [15], I-FGSM [31], C&W [29], PGD [57],
Mixup [21], and Mixcut attack [21]. We conduct experiments
on two remote sensing datasets, UCM and AID. For each dataset,
we selected 30% images as the training set, 30% images as the
validation set and the other 40% images as the test set. We select
AlexNet [58], ResNet18 [59], DenseNet121 [60], and RegNetX-
400MF [61] four models with different architectures as surrogate
models. As in Xu and Ghamisi’s [21] work, the iteration step
size α is 1. For methods that require iterations such as I-FGSM,
C&W, PGD, Mixup attack, and Mixcut attack, we uniformly set
the iteration number I to 5. We use the first pooling layer of the

1[Online]. Available: http://weegee.vision.ucmerced.edu/datasets/landuse.
html

2[Online]. Available: https://captain-whu.github.io/AID/

Fig. 6. Impact of β on SR of targetless attack in different surrogate models is
obtained by choosing four surrogate models to attack nine models.

model to define the feature extraction function gs(x). For the
evaluation metric, the attack SR were used

SR =
nwrong

ntotal
(17)

wherentotal denotes the total number of examples involved in the
test, and nwrong denotes the number of misclassified examples.
Higher SR indicates the method is more effective.

This research was conducted through the Pytorch platform,
using one NVIDIA GeForce RTX 3060 (12 GB) GPU.

C. Adversarial Attacks

1) FA Benchmark: Tables I and II present the detailed results
of the attack using featureless virtual images and virtual images
generated by three data augmentation methods. We can observe
that the attack results of red, green, and blue images are poor
compared to the black and white ones because the direction
of FA is different in the three dimensions of the image, which
may lead to the averaging of features. The reason that the attack
results of black and white images are not much different from
each other is that the calculation of KL-divergence considers the
absolute distance. For the black image, the features are overall
approximated to the low, while the white image is precisely
the opposite, which leads to a slight difference in the attack
results. Therefore, we conducted relevant experiments on black,
red, green, and blue virtual images only in two datasets for the
AlexNet surrogate model. For the rest of the surrogate models,
we selected white images and random Gaussian noise images as
the virtual images.

The experiment results show that changing only the virtual
image has a limited effect on the SR of the attacks, so our study
can be used as a benchmark for the research of the related people
afterward. The weighting factor β in the loss function controls
the weighting between the feature loss and the prediction loss,
both of which are related to the surrogate model we selected.
So we can conclude that different surrogate models should be
chosen with different β. According to the experimental results,
we set theβ of the AlexNet, DenseNet121, and ResNet18 models
to 0.1 and the β of the RegNetX-400MF model to 0.5. Fig. 6
shows the experiment results, and we use the UCM dataset for
the experiments.

http://weegee.vision.ucmerced.edu/datasets/landuse.html
http://weegee.vision.ucmerced.edu/datasets/landuse.html
https://captain-whu.github.io/AID/
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TABLE I
BENCHMARK OF DIFFERENT VIRTUAL IMAGE IN FA ATTACK ON THE UCM DATASET

Fig. 7. Impact of γ on the SR of targeted attacks, the Alexnet model was
chosen as a surrogate model to attack three models, VGG16, DenseNet201, and
RegNetX-400MF.

2) Targetless Black-Box Attack MFA: We fused three mod-
els, AlexNet, DenseNet121, and ResNet18, as surrogate models
to perform targetless black-box attack, and the detailed results
are shown in Tables III and IV. Due to the validation in Xu and
Ghamisi’s [21] work showing that the performance of Mixup and
Mixcut attacks is significantly superior to classical adversarial
algorithms, such as PGD and C&W, we only compare Mixup and
Mixcut algorithms. Example images and generated adversarial
examples from the two datasets are shown in Figs. 8 and
9. Comparing the results with single surrogate model attacks,

we can see that the black-box attack performance of MFA
attack has shown an overall improvement, while the white-box
attack performance has been slightly weakened, but to a lesser
extent. The weakening of the effectiveness of the white-box
attack is a contradiction between global optimization and local
optimization. Specifically, when only one model is used as the
surrogate model, the weight of the loss function of the model
is 1, and when three models are used, the weight of the loss
function of each model becomes 0.33, so that in the case of
the same number of iterations, the latter will be slower than
the former for the update of a single model, and the effect will
be weakened. In addition, because of the different architectures
of multiple models, when targeting a certain pixel point, the
update direction of one model may conflict with another model,
and after the neutralization of one positive and one negative,
it will cause this iteration to lose its significance at that pixel
point, leading to the weakening of the effect of the attack. The
attack efficacy of the three fused surrogate models have an SR
above 97%, and most white-box attacks in the AID dataset
have an SR above 99%. That means our method maintains the
performance of the white-box attacks. Overall, the SR of the
MFA+Mixup attack improved by more than 15% compared to
Mixup attack, and the SR of the MFA+Mixcut attack improved
by more than 18% compared to Mixcut attack. The black-box
attack SR overall improved by more than 15%, showing a more
significant improvement. However, due to the fusion of multiple
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TABLE II
BENCHMARK OF DIFFERENT VIRTUAL IMAGE IN FA ATTACK ON THE AID DATASET

TABLE III
SR (%) OF DIFFERENT UNTARGETED BLACK-BOX ATTACKS ON THE UCM DATASET

models, the computational effort for training is also elevated,
and the training time is roughly two times higher compared to a
single model.

The β setting of this method is the same as the FA attack.
In addition, we also examined how the type and quantity

of fusion models affect the effectiveness of attacks. Table V
shows the specific quantitative results. Based on the experiment

results, we can observe that fusing AlexNet, DenseNet121,
and ResNet18 models as the surrogate models is the most
effective. When ResNet18 and RegNetX-400MF models work
together, the effect worsens because the architecture of the two
models is similar. The fusion will produce the phenomenon
of overfitting, resulting in the deterioration of the attack
effectiveness.
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TABLE IV
SR (%) OF DIFFERENT UNTARGETED BLACK-BOX ATTACKS ON THE AID DATASET

Fig. 8. Top images in each section showcase examples from the UCM dataset. The bottom images in each section display adversarial images generated using
MFA+Mixup attack method.

Fig. 9. Top images in each section showcase examples from the AID dataset. The bottom images in each section display adversarial images generated using
MFA+Mixup attack method.

TABLE V
SR (%) OF OF FA AND MFA ATTACKS WITH DIFFERENT SURROGATE MODELS ON THE UCM DATASET
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Fig. 10. Top images in each section showcase examples from the UCM dataset. The bottom images in each section display adversarial images generated using
FA attack method. The target category is forests.

Fig. 11. Top images in each section showcase examples from the AID dataset. The bottom images in each section display adversarial images generated using
FA attack method. The target category is forests.

TABLE VI
SR (%) OF DIFFERENT TARGET ADVERSARIAL ATTACK METHODS ON THE

UCM DATASET

3) Targeted White-Box Attack FA: For the targeted white-box
attack, four models, AlexNet, DenseNet121, ResNet18, and
RegNetX-400MF were used as the surrogate models, and five
classes are randomly selected as the target categories in the
UCM and AID datasets, respectively. We decided on four attack

TABLE VII
SR (%) OF DIFFERENT TARGET ADVERSARIAL ATTACK METHODS ON THE AID

DATASET

methods, FGSM, I-FGSM, C&W, and PGD, as comparison
methods.

Example images and generated adversarial examples from
the two datasets are shown in Figs. 10 and 11. Tables VI
and VII show the specific experimental results. Based on
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TABLE VIII
IMPACT OF MFA ON TARGETED ATTACK TRANSFERABILITY

SR

TABLE IX
ATTACK SPEED (IMAGES/S) OF DIFFERENT ATTACK ALGORITHMS

the tables, we can obverse that our method has a better re-
sults than the comparison methods because we designed three
parts for the attack. One approach is to minimize the KL-
divergence between the feature representations of the clean im-
age and the target image. Another method involves maximizing
the cross-entropy loss between the predicted logits values of
the model and the true label. Finally, an alternative approach is
to minimize the cross-entropy loss between the predicted logits
values of the model and the target label. In addition, our findings
suggest that the SR of the attack is closely linked to the model
complexity, with more complex models exhibiting a lower SR
of the attack.

We also conduct a simple test of attack transferability by
applying the idea of multimodel fusion. We selected forest as the
target category and compared it with the results of the AlexNet,
ResNet18, and DenseNet121 models. We found that after the
multimodel fusion, the transferability is vastly improved. Table
VIII shows the specific results. It should be noted that for FA
attacks, we use three models individually as surrogate models,
while for MFA attacks, we use a cascade of three models as
surrogate models. Therefore, for attacks on the single model,
the FA attack capability is stronger than the MFA attack, but
the MFA attack only reduces the performance by 1%, so we can
consider it to maintain high white-box attack performance.

In this method, we fix the β to 0.1 and set the γ to 0.4
according to the experimental results. To ensure fairness, we
also put the true loss weight and the target loss weight in the
loss function according to 1 : 4 in the four comparison methods.
Fig. 7 illustrates the influence of varying γ on the attack.

The attack speed of the algorithm is also a very important
indicator, so we have measured the attack time of the algorithm.
The data are shown by the average number of attack images per

second. The attack speed of different algorithms is shown in
Table IX. From the table, it can be seen that the more complex
the model, the slower the attack speed of the algorithm. And the
more complex the algorithm, the slower the attack speed. Be-
sides, the attack SR is inversely proportional to the attack speed.

V. CONCLUSION

In this study, our focus is to explore methods for adver-
sarial attack specifically in remote sensing. First, we propose
the FA attack to approximate the input clean image features
to a virtual image that does not belong to any category. We
benchmark its attack capability by using multiple virtual im-
ages, including six featureless images and three featured images
generated with three data augmentation methods. On this basis,
we propose the MFA attack for the targetless black-box attack,
and the results of fusing three models as surrogate models for
attacking in two remote sensing datasets show that our method
can enhance the attack transferability and the aggressiveness
of the adversarial examples. Finally, we apply the FA attack
in targeted white-box attack to attack four models. Compare
it with four advanced methods, our method exhibits a higher
attack SR. In addition, we also conduct a simple test on the
targeted attack transferability. Using the multimodel fusion, we
found that the attack transferability is also greatly improved. Our
experiments also found that the more complex the structure of
the deep learning model, the higher the resistance to black-box
attacks.

VI. DISCUSSION

There are still some directions that can be improved in this
study as follows.
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1) We found that the ability of FA attack is limited for
attacking scenarios such as forest, parking lot, and other
scenarios where spatial features are distributed more uni-
formly. And if this defect is improved, a higher SR and
transferability of the attack can be obtained.

2) We observe that the effect produced by each iteration
diminishes as the iteration proceeds. Relevant researchers
can try to improve it.

3) The transferability of targeted attacks is also a research
hotspot. This article mainly performs white-box attacks
in targeted attacks without doing much research on trans-
ferability, which is also a direction that can be improved.
We hope this study can help discover the vulnerabilities
of deep learning models and provide some inspiration and
enlightenment for related researchers.
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