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Plant Communities
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Abstract—The composition and dynamics of wetland plant com-
munities play a critical role in maintaining the functionality of
wetland ecosystems and serve as important indicators of wetland
degradation and restoration. Accurately identifying wetland plant
communities using remote sensing techniques remains challenging
due to the complex environment and cloud contamination. Here, we
applied a sample migration method based on change vector analysis
and arandom forest (RF) classifier incorporating SHapley Additive
exPlanations (SHAP) to explore the spatiotemporal changes of
wetland plant communities in the western Songnen Plain of China
between 2016 and 2022, and to better understand the decision logic
of the RF model. Our work achieved accurate annual wetland clas-
sification at the community scale, with an average overall accuracy
of 89.5% and an average kappa coefficient of 0.87. Our analysis
revealed different spatiotemporal change characteristics of wetland
plant communities in the western Songnen Plain and three national
nature reserves. The SHAP model showed that MOS_IRECI is the
most important feature determining the prediction results of the
RF model, and the importance of the features differs at global and
local levels. This study confirms the feasibility of annual dynamic
monitoring of wetland plant communities at a regional scale. The
results are expected to provide a reference for the fine and sus-
tainable management of wetland resources in the western Songnen
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1. INTRODUCTION

ETLAND plant communities exhibit changes over time

W as they adapt to a dynamic environment, which is shaped
by factors such as plant traits (e.g., reproductive strategies
and competition), disturbances (e.g., grazing, fire, and nutri-
ent inputs from adjacent land uses), climate (e.g., temperature
and precipitation), and hydrological changes (e.g., salinity and
inundation) to ensure the proper functioning of the wetland
ecosystem [1], [2]. The composition and dynamics of wetland
plant communities are crucial indicators of wetland degradation
and restoration [3], [4]. Therefore, identifying and analyzing
wetland plant communities over time is essential for diagnosing
the health of wetland ecosystems and provides valuable guidance
for scientific conservation and restoration of existing wetlands.
Although remote sensing has been widely used in wetland
change detection [5], [6], [7], classifying wetland plant com-
munities using remote sensing remains challenging due to the
dynamic and complex nature of wetland environments [8], [9].
Selecting suitable remote sensing data, implementing robust
methods, and obtaining reliable sample data are the key technical
challenges that affect the classification accuracy of wetland
plant communities [10]. Researchers have conducted extensive
studies using different remote sensing data to identify wetland
plant communities worldwide [11], [12], [13], [14]. This is
attributed to the diverse features of different sensors, which
allow community types to be distinguished from different per-
spectives. For large-scale classification of plant communities,
integrating optical and radar data, such as the Sentinel-1/2,
offers numerous advantages [15], [16]. These include cost-
effectiveness compared to studies based on hyperspectral data
[17], richer feature information than studies based on a single
data source [18], and effective mitigation of the impact of clouds
and cloud shadows [19]. In addition, some studies also incor-
porate digital elevation models (DEMs) into the classification
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process to improve accuracy [20]. Unlike single-date imagery,
time-series data can capture seasonal variations in wetland plant
communities and mitigate the impact of anomalous disturbances
[18]. For example, phenological parameters can be extracted
from the time-series curves of Sentinel-2 imagery, which are
considered powerful features for community classification and
have been widely used in recent studies [21]. The annual mean
composite images from Sentinel-1 time-series data show the
general change situation within one year and avoid the influence
of hydrological fluctuations on wetland vegetation [22]. The
combination of Sentinel-1/2 time-series data and DEM can
compensate for the limitations of individual data sources and
provide multidimensional classification features that improve
the accuracy of wetland plant community classification. Com-
bining multisource remote sensing data to explore the feasibility
of fine wetland plant community distribution and dynamics on
a broader scale is of great significance [8], [23].

Several artificial intelligence algorithms, including tradi-
tional machine learning (ML) algorithms such as iterative self-
organizing data analysis techniques algorithm (ISODATA), de-
cision trees (DTs), and random forests (RFs), as well as deep
learning (DL) algorithms developed in recent years, have been
applied to wetland plant community classification [24], [25]. DL
has the advantages of automatic feature learning and powerful
data fitting capabilities, which can help to improve classification
accuracy [26], [27]. However, challenges in wetland plant com-
munity research such as difficulties in sample collection and
limited sample numbers have posed obstacles to constructing
accurate DL models [11]. In addition, the highly nonlinear
operations involved in DL models make the results difficult to
interpret, limiting their suitability for wetland plant community
classification [28]. The RF algorithm is widely used because
of its powerful and flexible ability to handle complex data
with varying dimensions and nonlinearity [29], [30]. In recent
years, numerous studies in terms of wetland mapping across
different scales and species have been carried out based on the RF
classifier [16], [20], [31], [32], [33], [34], which has fully proved
its effectiveness and robustness. However, all these studies lack
deep analysis of the decision logic and feature importance of
the RF classifier, which is detrimental to reviewing whether the
model output results are reasonable. As a relatively versatile
model interpretability method, the SHapley Additive exPlana-
tions (SHAP) can interpret black-box models at both global and
local levels [35]. Therefore, combining the RF classifier with
SHAP can help improve the accuracy and interpretability of
wetland plant community classification.

Obtaining accurate and sufficient sample data is a critical
prerequisite for accurate mapping of wetland plant communities
[33]. For road-inaccessible wetlands, field surveys can only
obtain a limited amount of sample data, typically gathered at the
wetlands’ edge. Visual interpretation based on high-resolution
imagery is only effective when field sample data is available
as a reference. To overcome this challenge, some studies have
utilized sample migration methods based on change detection to
rapidly obtain an accurate sample dataset for non-surveyed years
and regions [36]. Among these methods, change vector analysis
(CVA), which is derived from the image difference technique,
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Fig. 1. General location of the study area. (a) Geographical location of the
western Songnen Plain in China. (b) Distribution of the Ramsar Sites, scope
of wetlands, and field samples shown on a DEM map of the western Songnen
Plain.

is the most widely used [37], [38], [39]. To reduce information
redundancy, some studies use spectral transformation techniques
to reduce data dimensions before performing change detection
[40]. As the three primary components obtained from the K-T
transformation have distinct physical meanings and correspond
to soil, vegetation, and moisture information, it is considered
more favorable than principal component analysis for wetland
plant monitoring [41], [42]. However, the effectiveness of using
the CVA method based on the principal components of the K-T
transformation for wetland plant community sample migration
is still unverified.

In recent years, numerous wetland conservation and restora-
tion measures have been implemented in the western Songnen
Plain [43]. However, the effectiveness of these wetland manage-
ment strategies remains inadequate due to limited foundational
data on the composition and changes in wetland plant commu-
nities. To address these issues, this study aims to:

1) obtain migration sample data from 2016 to 2021 using

2022 samples;

2) achieve the annual classification of wetland plant commu-
nities in the western Songnen Plain from 2016 to 2022 on
the Google Earth engine (GEE);

3) interpret the decision logic of the RF model; and

4) analyze the spatiotemporal changes of different wetland
plant communities in the western Songnen Plain and three
national nature reserves.

II. MATERIALS AND METHODS

A. Study Area

The western Songnen Plain is located in northeast China
[see Fig. 1(a)] and is formed by the alluvial deposits of the
Songhua river, Nen river, and their tributaries, covering an area
of 10.2 x 10* km? [44]. The wetland ecosystems in this region
with complex structures and unique functions are essential for
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Fig. 2.  Spatial distribution and histogram of all available Sentinel-1/2 images

number. Spatial distribution of all available observations over the (a) western
Songnen Plain by Sentinel-1 and (b) Sentinel-2 from 2016 to 2022. (¢) Histogram
shows the number of Sentinel-1/2 images acquired each year.

the ecological security of northeast China and the East Asian-
Australasian Flyway [45]. The main types of plant communities
are Phragmites australis (P.a.), Typha orientalis (T.0.), Scirpus
triquater (S.t.), Suaeda glauca (S.g.), and Carex meyeriana
(C.m.), which provide habitats and food sources for many rare
migratory birds, such as Oriental White Stork, Grus japonensis,
and Grus leucogeranus, etc. [46], [47], [48]. Currently, the
National Forestry and Grassland Administration of China has
established five national nature reserves here, among which
Zhalong, Xianghai, and Momoge have been included in the
Ramsar Site List of Wetlands [49] [see Fig. 1(b)].

B. Datasets

1) Remote Sensing Imagery: The remote sensing imagery
used in this study comprises Sentinel-1, Sentinel-2, and DEM.
Specifically, all available Sentinel-2 images covering the study
area from 2016 to 2022 were used. The L2A level Sentinel-2
images are from 2019 to 2022, whereas the L1C level Sentinel-
2 images are from 2016 to 2018. In 2016 and 2017, about
1400 images were acquired each year. However, with the release
of Sentinel-2B data, the number of images acquired each year has
increased to about 3500 since 2018 (see Fig. 2). The preprocess-
ing of Sentinel-2 images mainly encompassed image clipping,
cloud pixel masking, and calculation of normalized difference
vegetation index (NDVI), inverted red-edge chlorophyll index
(IRECI), and normalized difference water index (NDWTI) of all
images to construct the original time-series stack. Sentinel-1
images were used from May to October because this is the grow-
ing season for most vegetation in the study area. The number of
Sentinel-1 images acquired each year is shown in Fig. 2. It should
be noted that Sentinel-1B malfunctioned on December 23, 2021,
causing incomplete coverage of the study area in the Sentinel-1
images acquired in 2022. In this study, the only preprocessing
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required for Sentinel-1 images was speckle noise removal using
a “refined Lee” filter with a 7 x 7 window [50]. The DEM
used in this study is called “ALOS_DEM_12,” obtained from
PIE-Engine. It was resampled to a 10-m spatial resolution and
reprojected to the “WGS 1984” coordinate system.

2) Field Sample Data: The field survey was conducted in
mid-July 2022, with survey sites mainly located in Xianghai,
Momoge, and Zhalong national nature reserves. Using GVG
software [51], a total of 1255 sample points of various types
were obtained, including 655 wetland sample points. The sample
numbers for Pa., T.o0.,S.t., S.g., and C.m. communities were 323,
125, 43, 38, and 24, respectively. In addition, 93 and 9 sample
points were collected from paddy fields and other wetland types,
respectively. As shown in Fig. 1(b), the original samples were
extremely unevenly distributed, which would affect the classifi-
cation accuracy. To address this, we combined the NDVI time-
series curve characteristics to expand and balance the samples by
comparing the spectral differences of wetland plant communities
on multispectral remote sensing images across different seasons.

C. Methods

Sample migration from 2016 to 2021 was achieved using
samples collected during the field survey in 2022 and a sample
migration method based on change detection. An RF model
based on multisource and multitemporal remote sensing data
was then used for annual wetland plant community classifica-
tion. Based on the annual classification results, we analyzed the
spatiotemporal change characteristics of different wetland plant
communities. The general framework is shown in Fig. 3.

1) Sample Migration: The year 2022 served as the reference
time node, and the sample data from 2016 to 2021 were obtained
through the sample migration method based on CVA after K-T
transformation, using the Sentinel-2 images and 2022 samples.
To achieve change detection, it is necessary to ensure consistent
radiation conditions between the reference and target year im-
ages. However, this condition is difficult to fully achieve due to
the influence of clouds and shadow pixels. Thus, cloud masking,
clipping, and band extraction were performed on all images
with less than 20% cloud cover from June 15 to August 15.
Next, the median reduction method was used to obtain cloud-free
annual images with relatively consistent radiation and vegetation
growth conditions. Based on the median image obtained through
the above process, the K-T transformation method was per-
formed to derive the brightness, greenness, and wetness feature
images for the reference and target years, respectively.

The feature image of the reference year was defined as A =
{X7}Z" and the target year was defined as B = {Y/ }Z'" |
where m is the pixel number and » is the band number (n =
1, 2, 3). To identify pixels that have not changed between the
two images, the CVA method was used to obtain the change
intensity (CI) information from the A image to the B image.
The difference among each band of the A and B images was
calculated by the following formula:

Al=A-B=X]-Y/. (1)
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Fig. 3. General framework of this study.

The Euclidean distance of the difference band was defined as
the variation intensity value as follows:

2

A threshold for p’ was established to binarize the change-
intensity image, thereby dividing the image into changed and
unchanged areas. The Otsu algorithm, an adaptive threshold
segmentation method that obtains the optimal segmentation
threshold by maximizing the inter-class variance, was used to
determine this threshold [52]. However, results obtained using
the Otsu algorithm across the entire study area may not ac-
curately reflect the variation of sample pixels. Therefore, the
Otsu algorithm was only applied to pixels corresponding to the
2022 sample data, and samples corresponding to unchanged type
pixels were migrated to the target year.

2) Classification of Wetland Plant Communities: Water, ar-
tificial surfaces, and bare land do not have distinct phenological
characteristics and are easily distinguished from vegetation. To
simplify the classification system and reduce computational
effort, a rule-based approach was utilized to exclude the nonveg-
etation types. We selected 300 sample points each of water, veg-
etation, and other types (artificial surface and bare land) based
on the greenest enhanced vegetation index (EVI) and NDVI
images in 2022. Extraction rules for the vegetation distribution
area were defined as EVI>0.2 and NDVI>0.2 according to the
frequency distribution histogram. Subsequently, a mature RF
model incorporating phenological, time-series, polarization, and
terrain features was employed for classification. Phenological
and time-series features were derived from the Sentinel-2 NDVI,
IRECI, and NDWI time-series curves, which were fitted with a
two-term Fourier function (3). The polarization features were
extracted from the annual median Sentinel-1 imagery, while the

terrain features were extracted from DEM data. The details of
the feature vectors used in the model training and classification
are shown in Table I

ye = Bo + B cos (wt) 4+ Bo sin (wt) + B3 cos (2wt)
+ Bysin (2wt) + e;. 3)

The maximum number of features and the number of DT are
the two crucial initial parameters that require manual determi-
nation for the RF classification model. We set the maximum
number of selected features for node splitting as the square
root of the total number of features. This enabled the classifier
to focus on training unique classification rules in each DT,
reducing overall computation and preventing similar results.
Following testing of the training effect of the classification model
with different numbers of DTs using the 2022 sample data, we
selected 25 DTs to maximize the training accuracy of the model.

The stratified random sampling method was used to divide
all the samples into two parts, of which 60% were training
samples and 40% were validation samples. The accuracy of the
classification results was evaluated using the confusion matrix
and kappa coefficient. From the confusion matrix, overall accu-
racy (OA), user’s accuracy (UA), and producer’s accuracy (PA)
can be determined [53]. OA represents the ratio of correctly
classified samples to the total number of samples, providing
an overall measure of accuracy across all classes. The UA
refers to the proportion of correct classifications among the
classification results, whereas the PA refers to the proportion
of correct classifications in the real situation.

3) Model Interpretation: SHAP is a game-theoretic method
that explains the black-box model at both the global and local
levels by computing the marginal contribution of each feature to
the model output [35]. In the SHAP model, the model generates
a prediction value for each sample, and the “SHAP value”
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TABLE I
COLLECTION OF CLASSIFICATION FEATURE VECTORS
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TABLE II
SAMPLE NUMBER OF WETLAND PLANT COMMUNITIES FROM 2016 TO 2022

ES)
(]
7
S =
E a Feature name Description
L
=
(¢
SOS Time for the start of the season
EOS Time for the end of the season
o MOS Time for the middle season
% LOS Length of the season
- = BV Base level
2 z SA Seasonal amplitude
g IRS Increase rate of the season
% DRS Decrease rate of the season
— BV Base level
g BVD Time of the base level
% MV Maximum value
= MOS Time for the middle season
- SA Seasonal amplitude
w T \'A% Vertical-vertical backscatter
2 % VH Vertical-horizontal backscatter
S § SARwum VH+VV
: g SARugisr VH-VV
= SARNDvI (VH-VV) / (VH+VV)
o — ELE Elevation
(¢}
2 z
=) Slope

Note: Phenology and time-series features need to be distinguished with a
suffix (. NDVI”, * IRECT”, or “ NDWI”).

of the model output is the important value assigned to each
feature in that sample [54]. In this study, the SHAP package
(version 0.43.0) was first imported into Python 3.11.5. The
“TreeExplainer” method [55] was used to interpret the output of
the trained 2022 RF model. Finally, we illustrated the global
importance of features, the impact of features on predicting
Pa., the overall substructure of a sample collection, and the
contribution of each feature in a single sample to the outcome
prediction using the SHAP values of the validation samples
through bar, beeswarm, heatmap, and waterfall plots.

4) Spatiotemporal Change Analysis: The spatiotemporal
change characteristics of different wetland plant communities
in the western Songnen Plain from 2016 to 2022 were analyzed
based on annual spatial distribution data using the indicators of
area change, dynamic degree (DD), and CI. The DD can provide
insight into the average rate of change and trend of land surface
cover types over a certain period [56]. The formula for the single
dynamic index is as follows:

DD = (Yjs —Yy)/Yaux1/T “4)

where i/ is the start time; i2 is the end time; Y,; is the area
at the start time; Y;» is the area at the end time; and T is the
length of the time interval. Each pixel identified as a wetland
plant community in each year was set to 1, otherwise 0. Then,

P.a. T.o. S.t. S.g. C.m.
2022 221 224 232 188 203
2021 135 188 214 173 193
2020 132 201 214 163 139
2019 149 203 217 187 110
2018 157 182 219 160 120
2017 157 160 214 121 119
2016 134 153 186 120 124

the per-pixel CI of this community is calculated by the following
formula:

2022

Cl= YV, 5

1=2016

where i is the year, from 2016 to 2022; V; is the pixel value for
year i, 0 or 1. A lower value of CI indicates the presence of more
intense community change, whereas a higher value suggests a
more stable community structure.

III. RESULTS
A. Performance of Sample Migration Method

The CI maps of different years displayed varying distributions
in the histograms of the sample pixels (see Fig. 4). The histogram
was an approximately normal distribution with a peak value of
about 0.3 from 2019 to 2021 (see Fig. 4), whereas it was a
positively skewed distribution with a peak of about 0.05 from
2016t0 2018 (see Fig. 4). Therefore, the segmentation thresholds
determined by the Otsu algorithm also varied. The threshold
value from 2019 to 2021 was roughly 0.4, whereas the threshold
value from 2016 to 2018 was around 0.2. The sample migration
was conducted on an annual basis, utilizing the segmentation
threshold of the sample pixels. Sample pixels with a CI below
the threshold were considered unchanged, while those with a
value above the threshold were removed. The results showed
that most sample data can be retained, thereby satisfying the
classification requirements. This phenomenon is in line with
empirical evidence, as most land cover types tend to exhibit
relative stability in the short term. Specifically, 65.9% of samples
were retained in 2016, which was the year with the lowest
number of unchanged samples among the six years (see Fig. 4).
Conversely, the proportion of unchanged samples was 78.9%
in 2018, which had the highest number of unchanged samples
(see Fig. 4). In addition, the proportion of unchanged samples
exceeded 70% in the remaining years. The number of C.m.
samples obtained by migration from 2016 to 2018 was only 52,
43, and 55, respectively, which was inadequate compared to the
sample size for other types. As a result, a visual interpretation
method was used to identify the number of C.m. samples from
2016 to 2018. Finally, the sample number of wetland plant
communities from 2016 to 2022 is shown in Table II.
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B. Classification Results and Accuracy Evaluation

The classification results are shown in Fig. 5. P.a. was mainly
distributed in Zhalong Nature Reserve, C.m. was mainly dis-
tributed in Nen River, and T.o., S.t., and S.g. were scattered
throughout the study area [see Fig. 5(al)—(a7)]. Results of
accuracy evaluation showed that the OA and Kappa coefficient
gradually decreased as the sample data migrated from 2022 to
2016 (see Table III). The highest OA and kappa coefficient
(OA = 93.9%, Kappa = 0.92) were obtained in 2022. The
lowest OA and kappa coefficient (OA = 81.8%, Kappa = 0.77)
were observed in 2016. The average OA and kappa coefficient
for classification from 2016 to 2022 were 89.5% and 0.87,
respectively.

C. RF Model Interpretability Based on SHAP

The bar plot provides a global perspective on model interpre-
tation, using the absolute average of the SHAP values to deter-
mine feature importance. The results indicate that MOS_IRECI
is the most important feature in determining model prediction
results, followed by other features such as MOS_NDVI and
DRS_NDVI [see Fig. 6(a)]. In addition, the bar plot reveals

80 2021

60

40

20

0

0 0.2 0.4 0.6

Variation intensity

[ Changed sample

0.8 1.0 1.2

—— segmentation threshold

Histogram of CI based on sample data from 2016 to 2021, including the proportion of migrated samples and segmentation threshold.

local fluctuations in the role of features in predicting different
classes. In predicting Pa., To., S.t., S.g., and C.m., the most
influential features are DRS_NDVI, MOS_IRECI, SA_IRECI,
BV_NDWI, and MOS_NDVI [see Fig. 6(a)]. Fig. 6(b) illustrates
the importance of these features in predicting P.a., displaying the
impact of feature values on model output for individual samples.
Notably, DRS_NDVTI s particularly important in predicting P.a.,
with higher DRS_NDVI values leading to SHAP values lower
than 0, indicating a lower probability of being classified as P.a.
[see Fig. 6(b)]. SA_IRECI and IRS_NDVI have positive effects
on the prediction outcomes, whereas ELE and MOS_NDWI
have negative effects [see Fig. 6(b)]. The heatmap plot shows
the overall substructure of a validation sample collection sorted
by the sum of SHAP values for all features when predicting
Pa. It also shows the output of the model (f(x)) and the global
importance of the features (bar graph on the right side of the
y-axis). The most influential feature impacting the prediction
result for this sample collection is DRS_IRECI, which has a
positive impact on the model output [see Fig. 6(c)]. Furthermore,
the results show a significant negative effect of the ELE feature
on the model output for the third sample [see Fig. 6(c)]. The
waterfall plot illustrates the contribution of different features
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Fig. 5. Annual classification results of wetland plant communities. (a) Western Songnen Plain. (b) Zhalong Nature Reserve. (c) Momoge Nature Reserve.
(d) Xianghai Nature Reserve. The serial numbers of 1-7 represent 20162022 years.

TABLE III
ACCURACY EVALUATION

Year Accuracy P.a. T.o. S.t. S.g. C.m. OA Kappa
UA 81.8% 83.3% 80.2% 80.9% 84.1% o

2016 PA 83.7% 81.6% 83.3% 77.6% 82.2% 81.8% 0.77
UA 80.7% 84.3% 83.1% 83.7% 85.1% o

2007 PA 85.2% 81.1% 83.1% 81.8% 85.1% 83.3% 0.79
UA 89.5% 86.2% 87.2% 92.3% 93.5% o

2018 PA 91.9% 84.8% 89.5% 87.0% 97.7% 89.4% 0.87
UA 91.3% 89.6% 90.0% 92.9% 97.8% o

2019 PA 91.3% 90.8% 92.3% 91.2% 93.6% 91.8% 0-90
UA 92.1% 91.3% 92.2% 96.7% 96.1% o

2020 PA 92.1% 94.8% 94.7% 92.2% 92.5% 93.5% 0.92
UA 92.2% 92.3% 94.4% 91.8% 93.8% o

2021 PA 92.2% 92.3% 92.4% 94.4% 93.8% 92.9% 091

[} [ 0, 0 [
2022 UA 94.1% 95.0% 90.1% 90.9% 97.9% 93.9% 0.92

PA 93.0% 93.8% 91.4% 93.8% 96.8%
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within the model when classifying a given sample as P.a. The
results reveal that ELE and MOS_NDWTI have a negative gain for
predicting this sample, while the feature with the largest positive
gain is MOS_IRECI [see Fig. 6(d)].

D. Spatiotemporal Changes of Wetland Plant Communities

Fig. 7(a) shows the changes in area and DD of the dominant
wetland plant communities in the western Songnen Plain from
2016 to 2022. In general, P.a. had the smallest annual DD in
the study area, while C.m. had the largest annual DD. The
distribution of P.a. remained relatively stable from 2016 to 2022,
while that of C.m. was highly variable. The areas of Pa., To.,
and C.m. showed an increasing and then decreasing trend in the
western Songnen Plain. Fig. 8(al)—(a3) shows that the CIs of
wetland plant communities varied by type and region. Except
for the low CI of Pa. in and near Zhalong Nature Reserve, the
CI of Pa. was relatively high in other areas. The CI of T.o. was
low in Chagan Lake, while the CI of T.o. was relatively high
in other areas. Similarly, the CI of C.m. was weak in Momoge
Nature Reserve, whereas the CI of C.m. was relatively strong in
other areas.

SHAP value
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Interpretability of the RF model. (a) Bar plot. (b) Beeswarm plot. (c) Heatmap plot. (d) Waterfall plot.

S.g. and C.m. are sparsely distributed in Zhalong Nature
Reserve. Therefore, only the spatiotemporal evolution charac-
teristics of Pa., To., and S.t. were analyzed in Zhalong Nature
Reserve. All three species showed different DDs, with the annual
DD of Pa. being the smallest, while that of T.o. and S.z. were
larger, indicating that Pa. was more stable than T.o. and S.z.
from 2016 to 2022 [see Fig. 7(b)]. Moreover, the area of Pa.
showed an initial increase followed by a decrease, while the
areas of To. and S.t. generally showed a gradual decreasing
trend. The evolution of P.a. mainly occurred in the peripheral
areas of the communities [see Fig. 8(b1)]. The increase in Pa.
was primarily due to the evolution of To. and S.z. into Pa. in
the eastern Zhalong Nature Reserve. The disappearance of Pa.
in the central part of the reserve and the evolution of P.a. into
T.o. in the southern part of the reserve resulted in a decrease
in the area of P.a. The weakest CI of T.o. was observed in the
eastern part of the Dongsheng reservoir and the southern part
of the reserve, indicating that the distribution of T.o. was highly
stable in these areas [see Fig. 8(b2)]. S.z. in the eastern part of the
reserve exhibited a gradual disappearance around 2018, whereas
the range of S.z. in the western part of the reserve continued to
shrink [see Fig. 5(b1)—(b7)].
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The main wetland plant communities are P.a., S.g., and C.m. in
Momoge Nature Reserve. Overall, S.g. had the smallest annual
DD, whereas Pa. and C.m. had larger DD [see Fig. 7(c)]. The
area changes of Pa. generally showed a gradually decreasing
trend, whereas the opposite was true for C.m. In addition, the area
of S.g. first increased and then decreased. The decrease in Pa.
mainly occurred in areas such as Baihe Lake and Weihai Village
[see Fig. 8(cl)]. The CI of S.g. was weak in the northwestern
part of the reserve, whereas the change of S.g. was more severe
in the southwestern part of the reserve [see Fig. 8(c2)]. Since
2019, the distribution of S.g. showed an overall shrinking trend,
resulting in a continuous decrease in area from year to year [see
Fig. 5(c1)—(c7)]. The CI of C.m. was weak in the Nen River
floodplain and Moon Lake, whereas the CI of C.m. along the
Taoer River was relatively strong [see Fig. 8(c3)].

The dominant wetland plant communities are P.a., T 0., and
S.t. in Xianghai Nature Reserve. Overall, S.7. had the smallest
annual DD, whereas P.a. and T.o. had larger DD [see Fig. 7(d)].
The area changes of P.a. generally showed a gradually increasing
trend, whereas the opposite was true for S.z. In addition, the area
of T.o. first decreased and then increased. The weakest CI of P.a.
was observed in the Hucanggou reservoir, whereas the CI of P.a.
in other areas was larger, especially at the intersection of Huolin
River and Xinglong reservoir [see Fig. 8(d1)]. Generally, the
overall CI of T.o. was high, and the increase in T.o. primarily
occurred at the intersection and in the Huolin River in the
southwest of the reserve [see Fig. 8(d2)]. The area of S.z. in the
Huolin River exhibited a continuous decrease from 2016 to 2022
[see Fig. 8(d3)]. Moreover, while the area of S.z. in the western
Xianghai Nature Reservoir continued to increase from 2016 to
2019, it gradually decreased since 2020 [see Fig. 5(d1)—(d7)].

IV. DiscussIiON
A. Challenges of Community-Scale Sample Migration

The basic principles of sample migration are similar, but
the challenge of community-scale sample migration lies in its
higher demands on data and methodology. Obtaining accurate
and sufficient reference samples is a critical requirement for
community-scale sample migration. Traditional spectral image
interpretation, based on features such as color, texture, and
shape, can effectively obtain samples of land cover types with
significant differences. Some studies attempt to identify sea-
sonal differences from multitemporal remote sensing images
to improve the discrimination between land cover types with
similar spectral features for more accurate visual interpretation
[16]. In addition to using multitemporal remote sensing images,
a pixel-based annual NDVI time-series curve was incorporated
as a reference, to facilitate identification of different wetland
plant communities. Nevertheless, due to factors such as the com-
plexity of wetland environments and differences in vegetation
health, visual interpretation of wetland plant community sample
data remains challenging and time-consuming.

In addition, obtaining images from the source and target
domains with consistent radiometric conditions is a key factor
affecting the effectiveness of community-scale sample migra-
tion. Despite efforts to eliminate atmospheric and radiometric
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differences between different years, some issues persist. For
instance, the intensity peaks and segmentation thresholds of
the sample migration results from 2016-2018 are smaller than
those from 2019-2021 (see Fig. 4), which contradicts the general
assumption that the likelihood of change increases with a longer
time interval. The main reason for this discrepancy is the use
of Sentinel-2 L1C images for 2016-2018, which were not at-
mospherically corrected. Atmospheric absorption and scattering
effects degrade image quality, attenuating changes in spectral
information on L1C images [57]. Although the median reduc-
tion is considered an effective method for reducing radiometric
differences, it may not perform well when the number of im-
ages is small or there are numerous cloud pixels. While the
CVA method used in this study has the advantage of simplicity
and convenience, some studies suggest that this distance-based
method may not provide effective samples for wetland mapping
[33]. Future research can continue to explore the applicability of
other migration methods for community-scale sample migration,
such as the isolated forest algorithm [58].

It is important to perform accuracy verification on migrated
samples. While some studies have used visual interpretation
[59], at the community scale, this can be very challenging. The
most direct and effective approach is to cross-validate historical
year classification results with migration and survey samples
[60]. However, due to the lack of wetland survey data, currently
only survey samples can be used for verification at Momoge
Nature Reserve in 2020 [20]. Here, we used survey samples to
verify the accuracy of migration classification results (SSA) and
used migration samples to verify the accuracy of survey classi-
fication results (MSA). The results showed that the SSA of Pa.,
S.g., and C.m. were 80.0%, 96.6%, and 100%, respectively, and
the MSA of Pa. and C.m. were 89.5% and 92.1% respectively.
This result illustrates the effectiveness of the sample migration
method used in this study. It should be noted that the SSA of T.o.
and S.t. were not calculated, and the MSA of T.o., S.t., and S.g.
were also not calculated. They have no statistical significance,
due to the limited sample number or community area. Finally, as
amethod of improvement, we believe that a wetland survey every
5 years is necessary. This would allow more survey samples to
achieve better sample migration between two survey years and
enhance system reliability.

B. Interpretability of Features and Model Based on SHAP

The importance evaluation results of the RF model in 2022
show that MOS_NDVI, MV_NDWTI, SA_IRECI, MOS_IRECI,
SA_NDVI, and BV_NDWTI are important features, which con-
form to the results explained by the SHAP model [see Fig. 6(a)].
Despite the relatively high importance of ELE in the SHAP
model interpretation results [see Fig. 6(b)-(d)], it does not
play a prominent role in each prediction class [see Fig. 6(a)].
P.a. shows a slower yellowing trend than other wetland plant
communities, which is manifested in a smaller DRS_NDVI in
the NDVI time-series curve. Prior research has indicated that the
IRECI time-series curves for Pa. fluctuate more significantly
than those of other wetland plant communities [20], making
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samples with larger SA_IRECI more likely to be predicted as
Pa. [see Fig. 6(b)].

It is crucial to interpret a trained model in a human-
understandable way, which helps to assess its reliability, un-
derstand its internal logic, and evaluate feature importance [61].
The SHAP model has the advantage of providing a more compre-
hensive interpretation of the internal logic of the model. In this
study, the SHAP model revealed differences in the role of each
feature in distinguishing different classes. It also meticulously
analyzed the impact of the magnitude of each feature value on
predicting a particular class. In addition, the SHAP model can
analyze the internal substructure of a sample collection and the
predictive logic of an individual sample for a specific class. It
is worth noting that when there are strong interactions between
features, the SHAP model may provide misleading estimates
of feature importance [62]. This study also suggests that there
may be differences in the interpretation of the SHAP model
at the global and local levels (see Fig. 6). This is because the
global interpretation reflects the average patterns of the entire
validation sample collection, whereas subsets of samples and
individual samples may exhibit unique patterns.

C. Factors Affecting Spatiotemporal Changes in Wetland
Plant Communities

The spatiotemporal change characteristics of the distribution
of different wetland plant communities can not only reflect
wetland health, ecology, hydrology, and land use changes but
also help managers detect wetland degradation and the effective-
ness of wetland protection measures promptly [20]. This study
shows that the main wetland plant communities increased from
2016 to 2019, and decreased significantly from 2020 to 2022
in the western Songnen Plain [see Fig. 7(a)]. This cannot be
considered evidence of poor wetland protection efforts. On the
contrary, it fully reflects the severe challenges of climate factors
(e.g., extreme precipitation events) to wetland protection efforts.
Precipitation changes surface hydrologic conditions and water
quality, and surface water confluence leads to high incidence
of wetland flooding, thereby affecting community evolution
[31], [63]. In 2021 and 2022, there was significantly more
precipitation in the Nen River basin and western Jilin [64], and
the flood season lasted from early June to early September. As
a result, the water levels of the Nen River and the Taoer River
remained high, and the water level of the previously dry Huolin
River rose significantly. Extreme climatic events, such as heavy
rainfall, triggered flooding of wetland vegetation, resulting in
drastic changes in wetland areas [65]. In addition, the increasing
requirements for living space and quality brought about by pop-
ulation growth and socioeconomic development have also pro-
foundly affected the evolution of wetlands [66]. Nonpoint source
pollution from animal husbandry and agricultural activities was
the most important factor affecting the water quality of Xianghai
Lake [67]. Affected by intensive human activities in the vicinity,
such as agricultural irrigation and domestic sewage discharge,
the water volume and quality of the lakes have decreased in the
southern Zhalong Nature Reserve, resulting in the shrinkage and
fragmentation of wetlands [68], [69].

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

The government has carried out ecological engineering con-
struction projects (e.g., returning farmland to wetland and river-
lake connection), and wetlands have been restored in Xianghai
lake, Taoer river, and Huolin river to a certain extent [70], [71].
However, simple and crude hydrological control measures are
not always beneficial to wetland protection. For example, exces-
sively high water levels will lead to the continuous reduction of
the living space of S.z. community [20]. Considering the impact
difference of natural and human factors on wetlands in long-term
and short-term studies [63], different recommendations for wet-
land protection in the western Songnen Plain were put forward.
From a long-term perspective, managers should continue to
strengthen the construction of wetland protection areas, promote
the implementation of wetland protection projects, and discuss
the construction of wetland national parks. The optimization
of the “One Belt, Two Screens, Four Zones, Six Groups, and
Multiple Nodes” ecological security pattern has the advantages
of regional coordination and multiple measures, which provides
new ideas for the sustainable protection of wetlands in the
western Songnen Plain [72]. Focusing on the present, managers
should improve the real-time monitoring system of wetland
water conditions, formulate temporary response mechanisms
to deal with emergency hydrological events, and scientifically
design water storage and drainage flow plans as soon as possible
[67]. It helps ensure the stability of wetland ecosystem structure.

V. CONCLUSION

By utilizing the sample data obtained through the sample
migration method based on CVA after K-T transformation,
combined with Sentinel-1/2 time-series and DEM data, a 10-m
resolution wetland plant community map of the western Song-
nen Plain from 2016 to 2022 was generated based on the RF
model. By incorporating various phenological and time-series
features into the fine classification of wetlands, the classification
accuracy was further improved, achieving an average overall
accuracy of 89.5% and an average kappa coefficient of 0.87.
The wetland plant communities in the western Songnen Plain
and three national nature reserves show distinct spatiotemporal
change characteristics. P.a. represents the most widespread and
least variable community type in the western Songnen Plain.
The community distribution in the Zhalong Nature Reserve is the
most stable, whereas the community distribution in the Xianghai
Nature Reserve undergoes the most dramatic changes from 2016
t02022. The dual impacts of climate change and human activities
contribute to the diverse spatiotemporal change characteristics
of wetland plant communities. This study provides valuable data
support for the fine and sustainable management of wetland
resources in the western Songnen Plain and related wetland
ecology research.
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