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Topological Building Extraction With Bidirectional
Prediction From Remote Sensing Images

Mingming Zhang ", Ye Du"”, Zhenghui Hu

and Yunhong Wang

Abstract—Topological building extraction in remote sensing im-
ages is vital for city planning, disaster assessment, and other
real-world applications. To meet the requirements of real-world
applications, existing building extraction approaches predict topo-
logical building by vectorization of binary building masks using
multiple refinement stages, leading to complex methodology and
poor generalization. To tackle this issue, we propose a topologi-
cal building extraction approach by directly predicting serialized
vertices of each building instance. We observe that the order of seri-
alized vertices from one building is inherently bidirectional, which
can be clockwise or counterclockwise. By this new observation,
the proposed method learns serialized vertices for each building
supervised by the bidirectional constraint. Moreover, we design a
cross-scale feature fusion module to obtain building representations
with rich spatial and context information, facilitating the following
serialized vertex prediction. Besides, a merge strategy is adopted
to generate the final topological building from serialized vertices
of two directions (clockwise and counterclockwise). Experiments
are conducted on three building benchmarks to evaluate the effec-
tiveness of our proposed method. Finally, extensive results show
that the proposed approach outperforms state-of-the-art methods
highlighting its superiority.

Index Terms—Bidirectional constraint, remote sensing images,
serialized vertex prediction, topological building extraction.

I. INTRODUCTION

XTRACTING topological buildings has been essential

for many applications, including urban planning, change
detection, disaster assessment, and remote sensing cartography,
which is studied by more researchers in the remote sensing
community. Since buildings of diverse regions (e.g., rural, in-
dustrial, and residential regions) vary significantly in shape,
material, and size, automatic topological building extraction
remains extremely challenging and urgently needs to be solved.
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Fig. 1. Topological building extraction with different pipelines. (a) First
extract building masks, then perform regularization and polygonization (R&G).
(b) Simultaneously predict all vertices of one building, then predict the order
of building vertices. (c) Directly predict serialized vertices of one building in
one direction. (d) Directly predict serialized vertices of one building under a
bidirectional constraint proposed in our article.

Early building extraction studies address this task by segmen-
tation models built with convolutional neural networks (CNNs).
These methods first utilize an instance segmentation network
to obtain binary building masks by indicating a category for
each pixel over remote sensing images. Then, they generate
topological building from the predicted masks by regularization
and polygonization (R&G) operations, as shown in Fig. 1(a).
However, such a paradigm heavily relies on building segmen-
tation masks, from which irregular topological buildings are
unexpectedly generated. Therefore, multistage refinement is
essential in these methods to pursue high performance.

Building delineation works have recently learned the order of
all vertices extracted from the image feature. As illustrated in
Fig. 1(b), these methods simultaneously predict order-agnostic
vertices using deep learning. Afterward, they predict the order
of building vertices typically supervised by additional geometric
priors and complex polygonal constraints of buildings in re-
mote sensing images. These approaches have complex model
structures and tedious inference processes, resulting in poor
generalization capabilities.

To relieve the burden of cumbersome refinement or building
vertex’s order determination, one straightforward way is to
directly predict serialized vertices of one building. Fig. 1(c)
presents another line of topological building extraction by this
observation. Since this idea is simple and intuitive, many works
have been studied recently and received encouraging results.
However, these works iteratively yield sequential vertices along
the building contour in a pre-defined direction (e.g., clockwise).

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/


https://orcid.org/0000-0001-6415-2423
https://orcid.org/0000-0002-3057-1862
https://orcid.org/0000-0002-6106-0416
https://orcid.org/0009-0009-8596-8750
https://orcid.org/0000-0002-5181-6451
https://orcid.org/0000-0001-8001-2703
mailto:sara_@buaa.edu.cn
mailto:duyee@buaa.edu.cn
mailto:qingjie.liu@buaa.edu.cn
mailto:yhwang@buaa.edu.cn
mailto:zhenghuihu2021@buaa.edu.cn
mailto:732196152@qq.com

ZHANG et al.: TOPOLOGICAL BUILDING EXTRACTION WITH BIDIRECTIONAL PREDICTION FROM REMOTE SENSING IMAGES

The modeled dependencies are limitedly unidirectional, ignor-
ing the bidirectional nature of building vertex prediction. As
such, there still exists a risk that outrageous results often occur
since unidirectional predictions are susceptible to occlusions and
shadows.

We argue that an appropriate building representation and
prediction method could guarantee concise and efficient building
footprint extraction. To tackle the above issues, our previous
work [1] has proposed a building footprint extraction framework
to directly generate the vertex sequence of a building. This work
extends our previous research [1] in terms of module design and
hyper-parameter selection, pipeline in training and inference,
and experimental results, which are detailed in Sections III
and IV. Fig. 1(d) presents the main pipeline of our proposed
topological building extraction framework, which generates se-
rialized vertices of the individual building from remote sensing
images. Considering the bidirectional characteristics of building
serialized vertices, the proposed method formulates a building
instance as serialized vertices and directly learns building se-
rialized vertices under the bidirectional constraint. Finally, a
merge strategy is introduced to produce the final result from two
directions (i.e., clockwise and counterclockwise). By leveraging
bidirectional information, the proposed method can generate
accurate topological building. In addition, this work embeds the
attention constraint to improve prediction accuracy of complex
buildings. Moreover, a cross-scale feature fusion module is
designed to learn building representations with rich spatial and
context information. The cross-scale feature fusion module fuses
feature maps of different levels and scales efficiently, facilitating
the following serialized vertex prediction.

Similar to Mask RCNN [2], our proposed method adopts a
two-stage architecture, embedding a serialized vertex prediction
branch into Faster RCNN [3] parallel to building classification
and bounding box regression. The proposed method is evaluated
on three building extraction benchmarks and compared with
state-of-the-art methods. Extensive experiments prove that our
method significantly improves building extraction performance,
highlighting its effectiveness.

In this article, our method’s contributions are summarized as
follows.

1) We propose a topological building extraction framework
by formulating buildings as serialized vertices with the
bidirectional trait. The proposed method leverages bidi-
rectional information of serialized vertices to yield accu-
rate topological buildings.

2) We design a cross-scale feature fusion module to fuse
multiscale features, which can enhance rich spatial and
semantic building representation learning. Moreover, an
attention module is embedded into the proposed method
to improve prediction accuracy of complex buildings.

3) Our method is evaluated on three building extraction
benchmarks with diverse and challenging buildings, in-
cluding residential, rural, and industrial areas. Compared
with instance segmentation methods and polygonal build-
ing segmentation methods, our method achieves state-of-
the-art on three building benchmarks.
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The rest of this article is organized as follows. Section II
reviews and summarizes related studies. Section III depicts our
proposed approach in detail. Experiment settings and compar-
isons with different methods are described in Section IV and
discussed. Finally, Section V concludes this article.

II. RELATED WORK

Topological building extraction is generally seen as an in-
stance segmentation problem. Traditional methods [4], [5], [6],
[7], [8], [9] use hand-crafted features (e.g., textures, geometry,
and shadows), thus suffering from poor generalization capabili-
ties. Recently, most studies have addressed this task with a deep
learning framework [10], [11], [12], [13], [14] thanks to the
robust feature learning capability. Maltezos et al. [14] extracted
buildings using a CNN-based deep learning framework from
orthoimages and exploited height information as an additional
feature to provide potential for building detection. However,
they extract buildings by pixel-wise segmentation, resulting in
blob-like masks and an inability to distinguish instances. This
section mainly reviews literature closely related to our research,
which can be categorized into two classes based on the output
format (i.e., binary segmentation masks and polygonal building
vectors).

A. Building Instance Segmentation

Building segmentation has been a long-standing research
topic in the remote sensing community. Early works perform
pixel-wise classification to address this problem by grouping
pixels to discriminate different instances. Early approaches [15],
[16], [17], [18] employ multisource data (e.g., DEM, DOM,
and LiDAR) to extract robust building representations, improv-
ing the accuracy of building extraction. Awrangjeb et al. [15]
presented a building detection framework to extract buildings
from LiDAR and multispectral images. Li et al. [16] adopted a
variant of U-Net [19] to extract buildings using multiple data
sources by combining multispectral images with public GIS
datasets. However, these methods generally require fusion either
at the feature level or data level, making feature engineering
complicated and degrading the model’s performance to some
extent.

As deep learning has succeeded in computer vision, building
segmentation has been typically addressed by instance seg-
mentation. For instance, motivated by Mask RCNN [2], many
building instance segmentation approaches have been developed
by researchers rapidly. Li et al. [20] presented a cascaded deep
neural network architecture, which incorporates region proposal
prediction of multiple stages and the Hough transformation to
learn better semantic features for building and is jointly trained
by multiple losses end-to-endly. Zhao et al. [21] utilized Mask
R-CNN [2] to generate building instances and perform bound-
ary regularization to produce topological buildings. Zorzi and
Fraundorfer [22] combined adversarial and regularized losses
to supervise a fully convolutional neural network (FCN [23])
for boundary refinement and regularization. GSMC [24] pro-
posed a two-stage instance segmentation network and adds a
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centroid-aware head to regress the building’s geometric center.
The network introduces a gated spatial memory module to
enhance essential information and add information lacking.

Many real-world applications typically require building layers
in vector format rather than building masks in raster format.
Therefore, these methods that generate binary building masks in
raster format can only serve as an intermediate step. To satisfy re-
quirements in real-world applications, complex post-processing
procedures are designed to vectorize building outlines by fitting,
regularization, and optimization from binary building masks.
However, this pipeline heavily relies on binary segmentation
masks, which may produce irregular topological buildings, and
usually has a poor generalization. In addition, building seg-
mentation and vectorization are not end-to-end, leading to poor
accuracy of building footprint extraction.

B. Topological Building Extraction

Topological building extraction represents buildings as poly-
gons and extracts buildings in vector format. PolygonCNN [25]
first extracts building contours through a fully convolutional net-
work and then uses a modified PointNet [26] to adjust the sam-
pling vertices to refine building polygons. PolyTransform [27]
generated building masks by a segmentation network and ex-
ploited a deforming network to transform vertices sampled from
building masks to better fit the building polygon boundaries.
FrameField [28] predicted a frame field output to ground truth
contours and then combined the frame field output and raster
segmentation to achieve building polygons. Zorzi et al. [29]
adopted a generative adversarial network (GAN [30]) to reg-
ularize building boundaries. Chen et al. [31] refined building
polygons using a Relative Gradient Angle (RGA) Transform
to project building contours and quantize angles in the RGA
domain space. Wei et al. [32] used a contour initialization
module to generate an initial polygon, then adopted a contour
evolution module to refine polygon vertices. These methods first
extract building outlines or masks and then refine the polygon
shapes, which are heavily influenced by binary building masks
and produce irregular topological buildings.

By representing the building as the building vertex sequence,
current methodologies directly predict serialized vertices from
the corresponding building feature map. Li et al. [33] used a
fully convolutional network to obtain the heatmap of keypoints
and then group keypoints into polygon boundaries under the
polygonal geometric constraint. APGA [34] determined the
order of building vertices by using position and orientation
information of building boundaries. Li et al. [35] is a multitask
segmentation model integrating different building information
to get serialized vertices and then uses a polygon refinement
network to predict offset for refining the vertex’s position. Poly-
World [36] used a graph neural network (GNN) to organize all
the building vertices and then formulated the vertex connection
prediction as the optimal transport problem. Although these
methods have achieved high accuracy, they typically decompose
the topological building extraction task into subtasks and need
complex polygon priors, leading to computational intensive and
poor generalization.
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To tackle the issue above, PolyRNN [37] and PolyRNN++
[38] produce polygonal annotations in a unified CNN-RNN
architecture. These two interactive annotation tools allow in-
teractive annotation correction in a human-in-the-loop manner.
Curve-GCN [39] simultaneously yields all building vertices by
a graph convolutional network, greatly alleviating the sequential
nature of Polygon-RNN. These three works require ground truth
bounding boxes to train, which are not end-to-end frameworks.
PolyMapper [40] uses a ConvLSTM [41] to predict building
vertices iteratively and is trained end-to-endly. Zhao et al. [42],
based on PolyMapper, combined the building boundary refine-
ment module with channel-wise and spatial-wise attention to
improve the model’s effectiveness. RNN-based models can only
capture information in one direction and are difficult to obtain
long dependencies, which may be difficult in complex building
extraction.

III. METHOD

This section describes the proposed method in detail. The
proposed method directly predicts building vertices sequentially
by representing a building with serialized vertices and leverages
bidirectional information of serialized vertices to generate ac-
curate building footprints.

A. Overview

Fig. 2 shows the overall pipeline of our method, including
three modules: 1) a feature extraction module; 2) a cross-scale
feature fusion module (CSFF); and 3) a bidirectional building
polygon prediction module with attention mechanism (A-Bi-
BP). Multiscale building features are extracted by a feature
extraction network instantiated with a CNN-FPN architecture
(e.g., the ResNet50 [43] and the feature pyramid network [44]).
Subsequently, the enhanced multiscale features are fed into the
cross-scale feature fusion module along with building proposals
produced by a region proposal network to extract the building
representations with high spatial and rich context information.
Afterward, the bidirectional building polygon prediction module
takes in building representations and outputs two building seri-
alized vertices by a fusion strategy. Moreover, the bidirectional
building polygon prediction module can be flexibly embedded
into any detection network and trained end-to-endly.

B. Feature Extraction Module

Feature extraction module consists of a deep CNN as the
CNN backbone, a feature pyramid network enhancing feature
maps of different scales, and a region of building proposal
network. In this article, we adopt a ResNet50 [43] as the CNN
backbone to extract multiscale feature maps { Cs, Cs, Cy, C5}
from an input /e R¥>*H*W where C; € Re*H/mixW/ri (¢, €
[256, 512, 1024, 2048] and r; € [4, 8, 16, 32]). To improve mul-
tiscale building segmentation performance, especially for small
and dense buildings, a feature pyramid network [44] fuses mul-
tiscale feature maps C; of different resolutions and obtains the
enhanced pyramid feature maps { Py, Ps, P4, P5, Pg}. Finally, a
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Fig. 3. Pipeline of the cross-scale feature fusion module, enhancing high
spatial and rich context building representation learning.

region of building proposal network generates candidate build-
ing regions from each feature map P; of multiscale feature maps.

C. Cross-Scale Feature Fusion Module

Serialized vertex prediction requires building features with
high spatial and rich context information. Most existing strate-
gies resize feature maps by up- or downsampling and fuse them
by simple pixel-wise summation, which will lose some details.
As shown in Fig. 3, the proposed cross-scale feature fusion
module utilizes a transformer-based architecture to produce
building representations with high spatial resolution and rich
context information. Specifically, the cross-scale feature fusion
module adopts a cross-attention mechanism to fuse multiscale
features coarse-to-finely. Moreover, the positional encoding is
embedded with projected features, which can better localize
building instances and boundaries.

CSFF encoder: Given enhanced multiscale features
{ Po, Ps, P4, P5, P}, the CSFF encoder first takes in the feature
map P, € R>*H/*W/4 and its positional encoding. Then, it
flattens the spatial dimension to the size of H/4xW/4 since the
CSFF encoder requires a sequence as input. Subsequently, a
position-wise feed-forward network (FFN) is used to get the

» CSFF — » A-Bi-BP
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Fig. 4. Pipeline of the bidirectional building polygon prediction with an
attention mechanism module (A-Bi-BP). This module directly predicts building
serialized vertices in a two-directional manner.

building query B,. Moreover, the short-cut connection along
with a layer normalization operation is added after FFN. The
calculation procedure of the encoder is defined as follows:

B, = FFN(P, & PE(P,)) (1

where PE is the positional encoding operation, & means the
element-wise summation, and FFN represents the position-wise
FFN.

CSFF decoder: CSFF decoder consists of four identical de-
coder blocks that each block includes a cross-attention layer
and an FFN layer. CSFF decoder blocks take in feature maps
{P3, Py, Ps5, Pg} from FPN, respectively. Each decoder block
first performs a positional encoding operation with one feature
P; (i € [3,4,5,6]). Then, a cross-attention module aggregates
multiscales semantic information between building query B,
from the CSFF encoder and feature P; (i € [3,4, 5, 6]) from the
FPN. In this way, building query B, can capture rich spatial
and semantic information from features of different levels, im-
proving the performance of building serialized vertex prediction.
Besides, a short-cut connection and a layer normalization oper-
ation are also employed. Finally, we can get the building feature
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B, which is defined as

B = FFN (softmax ( )

Vd
where FFN is the position-wise feed-forward network. B, is
the building query from the CSFF encoder. P and P} (i €

[3,4,5,6]) are projected from features of different levels from
FPN as the key and value vector.

D. Bidirectional Building Polygon Prediction Module

As shown in Fig. 4, the bidirectional building polygon pre-
diction module first generates the first building vertex y, from
the building feature B. Then, the module produces serialized
vertices of two directions. Next, step ¢ is described to show
the building polygon prediction with the attention mechanism
(A-BP), which is one direction of the A-Bi-BP module as shown
in the bottom side of Fig. 4.

First, the building polygon prediction module concatenates
building feature B from the previous CSFF module, y;_2, y;—1
and the first building vertex ¥, to get the input, where y; o and
y+—1 represent the output of step t-2 and step t-1, respectively.
Then, building polygon prediction module outputs the hidden
state h; from the previous input. Furthermore, an attention mod-
ule with Gaussian constraints [45] calculates the attention weight
ay to integrate building feature B and hidden state h;, which
can better focus on the local region of the previously predicted
vertices ;o and y;_1. Afterward, the region-related coefficient
is calculated from attention weight «; and building feature B
using an element-wise product. Finally, building vertex y, at
step t or the end signal is generated from hidden state h; and

region-related coefficient. The procedure of building polygon
prediction module at step t is defined as

(htv Ct) = LSTM(Ba Yt—2,Yt—1, y0)7
ay = attngc (B, ht)7
yr = softmax(W[h;; oy © B]) 3)

where 1 is the first building vertex, y;_o and y;_1 represent
output of step t-2 and step t-1 respectively, and B is the building
feature map. attng. means the attention module with Gaussian
constraints. c¢; ® B calculates the dot product between o, and
B. [;]is a concatenation operation. W is the trainable parameter.

As depicted in Fig. 5, the pipeline of bidirectional building
polygon prediction module between training and inference is
different. In the training stage, the bidirectional building polygon
prediction module is trained by the mean loss between bidi-
rectional directions and the corresponding ground truth. In the
inference stage, we introduce the MERGE_Polygon operation
to select the final building polygon. In MERGE_Polygon, it first
gets the score of building serialized vertices by computing the
sum of all vertex confidences in each direction. Then, it selects
the one with the highest score to get the final building polygon
from two directions.

E. Training Objective

Our proposed approach includes three branches for binary
classification, bounding box regression, and building serialized
vertex prediction. Consequently, the loss consists of three parts:
1) a binary cross entropy loss for building classification loss
Ls; 2) a L1 loss for building bounding box regression loss
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TABLE I
DETAILS OF THREE BUILDING DATASETS

. Training Testing
Dataset GSD (cm)  Image size Sensor
Images Buildings Images  Buildings
SpaceNet (LV) 30 650 x 650  WorldView-3 3080 87534 385 11269
SM-Building 80 512 x 512 GaoFen-2 2961 62487 799 15550
CNData 30 512 x 512 WorldView-3 3360 81104 420 10163

Fig. 6.

Some samples in three building datasets. Row (a): SpaceNet (Las Vegas) containing urban and suburban areas. Row (b): SM-Building containing buildings

with considerable variation, intraclass diversity, and interclass similarity. Row (c): CNData containing residential, rural, and industrial areas resulting in different

data distribution, especially in rural and urban villages.

Lieg; and 3) a building serialized vertex prediction loss Lyer
by calculating the mean loss of two directions, in which the
loss of each direction uses the cross entropy loss between the
corresponding prediction with ground truth. The final loss is
calculated by:

Ly = (Lce(pred, gt) + Lce(pTedca gta))/Q'Ov

L= Lcls + Lreg + Lver (4)

where pred and gt (pred. and gt.) represent building serialized
vertices and ground truth in clockwise (counterclockwise).

IV. EXPERIMENTS

A. Building Datasets

Our proposed method is evaluated on three building datasets,
i.e., the SM-Building dataset, the SpaceNet (Las Vegas) dataset,
and the CNData dataset. Table I provides details of the following
three building datasets in terms of Ground Sampling Distance

(GSD), image size, sensor, image, and building number for
train/test subsets.

1) SpaceNet (Las Vegas) dataset [46] is a building bench-
mark dataset consisting of 3851 images across Las Vegas
collected from WorldView-3 satellite. The size of images
is 650x 650 with a GSD of 0.3 m/pixel. SpaceNet dataset
contains 151 367 building polygon footprints in GeoJSON
format. In our experiment, this dataset is randomly divided
into train/test/validation subsets with the ratio of 8:1:1.
With high spatial resolution, this dataset mainly consists
of urban and suburban areas as shown in Fig. 6(a), and is
well annotated in vector format.

2) 5M-Building [47] contains 109 panchromatic (PAN) im-
ages and multispectral (MS) images of resolution 0.8
and 3.2 m, respectively. It covers the Shandong province
of China and is acquired by the GaoFen-2 satellite,
which includes residential buildings, factory buildings,
and other buildings. Image size of SM-Building ranges
from 2000x2000 to 5000x5000. In our experiment, we
fuse PAN and MS images using the Brovery fusion



10330 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

3)

TABLE IT
RESULTS ON SPACENET (LLAS VEGAS) TEST DATASETS
Method AP T AP50 T AP75 T AR T AR50 T AR75 T F175 T C-Area T MTA \L
PANet [51] 46.9 85.1 459 54.6 87.8 60.9 52.35 - -
PolyMapper [40] 51.6 874 59.6 58.3 89.5 68.9 63.91 63.4 325
FrameField [28] 53.6 84.5 63.1 58.5 87.9 68.8 65.83 22.6 53.6
Baseline [2] 47.0 85.9 46.4 54.6 88.0 60.5 52.52 - -
Ours 53.246.2 87.241.3 62.1115.7 593 4.7 895,15 701196 65.8613.34 65.712.3 32.1
The best results are marked in bold.
TABLE III
RESULTS ON 5M-BUILDING TEST DATASETS
Method AP T AP50 T AP75 T AR T AR50 T AR75 T F175 T C-Area T MTA i
PANet [51] 31.3 59.6 28.9 45.8 74.7 48.5 36.22 - —
PolyMapper [40] 32.0 62.9 30.1 47.5 82.1 51.1 37.88 64.8 26.8
FrameField [28] 18.4 36.4 16.4 31.0 54.7 31.0 21.45 11.1 51.1
Baseline [2] 31.5 60.5 29.0 459 75.4 48.3 36.24 - —
Ours 327012 638433 3llioq | 487,05 839,85 529,46 | 3917 203 | 654106 264
The best results are marked in bold.
TABLE IV
RESULTS ON CNDATA TEST DATASETS
Method AP T AP50 T AP75 T AR T AR50 T AR75 T F175 T C-Area T MTA ,L
PANet [51] 35.1 68.8 34.0 47.5 81.3 50.3 40.57 - -
PolyMapper [40] 36.4 70.6 35.7 50.6 86.1 54.6 43.17 63.3 31.8
FrameField [28] 21.7 40.7 21.2 32.9 54.9 344 26.23 41.6 36.1
Baseline [2] 35.1 68.4 33.7 47.7 81.6 50.2 40.33 - —
Ours 37~9+2.8 71.5+3,1 37.7+4_0 52.74_5'0 88.3+6_7 57-3+7‘1 45.484_5,15 64.74_1'4 314

The best results are marked in bold.

TABLE V
MODEL COMPUTATIONAL COMPLEXITY

Method #Params (M) | FLOPs (G) |
Mask RCNN [2] 43.8 266.9
PANet [51] 47.3 292.8
PolyMapper [40] 53.8 869.7
FrameField [28] 76.7 833.2
Ours 75.1 923.2

M and G denote million and gillion, respectively.

method [48] to generate large-scale aerial images of high
spatial and spectral resolution. Afterward, the fused im-
ages are cropped into 512 x 512 and split for training
and testing with the ratio of 7:3. Some samples are shown
in Fig. 6(b), from which we can see that buildings in the
dataset have considerable variation, intraclass diversity,
and interclass similarity.

CNData contains 4200 images of 512 x 512 (at 30 cm res-
olution), a very challenging dataset. Images of this dataset
cover most provinces in China, including industrial, res-
idential, and rural regions, resulting in large building di-
versity in shape, material, and size. Especially, urban and
rural buildings are typically dense and small. CNData has
101 430 buildings annotated with polygonal labels, which
are split by 8:1:1 for train/test/validation subsets. Unlike
5M-Building, CNData contains different areas, resulting
in different data distributions as shown in Fig. 6(c).

B. Implementation Details

The proposed model is implemented with PyTorch and trained
end-to-endly with the SGD [49] optimizer. ResNet50 [43] is
adopted as our backbone, and its learning rate is set to le-5, and
the other part of the model is set to le-4. The weight decay is
set to 1e-4. Finally, the proposed model is trained for 24 epochs,
with the learning rate decreasing by ten at the 16th and 22nd
epochs.

In our experiments, we use two evaluation metrics in the raster
and vector levels to evaluate our method. In the raster level,
metrics proposed by MSCOCO [50] under different Intersection
over Union (IoU) thresholds of segmentation masks are used
to evaluate results. In our experiments, AP with the average
precision over ten IoU thresholds from 0.50:0.05:0.95, APsq
with 0.5 IoU threshold, and AP;5 with 0.75 IoU threshold
are calculated to evaluate the proposed model’s precision. Like
AP, APs5o, and AP, AR, ARy, and AR75 are calculated
to evaluate the robustness of our model. Finally, the F'175 is
calculated from APr5 and AR75, which can comprehensively
compare different methods and reflect a higher positioning
standard.

Finally, we use two metrics to measure the polygon gener-
ation of the extracted buildings. The MTA [28] calculates the
tangent angles from the lines between a predicted polygonal
building and the ground truth, which is lower when the extracted
building is similar to the ground truth. Following Truong-Hong
and Laefer [52], we use the C-Area to evaluate the polygonal
complexity in terms of the vertex number and polygonal area.
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Fig. 7.

Qualitative results on three building test datasets. We underline and scale up the large and complex buildings for convenient comparison. Column (a):

Corresponding ground truth. Column (b)—(f): Building footprint extraction results of our method, Mask RCNN, FFL, PolyMapper, and PANet, respectively. Row

Ist and 2nd: SpaceNet (Las Vegas). Row 3rd: CNData. Row 4th: SM-Building.

The performance of the polygonal building extraction is better
when the C-Area indicator is higher.

C. Comparison With State-of-the-Art

To evaluate our approach’s performance, we compare it with
other state-of-the-art approaches on three challenging building
datasets. Considering that building extraction generally is an
instance segmentation problem, we compare it with two rep-
resentative instance segmentation methods (the baseline model
Mask R-CNN [2], and PANet [51]). Besides, polygonal building
extraction methods are also compared to further verify the
effectiveness of our method, which includes PolyMapper [40]
and the SOTA Framefield [28].

Quantitative Results: Tables II, III, and IV show extensive
experimental results on three challenging building datasets for
different methods. We can see from experimental results that
our method in this article performs better, demonstrating its
superiority in topological building extraction from challenging
scenes.

For building instance segmentation, we can see that our
method outperforms the baseline method (Mask RCNN) by large
margins on all metrics. Specifically, F'175 on three datasets are
significantly improved by 13.34%, 2.93%, and 5.15%, com-
prehensively proving that our method can extract buildings

accurately. Moreover, A Pr5 on three datasets are improved by
15.7%, 2.1%, and 4%, indicating that our method can extract
buildings more precisely. PANet performs similarly to Mask
RCNN, as they all output binary building masks in raster format
by using the instance segmentation network rather than building
geometric information in vector format, making it challenging
to learn building boundaries.

For polygonal building extraction, our method outperforms
PolyMapper by about 1.95%, 1.29%, and 2.31% on three build-
ing datasets in terms of the comprehensive metric F'175, reflect-
ing the effect of a higher positioning standard. The significant
improvement on CNData shows that our approach is more
adaptive to complex shapes since CNData contains different
building types of residential, rural, urban villages, and industrial
areas. Since SM-Building and CNData contain buildings in
considerable variation, intraclass diversity, and interclass simi-
larity (e.g., continuous urban villages and factory buildings and
low and dense urban buildings) that are challenging to extract
building boundaries accurately, FrameField performs worse than
the baseline method as well as our method. For the SpaceNet
(Las Vegas) dataset, where the building boundaries are clear
and buildings are basically separate urban buildings with a
high spatial resolution, FrameField still performs worse than
ours, although it exceeds the baseline method. Furthermore, AR,
AR5, and AR75 on three building datasets are improved by our
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Fig. 8.

method, especially on SpaceNet (+9.6% in the indicator A R75).
For the vector metrics, our method improves the performance
of generating polygons with the higher C-Area and the lower
MTA, demonstrating that the proposed approach balances the
shape similarity and complexity well. The greater improvement
in building footprint delineation suggests that our approach
performs better in extracting topological buildings, even for
building instances with complex shapes.

Finally, we report the number of model parameters (#Params
(M)) and floating point operations (FLOPs (G)) of our model
and the compared methods to further compare the model com-
plexity. We test an image with a resolution of 1333x800 on
1 GPU for the model complexity evaluation. As reported in
Table V, our model has higher parameters than instance seg-
mentation methods since a bidirectional building polygon pre-
diction module is proposed to directly generate serialized ver-
tices. However, our method outputs vectorized building outlines
rather than binary building masks. Compared with topological
building extraction methods, our model has higher parameters
and FLOPs than PolyMapper [40] since it designs a feature
fusion module to enhance building features and a bidirec-
tional building polygon prediction module to generate polygonal

Qualitative results on CNData. Column (a): GT. Column (b)—(f): Building footprint extraction of our method, Mask RCNN, FFL, PolyMapper, and PANet.

buildings. In addition, our model has comparable parameters to
FrameField [28].

Qualitative Results: Fig. 7 displays the qualitative results
of some examples obtained by our method and the compari-
son methods, which qualitatively illustrate that our approach
generates high-quality topological building extraction. From
Fig. 7(c), we can see that the baseline method (Mask RCNN)
can only give the binary building mask, missing the building
boundary information required by the applications in geographic
information systems. Although building instance segmentation
results are post-processed via traditional contour simplification
methods (e.g., Douglas—Peucker [53]), the polygonization pro-
cess may lose some structural details, thus generating simple
building polygons. FrameField [FFL in Fig. 7(d)] can generate
building vertices since it can output the frame field aligning
to building contours for the polygonization of building masks.
However, FrameField predicts many redundant vertices for the
individual building and detects some false buildings under the
complex background. Therefore, it cannot satisfy the practical
applications. PolyMapper can produce building polygons using
a ConvLSTM [41] to iteratively predict building vertices, as
shown in Fig. 7(e). However, it only captures information in one
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Fig. 9.
and PANet.

direction and is susceptible to shadow or occlusion, resulting in
the error order of building vertices for complex building shapes.
Fig. 7(f) reports the prediction results of PANet. PANet is similar
to Mask RCNN and requires vectorization of predicted binary
building masks.

Our proposed method achieves better performance as shown
in Fig. 7(b), because the proposed method considers the bidirec-
tional trait of serialized vertex prediction and yields serialized
vertices under the bidirectional constraint. Therefore, the pro-
posed method leverages bidirectional information of building
polygons, and thus, it can generate accurate building footprints.
Besides, a cross-scale feature fusion module generates building
representations with high spatial resolution and rich context

Qualitative results on SpaceNet (Las Vegas). Column (a): GT. Column (b)—(f): Building footprint extraction of our method, Mask RCNN, FFL, PolyMapper,

information, enhancing the ability to predict long sequences of
complex buildings.

To further demonstrate the effectiveness of our method, Figs. 8
and 9 show additional qualitative results on SpaceNet (Las Ve-
gas) and CNData datasets. For instance segmentation followed
by the polygonization postprocess, Mask RCNN and PANet
can only produce simple building polygons, which generally
contain four vertices for each building and can not meet the
accuracy requirements. For polygonal building segmentation,
instead of error vertex order produced by PolyMapper or re-
dundant vertices predicted by FFL, our method can generate
concise and accurate building vertex sequences. Since these
two datasets are typical and representative, these comparative
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TABLE VI

ABLATION STUDY
Dataset CSFF  Bi-BP  Attng Flz7s
52.52
SpaceNet v 64.79
(LeI\)s Vegas) v 65.32
v 65.44
v v 65.02
v v 65.43
v v 65.54
v v v 65.86
36.24
v 38.50
SM-Building v 38.58
v 39.03
v v 38.63
v v 38.72
v v 39.06
v v v 39.17
40.33
v 45.06
CNData v 43.35
v 44.80
v v 44.77
v v 45.37
v v 45.25
v v v 45.48

“v 7 represents that the corresponding module is added to the
baseline. The final row of every dataset represents our method.
The best results are marked in bold for each dataset.

results demonstrate that the proposed method can generate better
building footprints than other methods.

D. Ablation Study

This section analyzes the influence of CSFF, Bi-BP, and Attng,
in Bi-BP, which is added to the baseline method [2] in abla-
tion studies, respectively. Besides, the baseline method with all
modules added presents the proposed model. The experimental
results evaluated on different building datasets are reported in
Table VI and are as follows.

1) CSFF: As shown in Table VI, the performance without
CSFF decreases by 12.27%, 2.26%, and 4.73% in the
indicator F'175 on three building datasets. Results of CSFF
ablation on different datasets indicate that CSFF is an es-
sential module to aggregate multiscale features efficiently,
which is vital for building serialized vertex prediction.
The proposed CSFF generates building representations
with high spatial and rich semantic information by utiliz-
ing the transformer-based architecture, which can avoid
lacking details in the existing feature aggregation meth-
ods. In the CSFF encoder and decoder stages, the hy-
perparameter ffn_channel can affect the building feature
learning. Therefore, ffn_channel is set as different val-
ues (i.e., 512, 1024, and 2048) to explore its impact in
this ablation. Table VII shows ablation results about the
different selections of the hyperparameter ffn_channel.
We can see that our model achieves the best result when
fin_channel=1024.
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TABLE VII
RESULTS ON CNDATA SHOW THE SELECTION OF THE HYPERPARAMETER
fin_channel

Method AP APsy AP:; | AR ARsy ARz | Flos
base [2] 351 684 337 | 477 816 502 | 4033
base+fc_512 | 373 709 373 | 516 868 562 | 44.84
base+fc_1024 | 37.8 717  37.6 | 520 876 562 | 45.06
base+fc_2048 | 372 707 372 | 511 864 554 | 4451

The base method is mask RCNN [2]. The base+fc_512, base+fc_1024, and base+fc_2048
mean that the hidden channel of the FFN is set to 512, 1024, and 2048, respectively. The
best result is marked in bold.

TABLE VIII
RESULTS ON CNDATA REPORT THE ROLE OF THE CSFF ENCODER
Method AP APsq APr5 AR AR50 AR7s5 Flrs
base [2] 35.1 68.4 33.7 47.7 81.6 50.2 40.33
base+noffn 375 711 374 | 51.7 87.4 56.2 4491
base+fc_1024 | 37.8 71.7 37.6 52.0 87.6 56.2 45.06

The base method is mask RCNN [2]. The base+noffn means that the csff does not have
the encoder module. On the contrary, the base+fc_1024 means that the CSFF has the
encoder module. The best result is marked in bold.

Since the feature map fed to the CSFF encoder has a
high spatial resolution, the CSFF encoder does not per-
form the self-attention operation. Therefore, we verify
whether it needs the position-wise FFN or not. We set
the hyperparameter ffn_channel to 1024 and conduct
experiments with and without FEN operation. From the
statistical results shown in Table VIII, we can see that
the proposed approach is insensitive to the operation. The
CSFF encoder, with or without the FFN operation, out-
performs the baseline method due to the high-resolution
feature map.

2) Bi-BP: From Table VI, Bi-BP significantly improves per-
formance on different building datasets by leveraging bidi-
rectional information of building polygons. Significantly,
Bi-BP improves the baseline by 12.8% in terms of F'l;5
on SpaceNet (Las Vegas), showing its effectiveness.

3) Attention mechanism: Results on attention ablation are
shown in Table VI, showing that Bi-BP with an attention
constraint surprisingly performs better. After adding all
modules to the baseline method, the proposed method
improves performance on three building datasets from
52.52%, 36.24%, and 40.33% to 65.86% (+13.34%),
39.17% (+2.93%), and 45.48% (+5.15%) in terms of
F'175, respectively.

In addition, we conduct more ablation experiments to verify
the influence of any two modules in CSFF, Bi-BP, and Attng,
as shown in Table VI. It can be seen that the baseline method
with any two modules consistently improves the performance on
three building datasets. From ablation experiments, robust ex-
perimental results demonstrate the effectiveness of our method
for topological building extraction by designing CSFF, Bi-BP,
and Attng. modules.
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V. DISCUSSION

In this section, we further analyze our method in terms of
model structure and performance then discuss limitations about
our method.

A. Analysis

Our method is a two-stage architecture with three specific
branches, including classification, box regression, and serial-
ized vertex prediction. The feature extraction module can adopt
CNNs or Transformers to extract multiscale feature maps. The
bidirectional building polygon prediction module directly gener-
ates serialized vertices and can be integrated into other two-stage
detection architectures. Unlike previous topological building
extraction methods (e.g., PolyMapper [40]), the generated serial-
ized vertices by our approach are more concise since it leverages
the bidirectional characteristics of building serialized vertices.
Based on our previous BiSVP [1], we have systematically re-
viewed related literature, summarized existing problems, and
added each module’s structural design and formula description
in detail. In addition to the instance evaluation criteria used in
BiSVP [1], we employ additional metrics (MTA and C-Area)
to further measure the polygon similarity and complexity in
terms of angle, vertex number, and area in the experimental
setting. Moreover, we have shown more qualitative results from
different methods for convenience reading. In addition, we have
conducted more ablation experiments for hyper-parameter se-
lection and performance evaluation.

The experimental results demonstrate the superior perfor-
mance of our method comprehensively. Firstly, our method can
accurately and comprehensively extract buildings. As shown in
Tables II, III, and IV, our method achieves the highest F'175
and the lowest MTA scores, illustrating that the serialized ver-
tices with bidirectionality can better represent building outlines.
Second, our method has similar parameters and computation
complexity to other methods, especially 923.2 G/75.1 M vs
833.2 G/76.7 M, as reported in Table V, demonstrating its
effectiveness. In addition, as shown in Figs. 7, 8, and 9, our
method can better extract polygonal buildings in vector format
from different scenes, which is more suitable for downstream
tasks than rasterized results.

B. Limitations and Future Work

Although our proposed method achieves promising perfor-
mances in topological building extraction, buildings with holes
may be detected with the wrong vertex sequence in large-scale
and complicated scenes. In future work, we will further consider
the sequence characteristics of building vertices and seek more
appropriate sequence models to solve the problem.

VI. CONCLUSION

This article has presented an end-to-end topological building
extraction method, which can directly generate serialized ver-
tices of each building instance from remote sensing images. The
proposed method formulates topological building extraction as
predicting building serialized vertices with two directions by the
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novel observation that the order of building serialized vertices is
inherently bidirectional (i.e., clockwise or counterclockwise).
Therefore, the proposed method predicts serialized vertices
for each building supervised by the bidirectional constraint.
Besides, an attention mechanism with Gaussian constraint is
integrated with building serialized vertex prediction, enhancing
prediction ability for complex buildings. Moreover, a cross-scale
feature fusion module is introduced to generate building repre-
sentations with rich spatial and context information by aggre-
gating multiscale feature maps, essential for building serialized
vertex prediction. Finally, a merge strategy is proposed to merge
building polygons clockwise and counterclockwise, leveraging
bidirectional information to generate accurate buildings. Exten-
sive experiments highlight the proposed method’s superiority in
topological building extraction.
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