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Digital Surface Model Super-Resolution by
Integrating High-Resolution Remote Sensing

Imagery Using Generative Adversarial Networks
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Abstract—Digital surface model (DSM) is the fundamental data
in various geoscience applications, such as city 3-D modeling and
urban environment analysis. The freely available DSM often suffers
from limited spatial resolution. Super-resolution (SR) is a promis-
ing technique to increase the spatial resolution of DSM. However,
most existing SR models struggle to reconstruct spatial details, such
as buildings, valleys, and ridges. This article proposes a novel DSM
super-resolution (DSMSR) model that integrates high-resolution
remote sensing imagery using generative adversarial networks.
The generator in DSMSR contains three modules. The first DSM
feature extraction module uses the residual-in-residual dense block
to extract features from low-resolution DSM. The second multiscale
attention feature extraction module employs the pyramid convolu-
tional residual dense blocks to capture the spatial details of ground
objects at multiple scales from remote sensing imagery. The third
DSM reconstruction module uses a squeeze-and-excitation block
to fuse the extracted features from low-resolution DSM and high-
resolution remote sensing imagery for generating SR DSM. The
discriminator of DSMSR uses the relativistic average discriminator
for adversarial learning. The slope loss is further introduced to
ensure the accurate representation of topographic features. We
evaluate DSMSR on four different terrain regions in the U.K. to
downscale the 30-m AW3D30 DSM to 5-m DSM. The experimental
results indicate that DSMSR outperforms the traditional interpola-
tion algorithms and four existing deep-learning-based SR models.
The DSMSR restores more spatial detail of topographic features
and generates more accurate image quality, elevation, and terrain
metrics.

Index Terms—Digital surface model (DSM), generative adver-
sarial networks (GANs), remote sensing imagery, slope loss, super-
resolution (SR).
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I. INTRODUCTION

TOPOGRAPHIC data play a crucial role in characterizing
the elevation and location of Earth’s surface and they are

fundamental inputs for a wide range of geoscience applications
[1], [2], [3], [4], [5], [6]. Digital terrain model (DTM), digital ele-
vation model (DEM), and digital surface model (DSM) are three
types of commonly used topographic data [3], [7]. Each of these
models represents Earth’s surface with distinct meanings and
representations [3], [7], [8]. Generally, DTM is a representation
of various topographic features, such as slope, gradient, valley
lines, and ridges, organized in a 1-D or multidimensional feature
vector space overlaid on a 2-D geographic space [1]. DEM only
characterizes the elevation of bare-Earth surface by removing
all natural and built objects [9], [10]. In contrast, DSM not only
provides the elevation of bare-Earth surface but also includes
the elevation of natural and built objects that exist above the
terrain, such as buildings and vegetation [7], [8]. The natural
and built information derived from DSM, such as building and
tree height, is critical for a variety of applications, such as city
3-D modeling [11], [12], [13], population estimation [14], [15],
urban environment analysis [6], [16], [17], [18], and flood impact
assessment [2], [19], [20], [21].

Currently, there are several freely available topographic
datasets [3], [7], [8], [22], including the shuttle radar topog-
raphy mission (SRTM) DEM, the advanced spaceborne ther-
mal emission and reflection radiometer global DEM (ASTER
GDEM), and the advanced land observing satellite world 3-D
DSM (AW3D30). SRTM is a 90-m DEM dataset created from
radar data and it was enhanced to a 30-m version in 2014.
ASTER GDEM is a 30-m DEM dataset created from stereopair
images collected by advanced spaceborne thermal emission and
reflection radiometer. Although SRTM and ASTER GDEM are
primarily used as DEM datasets, they inherently contain both
natural and built elevation information, which also qualifies them
as DSM datasets [1], [3], [7], [8]. AW3D30 is a 30-m DSM
dataset created from high-resolution (HR) phased array-type
L-band synthetic aperture radar data [23]. These freely available
DSM datasets are extensively utilized in numerous geoscience
fields; however, their limited spatial resolutions (≤30 m) are
insufficient for regional scale and local scale applications [9],
[19], [24], [25], [26], [27], [28].

Typically, there are two main ways to obtain HR DSM
datasets. The first way is to improve the resolution of surveying
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equipment (e.g., light detection and ranging laser scanner and
stereo image pairs from an aerial camera), which includes the
utilization of more sophisticated sensors, instruments, or tech-
niques capable of capturing topographic data with higher resolu-
tion [2], [5], [29]. However, this way often requires a significant
investment in labor, materials, and technical expertise. The sec-
ond way is to use the super-resolution (SR) technique to increase
the spatial resolution of DSM datasets, particularly those based
on machine learning [9], [24], [25], [27], [28], [30], [31], [32].
SR refers to the process of enhancing the resolution of an image
or dataset beyond its original level to achieve a more detailed rep-
resentation of underlying features [5], [25], [33], [34], [35], [36],
[37], [38]. With the rapid development of deep learning, many
image SR algorithms have been proposed by leveraging the
advantages of convolutional neural networks (CNNs) and gen-
erative adversarial networks (GANs), such as super-resolution
convolutional neural network (SRCNN) [39], super-resolution
generative adversarial networks (SRGANs) [40], and enhanced
super-resolution generative adversarial networks (ESRGANs)
[41]. Recent studies have demonstrated the effectiveness of
attention and multiscale mechanisms in capturing features in
both channel and spatial dimensions in image SR [42], [43], [44].
The attention mechanisms can emphasize important features and
suppress unnecessary ones in the channel or spatial dimension,
while the multiscale mechanism can capture the objects of
different sizes in the spatial dimension [43]. For example, Xu
et al. [45] introduced self-attention in GAN to capture global
object features, while Jia et al. [46] proposed an advanced
multiattention generative adversarial network (MA-GAN) for
downscaling remote sensing images and it used a pyramid
convolutional residual dense (PCRD) block with channel at-
tention (CA) to enhance feature extraction at different scales.
Hu et al. [47] proposed a squeeze-and-excitation (SE) block,
which adaptively recalibrates channelwise feature responses by
explicitly modeling interdependencies between channels. These
SR algorithms have been successfully applied in downscaling
DEM datasets. Chen et al. [24] used a similar architecture to
SRCNN for DEM downscaling. A multiscale CNN has also been
developed for DEM SR [48]. Both SRGAN and ESRGAN have
been adopted to increase the spatial resolution of DEM [9], [25],
[27], [49].

For downscaling DSM, Zhang et al. [28] adopted a CNN-
based single-image SR algorithm to increase the spatial resolu-
tion of DSM, and Karatsiolis et al. [50] combined aerial imagery
and DSM to estimate the height of buildings and vegetation
using U-Net and residual networks. However, compared with
DEM downscaling by various SR algorithms, little attention has
been paid to DSM downscaling in recent years. One challenge
in DSM downscaling using single-image SR models is the
limited effectiveness in capturing spatial details due to the lack
of auxiliary data [1], [26], [50]. Satellite images contain rich
ground details that are useful auxiliary data to improve the
spatial details of DSM, as stereo aerial image pairs are often
used to create DSM datasets [7], [8], [13], [26], [50]. Meanwhile,
the direct usage of image SR algorithms for DSM downscaling
may be inappropriate because topographic details in DSM are
significantly different from natural images [9], [25], [26], [28],

[48]. As typical SR models take a loss function for natural
images, topography-related loss functions have been proven to
be more effective for topographic datasets [27], [51]. Moreover,
advanced attention and multiscale mechanisms have seldom
been used in downscaling DSM.

This article proposes a novel DSM super-resolution (DSMSR)
model that integrates HR remote sensing imagery using GAN.
The generator of the DSMSR comprises three modules: DSM
feature extraction module, multiscale attention feature extrac-
tion module, and DSM reconstruction module. The residual-in-
residual dense block (RRDB) from ESRGAN is used to extract
features from low-resolution (LR) DSM in the DSM feature
extraction module [41]. The PCRD blocks from MA-GAN are
employed to capture the spatial details of ground objects at
multiple scales from remote sensing imagery in the multiscale
attention feature extraction module [46]. The SE block is em-
ployed to fuse the extracted features from LR DSM and HR
remote sensing imagery and generate the final SR DSM in
the DSM reconstruction module [47]. The relativistic average
discriminator (RaD) is employed as the discriminator of DSMSR
[52]. To ensure the accurate representation of topographic fea-
tures during the training process, a slope loss is introduced and
integrated into the loss functions in DSMSR. Compared with
the existing DSM downscaling methods, DSMSR has several
features and contributions.

1) The fusion of HR remote sensing imagery and LR DSM
through GAN in DSMSR can fully exploit the HR remote
sensing imagery to improve the spatial detail reconstruc-
tion in DSM.

2) The combination of RRDB and PCRD block in DSMSR
is able to maximize the utilization of hierarchical fea-
tures from LR DSM and HR remote sensing imagery,
respectively.

3) The introduction of the slope loss facilitates the accurate
representation of topographic features in DSM.

The rest of this article is organized as follows. Section II
describes the proposed method. Section III illustrates the exper-
imental results. Section IV discusses the experimental results.
Finally, Section V concludes this article.

II. METHODOLOGY

A. DSMSR Architecture

The proposed DSMSR is built upon the foundation of GAN.
A GAN model often consists of a generator and a discriminator,
which are engaged in a zero-sum game where they compete
with each other [40], [41]. DSMSR also has a generator G and
a discriminator D to implement adversarial learning using a
function OptimalG,D. The general process of DSMSR can be
expressed by

Optimal G,D = min
G

min
D

(LG + LD) (1)

where G is the generator, D is the discriminator, LG is the gen-
erator loss function, and LD is the discriminator loss function.
In the competition, G and D obtain the capability to generate
realistic data and distinguish the predicted data from the truth
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Fig. 1. Architecture of DSMSR.

data, respectively. The expected result is that G will be able to
generate data that cannot be discriminated by D.

The DSMSR is designed to generate HR DSM by fusing HR
remote sensing imagery with LR DSM. The DSMSR consists of
two components, including the generator and the discriminator,
as illustrated in Fig. 1. The generator takes both LR DSM and HR
remote sensing imagery as inputs to produce HR DSM results.
The discriminator receives either a fake or a real HR DSM as
the input to distinguish its source.

1) Generator Network: To take both LR DSM and HR re-
mote sensing imagery as inputs for restoring HR DSM, the
generator is designed to include three modules: the DSM feature
extraction module, the multiscale attention feature extraction
module, and the DSM reconstruction module.

a) DSM feature extraction module: ESRGAN, an en-
hanced version of SRGAN, is an advanced image SR model
[41]. Compared with the traditional SRGAN, the generator
network of ESRGAN adopts a different approach by removing
the batch normalization layer and introducing a deeper and
more complicated structure known as RRDB to replace the
residual block in SRGAN [40], [41]. These modifications not
only ensure stable training and consistent performance but also
improve its generalization ability while reducing computational
complexity and memory consumption [41]. Consequently, the
DSM feature extraction module of the proposed DSMSR inherits
the generator of ESRGAN to extract features from LR DSM and

improve their resolution to a target resolution. The generator
contains 23 RRDB blocks producing features with 64 channels.

b) Multiscale attention feature extraction module: To cap-
ture features in both spatial and channel dimensions, we design
the multiscale attention feature extraction module. This module
comprises a convolution-LReLU block and four PCRD blocks.
The PCRD block incorporates an attention pyramid convolution
(AttPConv) operator (see Fig. 2) [46]. The AttPConv operator
conducts multiscale convolutions and then calculates CA on the
resulting features, dynamically adjusting the weights of each
feature [53]. Compared with ESRGAN [41], PCRD blocks can
enhance the generalization ability in SR tasks [46]. The module
can extract multiscale features from HR remote sensing images,
which facilitates the recovery of spatial details for both natural
and built objects in DSM reconstruction.

c) DSM reconstruction module: The DSM reconstruction
module comprises an SE block [47], four convolutional layers,
and three parametric rectified linear unit functions. The SE block
is introduced to adaptively squeeze the 128 channelwise features
from LR DSM and HR remote sensing imagery and adjust the
weights for optimal multiscale feature fusion. The adjusted 128
features are then fused by four convolutional layers to generate
the SR DSM at the target resolution.

2) Discriminator Network: The discriminator plays a crucial
role in the adversarial training process. It acts as a critic to
distinguish between the SR images produced by the generator
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Fig. 2. PCRD block and AttPConv operator.

and real HR images. The RaD is proved to be more effective
than the standard discriminator in SRGAN [40], [41]. It aims
to learn to judge whether an image is “more real than another”
rather than “whether an image is true or false” in a standard
discriminator, guiding the generator to recover more detailed
textures. Therefore, the RaD is used as the discriminator of
DSMSR by

DRa (XHR, XSR) = σ (C (XHR)− EXSR [C (XSR)]) →
1 More realistic than fake data? (2)

DRa (XSR, XHR) = σ (C (XSR)− EXHR [C (XHR)]) →
0 Less realistic than real data? (3)

where DRa() is the RaD, XHR is the HR DSM, XSR is the
SR DSM by the generator G with the inputs of LR DSM and
HR remote sensing imagery, and σ(), C(), and E[] represent
the sigmoid function, discriminator output, and the mean of
discriminator outputs for all generated images, respectively.

B. Loss Function

The loss function is the key component used to quantify the
error or discrepancy between the predicted output and the ground
truth. Employing an appropriate loss function can effectively
reduce training error and improve the model’s performance.
To train DSMSR, a comprehensive loss function is designed to
evaluate the difference between the predicted SR DSM and the
real HR DSM. The designed loss function not only includes the
content loss, adversarial loss, and perceptual loss as in ESRGAN
but also introduces a slope loss to recover terrain details. Slope
is a critical attribute defining the topography of a geographic
region [25], [27], [51]. Thus, slope loss is advantageous for
restoring intricate terrain details and ensuring a more consistent
alignment between the predicted DSM and the real DSMs terrain
features. Further details about the slope loss will be explained
in Section IV-A. The designed loss function of DSMSR is

expressed as

LG = Lcontent + αLG
adv + βLperception + γLslope (4)

where Lcontent represents the elevation loss, LG
adv represents the

adversarial loss, Lperception represents the perceptual loss, and
Lslope represents the slope loss. α, β, and γ are the hyperparam-
eters used to control the weights of each loss term.

1) Content Loss: The DSMSR chooses L1 function as the
content loss for the generator. Lcontent calculates the one-norm
elevation distance between the SR DSM and the HR DSM and
it can optimize the elevation accuracy of DSM at the pixel level
as follows:

Lcontent =
1

N

N∑
i = 1

|XHR,i −XSR,i| (5)

where XHR,i and XSR,i are the HR and SR DSM elevation for
pixel i, respectively.

2) Adversarial Loss: To increase the similarity between the
predicted HR DSM and the real HR DSM, the RaD is employed
as the discriminator in the proposed DSMSR [41], [52]. The
RaD evaluates the performance of DSMSR by comparing the
relative authenticity between the real and predicted DSM. The
discriminator’s adversarial loss function is defined as

LD
adv = − EXHR [log (DRa (XHR, XSR))]

− EXSR [log (1−DRa (XSR, XHR))] . (6)

The adversarial loss function for the generator is defined as

LG
adv = − EXHR [log (1−DRa (xHR, xSR))]

− EXSR [log (DRa (XHR, XSR))] . (7)

Equation (7) shows that the adversarial loss of the generator
contains both XHR and XSR; and hence, it benefits from the
gradients of the generated and truth images during the training
process.

3) Perceptual Loss: Perceptual loss was originally proposed
by Johnson et al. [54] and later adapted and optimized in
SRGAN [40]. ESRGAN further improved perceptual loss by
using features before activation functions, leading to enhanced
reconstruction results. The effectiveness of using features before
activation functions lies in the fact that, after passing through
very deep networks, the activated features tend to become sparse
and can result in inconsistent brightness in the reconstructed
images [41]. As DSM and natural images share similarities in
containing rich object details, using perceptual loss before acti-
vation functions can aid in recovering object details. To achieve
this, the predicted SR DSM and the real HR DSM are fed into a
pretrained VGG19 network. The average L1 distance between
the features extracted from the fourth convolutional layer before
the fifth max-pooling layer of VGG19 is then calculated. The
perceptual loss function for the generator is defined as

Lperception =
1

N

N∑
i = 1

|VGG19(XHR,i)− VGG19(XSR,i)| (8)

where VGG19() is the pretrained VGG 19 [55].
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4) Slope Loss: Referring to Wang et al.’s article [41], the
L1 loss [i.e., mean absolute error (MAE)] of slope between
the predicted SR DSM and the real HR DSM is calculated as the
slope loss. It is computed by

Lslope =
1

N

N∑
i = 1

|SHR − SSR| (9)

SHR = S (XHR) (10)

SSR = S (SSR) (11)

Sij = arctan
(√

dx2 + dy2
)
× π

180
(12)

whereSHR is the slope of HR DSM,SSR is the slope of SR DSM,
Sij is the slope at pixel (i,j), dx is the gradient of the pixel in
the horizontal direction, and dy is the gradient of the pixel in the
vertical direction.

C. Accuracy Evaluation

Six metrics were selected to evaluate the performance of
the DSMSR: peak signal-to-noise ratio (PSNR), mean struc-
tural similarity (MSSIM), root-mean-square error of elevation
(RMSEE), mean absolute error of elevation (MAEE), mean
absolute error of slope (MAES), and mean absolute error of
aspect (MAEA). These metrics were chosen to evaluate image
quality, elevation accuracy, and terrain accuracy in SR DSM.

Visual perception can be used to evaluate the authenticity
and level of detail recovery in the reconstructed images. The
presence of detailed texture features in DSM, such as buildings,
trees, and roads, is similar to remote sensing and natural images.
Therefore, two widely used metrics (i.e., PSNR and MSSIM) for
evaluating image quality in image SR are used to evaluate the
image quality of reconstructed DSM. PSNR is calculated by the
maximum pixel of the image and the mean square error between
images, and it is defined as

PSNR = 10log10

(
MAX2

MSE

)
(13)

where MAX is the maximum elevation and MSE is the mean
square error of elevation. PSNR does not have a specific range,
and a higher PSNR indicates superior image quality.

MSSIM measures the structural similarity between images
by considering three relatively independent components: lumi-
nance, contrast, and structure. It is defined as

MSSIM =
1

N
SSIM (xi, yi) (14)

SSIM (xi, yi) =
(2μxμy + c1) (σxy + c2)(

μ2
x + μ2

y + c1
) (

σ2
x + σ2

y + c2
) (15)

where xi and yi are the ith slices of XSR and XHR, μx and μy

are separately the means of xi and yi, σ2
x and σ2

y are separately
the variances of xi and yi, σxy is the covariances of xi and yi, c1
and c2 are the constants used to avoid division by zero, and N
is the number of DSM slices. The range of MSSIM is [0,1],
where a higher MSSIM indicates greater similarity between

Fig. 3. Study area and data. (a) Mountainous region. (b) Suburban region. (c)
Mixed region. (d) Urban region.

the reconstructed image and the real image, implying better
structural similarity.

Elevation and terrain characteristics are crucial for DSM.
Thus, we use four pixel-level metrics to quantitatively evaluate
the accuracy of the reconstructed DSM. The RMSEE in (16) and
the MAEE in (17) are adopted as the two metrics for assessing
elevation accuracy. The MAES in (18) and the MAEA in (19)
are employed as the two metrics for evaluating terrain accuracy

RMSEE =

√
1

N

∑N

i=1
(XHR −XSR)

2 (16)

MAEE =
1

N

N∑
i = 1

|XHR −XSR| (17)

MAES =
1

N

N∑
i = 1

|SHR − SSR| (18)

MAEA =
1

N

N∑
i = 1

|AHR −ASR| (19)

where SHR and SSR are the slopes of HR DSM and SR DSM,
respectively, and AHR and ASR are the aspects of HR DSM and
SR DSM, respectively.

III. EXPERIMENTS

A. Experimental Design

The study area is located in the United Kingdom and com-
prises four representative terrain regions: a mountainous re-
gion in Southern Cumbria [see Fig. 3(a)], a suburban region
in Lincolnshire [see Fig. 3(b)], a mixed region in Manchester
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[see Fig. 3(c)], and an urban region in London [see Fig. 3(d)].
Each region covers an area of 45 000 m × 45 000 m. This study
employs three types of datasets. The first is the LR DSM, 30 m
AW3D30 DSM, which is freely accessible.1 The second is the
HR DSM from the National LIDAR Programme DSM, which
provides the accurate elevation data for the entire England on
the U.K. Department for Environment Food and Rural Affairs
Data Services Platform. The original resolution of the HR DSM
is 1 m and was aggregated to 5 m as the HR DSM. The third
is the 5-m HR remote sensing images with three bands (RGB)
from the Mapbox platform. All datasets in this study use the
British National Grid as the projection coordinate system, and
the elevation coordinate system is Ordnance Datum Newlyn. The
datasets in the mixed region are used as test data, while datasets
in the other three regions are adopted to train the proposed
DSMSR.

The scale factor is set to 6 to account for the resolution
difference between LR and HR images. This means that the
30-m AW3D30 DSM is downscaled to the 5-m DSM using
the proposed DSMSR. To obtain sufficient training samples,
we created a total of 7200 patches from three different regions
using both sequential and random cropping schemes. The LR
DSM patches were cropped to a size of 32× 32 pixels, while the
HR DSM and remote sensing images were cropped to patches of
192× 192 pixels. Before training, the mean elevation of each LR
DSM patch and each HR DSM patch was subtracted to eliminate
the impact of trend surfaces [30].

The training process was divided into two stages. During the
first stage, the generator network of DSMSR was trained for 50
epochs using content loss and slope loss to obtain a pretrained
generator. This pretrained generator was then used to initialize
the generator of DSMSR during the second stage. The generator
was then trained using the loss function with empirical weights
α = 0.001, β = 0.01, and γ = 0.5 in (4). The weights of α
and β were set following MA-GAN [46], and the weights of γ
were derived from experimental tests in Section IV-A.

The Adam algorithm was used for optimization during the
training. The learning rate of the generator and discriminator in
DSMSR was set to 1 × 10−4. The generator and discriminator
were updated alternately for 50 epochs. The DSMSR was imple-
mented by the PyTorch package and executed on the NVIDIA
RTX 4060 Ti GPU with 16 GB of RAM. A batch size of 16 was
chosen to fit into the GPU memory.

To demonstrate the effectiveness of the proposed DSMSR, it
was compared with the traditional bilinear (BL) interpolation
algorithm and four widely used deep-learning-based SR models
(i.e., SRCNN, SRGAN, ESRGAN, and MA-GAN). SRCNN,
SRGAN, and ESRGAN have been employed in the DEM SR
[9], [24], [25], [27], [56], and they were retrained using the
DSM data from this experiment.

B. Experimental Results

1) Training Performance: Fig. 4 illustrates the loss changes
in each of the three training regions during the training process.

1[Online]. Available: https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/
index.htm

Fig. 4. Loss curves of DSMSR during the training process.

Content loss, perceptual loss, and slope loss fluctuate down and
converge near 50 epochs. The adversarial losses of the generator
and discriminator remain relatively stable, indicating that the
training has achieved a favorable Nash equilibrium and resulted
in a satisfactory trained DSMSR.

2) SR Results in the Test Region: The HR DSM and RGB
remote sensing imagery in Fig. 5 reveal the diverse and complex
topography of the test region, which is divided into two distinct
areas. The western part of the test region is the urban area of
Manchester, while the eastern part is the mountainous terrain.
The SR 5-m DSM produced by the DSMSR exhibits more
building details in the urban area and finer terrain features in the
mountainous area compared with the original 30-m LR DSM
images.

Fig. 6 shows the error maps of the six SR methods in the test
region. The errors of all six methods are primarily concentrated
in mountainous regions with significant topographic variations
and urban areas with dense buildings. Specifically, for BL, SR-
CNN, ESRGAN, and MA-GAN methods, the errors are mostly
negative in flat areas but mostly positive in mountain areas,
while the errors of SRGAN are mostly negative. Moreover,
for these five methods, the absolute errors in the urban are
all large(>4 m). Compared with these methods, the majority
of absolute errors in DSMSR are within 1 m in two types of
regions. Meanwhile, the errors of DSMSR are more uniformly
distributed than the other five methods. Additionally, DSMSR
exhibits smaller errors in both densely built-up and mountainous
regions, further confirming its excellent performance.

Table I presents the six accuracy metrics of different SR
methods in the test region, including MSSIM, PSNR, RMSEE,
MAEE, MAES, and MAEA. As shown in Table I, all deep-
learning-based SR models, including SRCNN, SRGAN, ESR-
GAN, MA-GAN, and DSMSR, show significant improvements
over the traditional BL interpolation method. When comparing
the SRCNN, SRGAN, ESRGAN, and MA-GAN, it can be ob-
served that SRGAN performs slightly worse than the other three
models, and ESRGAN and MA-GAN exhibit better accuracy
levels. Notably, the proposed DSMSR outperforms all other
models, achieving the best results across all six metrics.

Based on the two image quality metrics, the MSSIM and
PSNR of the DSMSR are 0.17 and 2.04 higher than the best

https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
https://www.eorc.jaxa.jp/ALOS/en/aw3d30/data/index.htm
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Fig. 5. SR results in the test region. (a) Urban area. (b) Mountain area.

TABLE I
ACCURACY OF DIFFERENT SR MODELS IN THE TEST REGION

Fig. 6. Error maps of the reconstructed DSMs by different SR methods.

MSSIM and PSNR of other models, respectively. It is evi-
dent from the results that the reconstructed DSM produced
by DSMSR has superior image quality with sharper edges
and richer details of topographic features. Based on the two
elevation accuracy metrics, DSMSR achieves a decrease of
0.49 m (21.1%) and 0.4 m (27.2%) in RMSEE and MAEE,
respectively, compared with the best values achieved by other
models. When analyzing the two terrain-related metrics, it was

found that the MAES and MAEA of DSMSR have decreased by
1.16° (23.6%) and 13.32° (21%), respectively, compared with
the best values of MAES and MAEA achieved by other models.
The findings indicate that DSMSR can recover more accurate
pixel-level elevation and more significant topographic features
in the reconstructed DSM.

3) SR Results in a Zoom-in Urban Area: Fig. 7 shows the
result of the zoom-in urban area, which is marked with a red
rectangle A in Fig. 5. The SR DSM of BL and SRCNN in
the zoom-in urban area lack most of the building details and
exhibit smoother results, and the SR DSM of MA-GAN is
presented as flocculated. In contrast, SRGAN and ESRGAN
show slightly improved performance in recovering details for
some larger buildings, but most of the details are not true and
accurate. Comparing with the other methods, the reconstructed
DSM generated by DSMSR is significantly more consistent with
the ground truth. DSMSR demonstrates an exceptional ability
in capturing detailed surface texture information and achieve
impressive restoration results for buildings and other objects.
Additionally, the reconstructed DSM generated by DSMSR
exhibits clear edge textures for buildings and various ground
objects. This is because DSMSR integrates HR remote sensing
images to restore these spatial details of objects.

According to further observation of the error maps in the
zoom-in area, as shown in Fig. 7, it is evident that the five
SR methods without HR remote sensing images exhibit higher
errors in most artificial objects, such as buildings. In contrast,
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TABLE II
ACCURACY OF DIFFERENT SR MODELS IN THE ZOOM-IN URBAN AREA

Fig. 7. SR results and error maps in the urban zoom-in area.

the reconstructed DSM of DSMSR displays lower errors for
most built and natural objects, which further highlights the
ability of DSMSR to restore topographic features in urban areas,
particularly buildings.

Table II presents that DSMSR achieves a significant improve-
ment in accuracy and outperforms all other methods in the
zoom-in urban area. The MSSIM and PSNR of DSMSR increase
by 0.46 and 2.08, respectively, compared with the best result
of the other five methods. Additionally, RMSEE and MAEE

decrease by 0.57 m (21.3%) and 0.56 m (29.5%), respectively,
while MAES and MAEA decrease by 4.9° (39.4%) and 34.84°
(30.5%), respectively.

4) SR Results in a Zoom-in Mountain Area: Fig. 8 shows the
result of the zoom-in urban area, which is marked with a red
rectangle B in Fig. 5. It can be seen that the BL and SRCNN
produce smoother results. In contrast, SRGAN, ESRGAN, and
MA-GAN show slightly better performance in recovering topo-
graphic lines, such as valleys and ridges, due to their use of GAN.
In particular, ESRGAN, with its deeper networks and RaD,
outperforms SRGAN and MA-GAN in terms of topographic
recovery. The reconstructed terrain details produced by DSMSR
are clearer and they are more realistic to the ground truth DSM.
This improvement can be attributed to its ability to capture

Fig. 8. SR results and error maps in the mountain zoom-in area.

terrain texture from remote sensing imagery and the introduction
of slope loss.

The error maps of the zoom-in mountain area in Fig. 8 show
that the errors are mainly concentrated along the topographic
lines (e.g., valleys) and their surroundings. The errors of both
BL and SRCNN exhibit a grid pattern, while the errors of
SRGAN, ESRGAN, MA-GAN, and DSMSR present a patchy
distribution. In addition, the errors of DSMSR in the topographic
lines are clearly lower than those in other methods, further sug-
gesting the ability of DSMSR in restoring topographic features
in mountain areas.

Table III presents accuracy metrics for the zoom-in mountain
area, highlighting the effectiveness of the DSMSR model in ac-
curately reconstructing detailed topographic features. DSMSR
achieves the highest MSSIM and PSNR values when compared
with the other five methods. Additionally, the RMSEE and
MAEE of DSMSR decrease by 0.33 m (16.1%) and 0.29 m
(21.6%), respectively, compared with the best results of the other
five methods. Furthermore, DSMSR exhibits reductions of 0.61°
(17.5%) and 7.43° (20.1%) in MAES and MAEA, respectively.
These results highlight the effectiveness of the DSMSR model
in accurately reconstructing detailed topographic features.
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TABLE III
ACCURACY OF DIFFERENT SR MODELS IN THE ZOOM-IN MOUNTAIN AREA

TABLE IV
ACCURACY OF RECONSTRUCTED DSMS WITH DIFFERENT SLOPE LOSS

COEFFICIENTS

IV. DISCUSSION

A. Ablation Analysis for Slope Loss

To evaluate the impact of slope loss functions with different
coefficients on DSMSR, we performed a comparative analysis
of performance using different γ values in the test region. Note
that the value of 0 means that the slope loss is not used. Table IV
presents that incorporating the slope loss leads to improvements
in all accuracy metrics. As γ increases, improvements in slope
and aspect accuracy become more pronounced. However, an
excessive emphasis on terrain precision may lead to a certain
degree of decline in both scene quality and elevation accuracy.
Notably, when γ is set to 0.5, the model achieves an optimal
balance in DSM image quality, elevation accuracy, and terrain
precision.

B. Ablation Analysis for Multiscale and Attention Mechanisms

The impact of multiscale and attention mechanisms is exam-
ined here. Traditional ResNet18 without multiscale and attention
mechanisms is selected as a baseline for the ablation analysis.
DSMSR employs the PCRD block with multiscale and attention
mechanisms to extract features from HR remote sensing imagery
and the SE block is integrated to fuse features from LR DSM and
HR remote sensing imagery. The ablation result for the multi-
scale and attention mechanisms is shown in Table V. Compared
with ResNet18, the introduction of the PCRD block improved
PSNR to 50.14. It also significantly enhanced accuracy metrics,
including a notable decrease in RMSEE (0.06 m) and MAES

(0.09°). Further refinement was obtained by the addition of the
SE block for the fusion of features from LR DSM and HR remote
sensing imagery. It achieved the highest MSSIM and PSNR,
demonstrating superior accuracy in elevation, slope, and aspect.

TABLE V
ACCURACY OF RECONSTRUCTED DSMS WITH AND WITHOUT MULTISCALE

AND ATTENTION MECHANISMS

TABLE VI
ACCURACY OF DSMSR BY DIFFERENT SCALES

The combined use of PCRD blocks and SE blocks led to the
best performance across all evaluated metrics. The importance
of multiscale and attention mechanisms in enhancing feature
extraction and fusing features within DSMSR is highlighted by
these findings.

C. Impact of Scale Factors on the Performance of DSMSR

The performance of DSMSR was demonstrated for a scale
factor of 6. Its potential to other scale factors is further used to
investigate. The metrics of DSMSR for two scales are shown
in Table VI. It indicates that the smaller scale factor (i.e., 3)
generated better results than the larger scale factor (i.e., 6).
Specifically, the MSSIM and PSNR for the scale factor of 3 were
higher than those for the scale factor of 6, while the RMSEE,
MAEE, and MAEA for the scale factor of 3 were lower than those
for the scale factor of 6. The MSSIM reveals that the scale factor
of 6 is 11% lower than the scale factor of 3. The performance
of DSMSR across different scales is basically consistent with
many other SR models, as larger scale factors prove challenging
for restoring more accurate details [27], [32], [33], [46].

D. Performance Difference in Representative Areas

As observed from Tables II and III, all metrics of DSMSR
in the mountain zoom-in area are better than those in the urban
zoom-in area. The reason is mainly that the mountainous areas
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TABLE VII
COMPUTATIONAL COMPLEXITY OF DIFFERENT MODELS

have smoother terrain undulations, while urban areas have more
intricate surface details (e.g., buildings). Despite these differ-
ences, the improved accuracy metrics in urban areas achieved by
DSMSR are higher than those of mountainous areas. The reason
for the significant improvement may be that remote sensing
images can provide more detailed information for restoring
urban objects in DSM.

E. Computational Complexity

We conducted a comparative analysis of the computational
complexities of different SR models for DSM in Table VII.
DSMSR exhibits higher computational complexity compared
with the other four models, primarily attributed to the incor-
poration of a multiscale attention feature extraction module
tailored for remote sensing images. When comparing DSMSR
with ESRGAN, the parameters of DSMSR are only 0.74 Mb
more than ESRGAN, whereas there are significant accuracy
improvements with 0.49-m decrease in RMSEE and 1.16° de-
crease in MAES. Therefore, the slight uptick in computational
complexity for DSMSR remains relatively acceptable in light of
these performance improvements.

F. Limitations

While DSMSR demonstrates superior performance compared
with the existing four SR models in downscaling DSM, it relies
on high-quality remote sensing images to ensure the provision
of accurate spatial details. Typically, cloud cover and building
shadows are inevitable in remote sensing imagery and they may
have a negative impact on the DSMSR outcomes. Meanwhile,
the multiscale attention feature extraction module is designed to
extract features from HR remote sensing imagery, which results
in considerable computational complexity in DSMSR. Addi-
tionally, DSMSR mainly employs a convolutional architecture
based on GAN and it is possible to leverage more sophisticated
SR models (e.g., diffusion models) in the future.

V. CONCLUSION

This study proposes a novel DSMSR model based on GANs
to integrate HR remote sensing images. The DSMSR generator
effectively learns multiscale features from both LR DSM and HR
remote sensing imagery. The multiscale attention feature extrac-
tion module is designed and integrated to capture detailed spatial
information of ground objects from remote sensing imagery for
the combination with features from LR DSM. Furthermore, a
slope loss is introduced to restore crucial topographic features.

The experimental results on AW3D30 DSM datasets show that
DSMSR outperforms the traditional interpolation method (BL)
and four classic deep-learning-based models (SRCNN, SRGAN,
ESRGAN, and MA-GAN) in terms of image quality, elevation
accuracy, and terrain accuracy. When integrating HR remote
sensing imagery, DSMSR is excellent at reconstructing ground
objects, such as building contours and terrain lines across diverse
landscapes, surpassing the performance of reference models.
Additionally, the introduction of slope loss during training
greatly improves the model’s capacity to restore complex terrain
features. The proposed DSMSR demonstrates its superior per-
formance in DSMSR and its potential applications in geoscience
and remote sensing.
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