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A Novel Multiscale Contrastive Learning Network
for Fine-Grained Ocean Ship Classification

Shaokang Dong , Jiangfan Feng , and Dongxu Fang

Abstract—Fine-grained ocean ship classification plays a crucial
role in maritime military surveillance, traffic management, and
antismuggling operations. However, the complex backgrounds of
remote sensing images (RSIs), as well as significant interclass simi-
larities and intraclass differences, result in poor classification per-
formance. Hence, we propose MSCL-Net, a multiscale contrastive
learning network for fine-grained ship classification (FGSC). First,
we introduce ResNet50 as the backbone network and extract the
multilayer features by using the FPN for FGSC. Second, a chan-
nel spatial attention module (CSAM) is proposed to extract the
similarity (contrastive) feature of the same class, strengthening
the representation learning ability for addressing issues caused by
significant interclass similarity and intraclass difference. Third, a
region cropping and enlargement module is proposed to extract
the fine-grained features of local discriminant regions in RSIs
to overcome the challenge of background complexity. Finally, we
used the CSAM to fuse the features of the original image and
the cropped region image for FGSC. In addition, we introduce
a combined loss based on center loss and PolyLoss to enhance
the discrimination ability of features and make it more suitable
for the imbalance dataset compared with cross-entropy. We use
a public FGSC dataset, FGSC-23, and our FGSC-41 to evaluate
the performance of MSCL-Net. The experimental results show
superior performance compared to other state-of-the-art methods,
highlighting the effectiveness of MSCL-Net in addressing the chal-
lenges associated with FGSC. Ablation experiments also suggest
the effectiveness of our design.

Index Terms—Contrastive learning, fine-grained, multiscale
learning, PolyLoss, ship classification.

I. INTRODUCTION

ACCURATELY classifying ocean ships at a fine-grained
level is crucial for diverse applications, including port

supervision, resource allocation, target classification, and civil-
ian watercraft protection. In military contexts, precise ship iden-
tification is indispensable for devising intricate combat strate-
gies, enhancing sea target surveillance, and ensuring national
defense security. As a result, achieving accurate and efficient
ocean ship identification holds great promise and significance,
driving ongoing research efforts in this field.
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Fig. 1. (a) and (b) show the optical RSIs of two Kitty Hawk aircraft carriers,
and (c) and (d) show the optical RSIs of two Nimitz aircraft carriers.

Limited by the difficulty of data acquisition and the low qual-
ity of data [1], the study of ship classification initially focused on
the target level and coarse granularity. These methods primarily
classify the ship target and backgrounds [2] or distinguish a
few types of ships, such as fishing boats, cargo ships, and
warships [3]. With advances in optical remote sensing tech-
nology, images with enormous high resolution, interpretability,
and semantic richness can be obtained. These advancements
have revolutionized ocean ship classification and provided a
solid foundation for numerous research studies focused on fine-
grained ship classification (FGSC).

FGSC was developed from the fine-grained classification of
natural images [4], [5], [6]. However, the backgrounds and sizes
of ship targets in RSIs are complex and varied, and there is
significant interclass similarity as well as intraclass difference.
For instance, Fig. 1(a) and (b) displays optical RSIs of two
Kitty Hawk aircraft carriers, while Fig. 1(c) and (d) depicts
optical RSIs of two Nimitz aircraft carriers. Fig. 1(a) shows
that the background of the ship target is complex, and Fig. 1(c)
shows that the size of the ship target is different from that
of other images. In addition, we can discover that ships of
different classes have similar outlines, but significant differences
exist within the same class. Furthermore, due to the difficulty
of collecting optical RSIs of naval ships, labeled datasets are
usually lacking and imbalanced.

These issues make FGSC based on optical RSIs difficult,
which leads to plenty of methods have been proposed for FGSC.
Some methods focus on few-shot learning [7], [8], [9], [10],
generative adversarial network [11], [12], and semisupervised
learning [13], [14]. Although these methods address the lack of
labeled data, it is difficult to extract the similarity features of the
same class image and the fine-grained features of local discrim-
inant regions in the context of significant interclass similarity
and intraclass difference.

Therefore, some researchers focus on extracting the multi-
scale features for FGSC, which can improve the accuracy of
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the model with significant interclass similarity and intraclass
difference [15], [16], [17], [18], [19], [20], [21], [22]. With the
progress of contrastive learning, some methods were proposed
to make the features of the same class closer by loss func-
tion [1], [23]. However, multiscale-based methods either extract
multiscale features from the network, which can be influenced
by complex backgrounds, or extract local features of the most
attention regions of the feature map, which can be influenced by
noise. The method based on contrastive learning may fail when
ship images of the different classes are highly similar.

In addition, several object detection methods were proposed
for FGSC in the case of background complexity [24], [25], [26].
The method based on object detection can accurately locate the
position of the ship target and increase the classification accuracy
with complex backgrounds, but the label data of the bounding
box are lacking. In conclusion, the significant interclass simi-
larity, intraclass difference, and background complexity are still
the essential challenges of FGSC.

To address these challenges, we propose a multiscale con-
trastive learning network (MSCL-Net) for FGSC, including four
parts: multiscale feature learning, contrastive learning, feature
fusion, and combined loss. The multiscale feature consists of
the multilayer feature of ResNet50 and the fine-grained feature.
The FPN is used to extract the multilayer features of ResNet50.
Unlike the existing methods of fine-grained feature extraction,
we propose a region cropping and enlargement module (RCEM)
to extract the discriminant of local key regions. RCEM selects
the maximum connected area of the mask matrix to cut the
original images rather than the region with the highest response
of the feature map, which avoids the influence caused by noise.
In contrastive learning, we propose a channel spatial attention
module (CSAM) aimed at extracting the most similar features of
the same class, which can overcome the challenge of significant
interclass similarity and intraclass difference. In addition, we
use CSAM to fuse the features of the cut images with those
of the original images. The fusion features provide more in-
formation for predicting the ship class. Finally, we design a
combined loss consisting of center loss and PolyLoss. The center
loss encourages feature vectors from the same classes to be
closer and enhances feature distinguishability [27]. PolyLoss
is an improvement of cross-entropy and focal loss, which can
significantly improve the performance of classification methods
in the context of imbalanced datasets [28]. The main contribu-
tions of this study are as follows.

1) We pioneered a state-of-the-art MSCL-Net for FGSC,
which can extracts contrastive features of the same
class and multiscale features. This approach enhances
classification performance, especially in significant inter-
class similarity, intraclass difference, and complex back-
grounds.

2) We propose RCEM to crop the maximum connected area
of the mask matrix and as the input of ResNet50 to
extract the fine-grained feature for FGSC. In contrastive
learning, we propose CSAM to extract the most similar
channel features and use spatial similarity to enhance it,
which overcomes the challenge of the significant interclass
similarity and intraclass difference.

3) We created a new dataset, namely FGSC-41, to evaluate
the performance of the MSCL-Net. The effectiveness of
our method has been confirmed through detailed experi-
ments using two different datasets with superior accuracy
and efficiency over existing methods. Additional ablation
experiments further confirmed the efficacy of each part.

II. RELATED WORK

FGSC methods have undergone significant developments. In
this section, we first briefly review and discuss the fine-grained
ship classification methods based on optical RSIs. In addition,
the design of MSCL-Net refers to contrastive learning and
multiscale feature learning. Therefore, we also discuss the
progress of these two parts in computing vision.

A. FGSC in Optical Remote Sensing Images

With the success of remote sensing technology and deep learn-
ing, plenty of methods were proposed to classify the ship images
at the fine-grained level. Early, due to the limited label data,
some methods based on semisupervised, few-shot learning, and
GAN were used to improve the accuracy of ship classification.
Li et al. [7] introduced a novel rotation-invariant module to
extract the rotation-invariant features for reconstruction. This
method enhances the suitability for few-shot FGSC. Shi et al. [8]
proposed a metric-based few-shot method that can obtain the
novel class representation using the nearest neighbor prototype
to improve the accuracy of FGSC in the case of small training
samples. Oliveau et al. [13] proposed a semisupervised deep
attribute network to extract the discriminative image features for
FGSC when the labeled data are lacking. These methods based
on few-shot learning fully solve the lack of label data. However,
it may lead to poor generalization performance and overfitting
since the small sample data may not adequately represent the
diversity and complexity.

Hence, Luu et al. [29] employed three data augmenta-
tion steps, including random rotation and flipping, to obtain
additional remote sensing ship images for FGSC. Liu et al.
[12] proposed the local-aware CycleGAN to complete the im-
age translation of the background and foreground, which can
improve the reality of synthetic images. Moon et al. [11] used
generative adversarial networks to construct a dataset without
safety problems and proved that data augmentation is useful for
FGSC. Kim et al. [14] used simulation programs to generate
synthetic naval ship images for FGSC. Yi et al. [21] designed
an essential feature mining network (EFM-Net) based on deep
CNN to extract the most discriminative features. These methods
were more robust, generalizable representations of the data
distribution and reduced the risk of overfitting by generating
realistic synthetic samples or extracting key features. More-
over, benefiting from two large-scale FGSC datasets, called
FGSC-23 [20] and FGSCR-42 [30], further address the issue
of insufficient labeled data. These studies also further make the
method of FGSC more focused on other challenges, such as the
significant interclass similarity and intraclass difference, as well
as background complexity.
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To enhance representation learning of the network, some
methods based on contrastive learning were proposed for closing
the feature vectors of images of the same class. Chen et al. [23]
proposed a push-and-pull network that includes push and pull
two stages for FGSC. P 2Net makes the features stay away from
different classes and aggregate the features of the same class.
Pan et al. [1] developed a contrastive learning network (C2Net)
for FGSC, which applies counterfactual causal reasoning to
make decisions at the logical level and enhances attention to local
details. Zhang et al. [31] introduced a part assignment module
and proposed a similarity learning by ranking contrastive learn-
ing framework for FGSC. This framework aims to capture the
subtle differences between ship instances by ranking similarity.
By incorporating the part assignment module, the approach can
effectively handle the FGSC of RSIs.

Furthermore, to overcome the influence of complex back-
grounds, Huang et al. [18] combined CNN and Swin trans-
formers to extract multiscale features for FGSC. The method
leverages the advantages of the Swin module to capture long-
range dependencies across the entire image, enabling a better
understanding of the relationships between different regions
in the image. Huang et al. [15] proposed a method that fuses
low-layer local features and high-layer global features of CNN
for FGSC. Chen et al. [19] proposed a method to extract three-
scale ship features from three-scale images. The three-scale
image includes the original image, ship targets by Grad-CAM
obtained and affine transformation. Song et al. [22] intro-
duced an attention classification reduction network that utilized
local and global features for FGSC. Zhang et al. [20] proposed
an attribute-guided multilevel enhanced feature representation
network (AMEFRN) for FGSC. AMEFRN used the multilevel
feature and attribute feature to improve the ability to fine-grained
classify ships. Meng et al. [17] proposed a global-to-local pro-
gressive learning module (GLPM), which uses the global and
local features for FGSC. These methods can extract the multi-
scale feature from different layers and image regions. However,
the extraction method based on the region image usually cuts
the most attention region to extract the features, which leads
the network to lose some suboptimal information. It is essential
to extract the maximum connected region of the mask matrix,
which includes more information and is more robust to noise,
which is better for FGSC.

In addition, Han et al. [25] proposed a novel efficient infor-
mation reuse network, which can maximize using multiscale
information, suppress noise, and highlight targets. Liu et al. [26]
first applied the oriented RPN for FGSC. Ma et al. [32] proposed
a multiscale deep learning training model based on Fast-R-CNN
and used guided filtering to remove fog.

With the success of interpretability methods and large models
in the semantic segment, image classification, anomaly detec-
tion [33], [34], and object detection, such as Li et al. [33] pre-
sented a new interpretable network called LRR-Net for anomaly
detection, which leverages the alternating direction method of
multipliers optimizer to solve the LRR model efficiently and
incorporates the solution as prior knowledge into the deep
network to guide the optimization of parameters. Moreover,
LRR-Net transforms the regularized parameters into trainable

parameters of the deep neural network, thus alleviating the need
for manual parameter tuning. Some methods were proposed for
FGSC. Xiong et al. [35] focused on interpretability and proposed
an interpretable attention network for FGSC. Xiong et al. [36]
proposed a cognitive network, an inherently interpretable model
tailored for FGSC. Hong et al. [37] created a universal RS
foundation model named SpectralGPT for the first time. A
large number of RSIs are used to train the SpectralGPT, which
can enhance the generalizability of the network. In addition,
SpectralGPT is widely applied not only for FGSC but also for
semantic segmentation and object detection.

Our proposed method is based on contrastive learning and
multiscale feature learning, which aims to improve the existing
method and address the challenge of background complexity,
significant interclass similarity, and intraclass difference. In our
study, we propose two modules: CSAM and RCEM. CSAM is
used to enhance the similarity feature of the same class image
in contrastive learning and enhance the key region features of
original images in feature fusion. RCEM is used to extract fine-
grained features.

B. Multiscale Feature Learning

Multiscale feature extraction broadly contains two aspects:
the multilayer or multibranch features of the network and the
different region features of cut original images. For the multi-
layer feature extraction, which is mainly used for object detec-
tion, the typical network is the feature pyramid network (FPN),
which fuses the low-layer feature and higher layer feature to
improve the accuracy of object detection [38]. Li et al. [39] also
applied the multiscale network for building footprint extraction
of RSIs. For the multibranch network, Hong et al. [40] proposed
a high-resolution domain adaptation network, HighDAN, for
semantic segments, which is capable of capturing multiscaled
image representations from parallel high-to-low-resolution sub-
networks, yielding repetitive information exchange across dif-
ferent resolutions in a highly efficient manner. Wu et al. [41]
embed a tiny U-Net into a larger U-Net backbone, enabling
the multilevel and multiscale representation learning of objects,
which can enhance the global and local features to improve
the object detection performance. In addition, some methods
are also used for fine-grained visual classification (FGVC). In
particular, Qian et al. [42] proposed a multiscale covariance
pooling network that can capture and better fuse features at
different scales to generate more representative features for
FGVC. Liu et al. [43] proposed a scale-consistent attention part
network, which can be learned in an end-to-end way for FGVC.

The different region features of cut images are also used for
FGVC. Du et al. [4] utilized a random jigsaw patch generator to
obtain many cut images of multiscale, encouraging the network
to learn features at specific granularities and enhancing the
classification accuracy. Further, some network fusion multiscale
features of two aspects for FGVC. Zhang et al. [6] proposed a
multibranch and multiscale attention learning network (MMAL-
Net) for FGVC. Feng et al. [5] proposed a progressive region-
focused network for fine-grained human behavior recognition.
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Fig. 2. Overall framework of the MSCL-Net.

Although these methods extract rich features for FGVC, the
region feature extraction process usually randomly cuts original
images or cuts the most attention region of the feature map. The
method can obtain key features, ignore the suboptimal feature,
and can be influenced by noise. Unlike these existing methods,
we used the FPN to learn the multilayer feature of ResNet50
and proposed RCEM to extract fine-grained features. The design
extracts multiscale features from two aspects and cuts original
images by the maximum connection area of the mask matrix
to extract the fine-grained feature, ensuring that the MSCL-Net
can learn more rich and key features for FGSC.

C. Contrastive Learning

Contrastive learning can enhance the representation learning
of images of the same class by the triplet, max-margin, and
N-pairs loss. The method based on contrastive learning aims to
pull tighter the anchor and positive samples and push apart the
anchor from many negative samples in feature space through
contrastive training data [44], [45], [46]. In recent years, plenty
of methods have utilized contrastive learning loss to improve the
performance of FGVC methods.

Wei et al. [47] designed a noise-tolerant supervised con-
trastive learning loss that incorporates a weight-aware mech-
anism for noisy label correction and selectively updating mo-
mentum queue lists, which can reduce the influence of noise.
Bukchin et al. [48] used angular contrastive learning with coarse
labels for FGVC. Zhang et al. [49] proposed a progressive co-
attention network (PCA-Net), which can extract the similarity
features of the channel to improve the accuracy of classification.

Breiki et al. [50] used contrastive learning based on the SimCLR
model for FGVC.

These methods that use contrastive loss aim to enhance the
representation learning of global features in the feature space,
and the purpose is to learn the similarity or otherness of training
samples. These methods may not be suitable when the intraclass
sample is highly similar, which leads to classification errors.
Instead, PCA-Net extracting the similarity feature from the
feature map can avoid these issues. However, the method only
extracts the channel similarity feature for FGVC, ignoring the
spatial similarity. We propose a module focusing on the channel
and spatial similarity features, aiming to learn the most discrim-
inant features for FGSC.

III. METHODOLOGY

The fine-grained ocean ship classification task presents chal-
lenges, including significant interclass similarity and intraclass
difference, and background complexity. To address these chal-
lenges, we design an MSCL-Net, and Fig. 2 shows the over-
all framework of MSCL-Net. The backbone of MSCL-Net is
ResNet50 and mainly includes four parts: a) multiscale feature
learning, b) contrastive learning, c) feature fusion, and d) com-
bined loss.

The multiscale feature learning consists of FPN and RCEM.
FPN aims to extract multilayer features of ResNet50, which can
fuse the lower layer detailed features for FGSC. RCEM is used
to extract the features of the maximum connected region in the
mask matrix, that is, fine-grained features, which can overcome
the challenge of background complexity. In contrastive learning,
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we propose a CSAM to extract the similarity (contrastive) feature
of the same class, strengthening the representation learning
ability of the network. Unlike existing methods, CSAM obtains
the channel similarity features and uses spatial similarity to
enhance them, which can improve the performance of FGSC
with the challenge of significant interclass similarity and intra-
class difference.

Only utilizing the feature of the original images extracted
by ResNet50 to predict the ship class can reduce the accuracy
due to background complexity. Moreover, only utilizing the
fine-grained features may cause some information to be lost.
Hence, we use CSAM to fuse the features of the cut images with
those of the original images. The fusion features provide more
information for predicting the ship class.

In addition, in the case of datasets with significant interclass
similarity and imbalance, the performance would reduce when
using cross-entropy loss. Therefore, we introduce the combined
loss to optimize the weight of MSCL-Net. The combined loss
includes center loss and PolyLoss, which can ensure that the
samples of the same class gather more closely in the feature
space, which makes the feature representation more discrimi-
nating. At the same time, PolyLoss can improve the accuracy of
MSCL-Net in the context of imbalanced datasets.

A. Multiscale Features Extraction

The pioneering work by Karen Simonyan and others
underscores the profound influence of deep networks on
image classification tasks [51]. With the rapid advancements in
CNN and evolving requirements, various network architectures
have emerged, including ResNet50, ConvNext, AlexNet, and
DenseNet. ResNet50, renowned for its effectiveness in image
classification tasks, is widely used as a backbone network for
feature extraction. ResNet50 is also commonly employed for
FGSC to extract image features automatically. Hence, we utilize
ResNet50 as the backbone of MSCL-Net. ResNet50 usually uses
the last-layer feature that includes rich semantic information for
predicting the ship class, ignoring the detailed features of the
low layer. To solve this issue, the FPN is usually used to extract
the multilayer feature for classification. Likewise, we use it to
improve the classification performance. In addition, we propose
RCEM to crop and enlarge the original image and further as the
input of ResNet50 to extract the fine-grained features.

1) Feature Pyramid Network: The framework of FPN is
shown on the right of Fig. 2. The FPN consists of bottom-up and
top-down pathways. The part of the bottom-up path is ResNet50.
Specifically, we divided ResNet50 into five stages, namely,
{stage0, stage1, stage2, stage3, and stage4}. These stages pro-
duce outputs {C1, C2, C3, C4, C5} and the corresponding feature
map dimensions {(64, W/2, H/2),(256, W/4, H/4), (512, W/8,
H/8), (1024, W/32, H/32), (2048, W/64, H/64)}, where W and
H represent the input image size.

In the top-down pathways, a 1× 1 convolutional layer is
usually used to obtain P5, and the channel dimension of the
feature map is 256. Then, through the operation of upsample
and add, we can obtain P4, P3, and P2. Finally, the P2 fusion
the high-layer rich semantic information and the low-layer rich

detail, textural, and shape features. We utilize the P2 train the
MSCL-Net to improve the accuracy.

2) Fine-Grained Feature Extraction: Following the classifi-
cation way of person, the fine-grained feature of the key region
is useful for FGSC. In this section, we introduce a novel module
called the RCEM, which can locate the maximum attention area
of the mask matrix, further map the position of the feature map
to the original image and crop and enlarge the area to the size
of the original image. Finally, we can use the cut image as the
input of ResNet50 to extract the fine-grained features for FGSC.
Fig. 3 shows the process of RCEM.

The feature map F ∈ RN×H×W , where N represents the
channel, H and W denote the height and width, respectively.
Initially, for each pixel of F, we compute the mean value of all
channels by (1). The computed result is a matrix A with the
shape H × W

A =

N∑
i=1

(Fi) (1)

where Fi represents the feature of the ith channel. Then, (2) is
used to compute the mean value ā of all values in A

ā =

W−1∑
x=1

H−1∑
y=1

(A(x, y))

H ×W
. (2)

Furthermore, we use (3) to acquire the mask matrix M. If
A(x, y) > ā, we set the value to 1 in the corresponding position,
otherwise, the value is set to 0

M(x, y) =

{
0, if A(x, y) > ā
1, otherwise.

(3)

The existing methods usually used the areas with the maximum
value of A as the crop region, which can lead to classification
errors when the RSIs include isolated noise. We applied the
maximum connected graph of M as the crop area, which is
conducive to obtaining the key region for FGSC and can avoid
the influence of isolated noise. We defined that the coordinates of
the minimum circumscribed matrix of the maximum connected
graph are (x1, y1), (x2, y2), (x3, y3), and (x4, y4). The new
coordinates in the original image can be computed by

xn = W ′ × xi/W

yn = H ′ × yi/H (4)

whereW ′ andH ′ are the width and height of the original images,
respectively. xi and yi represent the coordinate values on M. xn

and yn denote the coordinate values on the original image.
Finally, we use the four new coordinates to crop the original

image and enlarge the size of the original image. The new image
is used as the input of ResNet50 to extract the fine-grained
features of RSI, which can optimize the results of MSCL-Net.

B. Contrastive Learning

In our study, contrastive learning mainly extracts the channel
similarity features of RSIs of the same class and uses spatial
similarity to enhance them for FGSC, which can be conducive to
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Fig. 3. Steps of the RCEM.

the MSCL-Net to learn the most similarity features and address
the challenges of significant interclass similarity and intraclass
difference. Presently, Zhang et al. [49] proposed a co-attention
module (CA-Module) to extract the interaction features among
channels within two images belonging to the same class. How-
ever, the CA-Module extracts only the similarity feature with
the channel, ignoring the spatial similarity. Hence, we propose
a CSAM based on cosine similarity, which can extract the most
similar (contrastive) feature to enhance the feature of the original
image. The details are introduced as follows.

Define Fo denotes the feature map of original images, Fc

denotes the feature map of contrastive images, and the shape of
Fo and Fc is (B,N,W,H). First, to compute the similarity of
the channel, we reshape the Fo and Fc to (B, N, H*W). Then,
we compute the corresponding channel similarity by

CA =

N∑
i=1

(Foi × Fci)√
N∑
i=1

(Foi)2 ×
√

N∑
i=1

(Fci)2

(5)

where N represents the number of channels, Foi and Fci denote
the ith channel vector.

Likewise, for spatial similarity, we compute each pixel simi-
larly in the feature map by

SA =

H∑
m=1

W∑
n=1

(Fomn × Fcmn)√
H∑

m=1

W∑
n=1

(Fomn)2 ×
√

H∑
m=1

W∑
n=1

(Fcmn)2

. (6)

Finally, we utilize the CA and SA to extract the most similar
channel and spatial features. Meanwhile, the suboptimal infor-
mation is useful for FGSC. Hence, we use the channel similarity
feature map FCA to enhance the feature of the direct use channel
and spatial attention obtained, which can be computed by

FCA = CA©× Fo

FCSAM = SA©× FCA +©FCA (7)

where +© represents an addition and ©× represents a matrix
multiplication.

C. Feature Fusion and Inference Process

In general, the fine-grained feature or the feature of the
original image is used to predict the ship class in RSI. However,
considering that the mask matrix M can consist of multiple
attention areas, the fine-grained features of crop images can
lose some vital region features. In addition, the direct use of
the features of the original image can decrease the classification
accuracy. Therefore, we use the CSAM to fuse the fine-grained
feature with the original feature, which can retain the global
information and enhance the local region feature.

In addition, this section introduces the training and testing
processes of MSCL-Net. As illustrated in Fig. 2, MSCL-Net
comprises five branches, all of which share weight parameters.
The five branches utilize different features to train MSCL-Net,
including the features extracted from the original image using
ResNet50 and FPN, the contrastive features, the fine-grained
features, and the fusion features. During training, these branches
work collectively to update the parameters of the network. In
the testing process, we use only the fusion feature to predict the
ship class. This design allows the MSCL-Net to use multitype
features during the training and test process, which improves
performance and generalizability.

D. Combined Loss

Fig. 4 shows the distribution of annotated instances per class
for FGSC-23 and FGSC-41. Figs. 1 and 4 show the RSIs are
usually significant interclass similarity and intraclass difference,
and the dataset is imbalanced. With significant advancements
in deep learning applied in natural image classification, various
loss functions have been proposed to enhance the performance of
classification methods. For the challenge of significant interclass
similarity and intraclass difference, the center loss is used for
FGVC [49]. Likewise, focal loss [52] or PolyLoss [28] are used
to address the issues caused by data imbalance.
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Fig. 4. Distribution of annotated instances per class for FGSC-23 and FGSC-41.

The primary purpose of the center loss is to minimize the
distance between each sample and its class center, thereby
enhancing the discriminative power of the classification net-
work. The center loss can be computed by

LCL =
1

2

m∑
i=1

‖xi − cyi
‖22 (8)

where xi and cyi
represent the samples in the feature space and

the category centers associated with class yi. xi − cyi
denotes

the euclidean distance from sample xi to its corresponding class
center cyi

.
PolyLoss aimed to address the limitations of cross-entropy

loss for imbalanced datasets. This enables the network to apply
a stronger penalty to hard samples, further improving its clas-
sification performance for imbalanced datasets. The calculation
equation is as follows:

LPL = α1(1− Pt) + α2(1− Pt)
2 · · ·+ αN (1− Pt)

N

=
∞∑
j=1

(αj(1− Pt)
j). (9)

Improving the loss to address the challenge reduces the complex-
ity of network and computational resources. Hence, we propose
replacing the common cross-entropy loss with a combined loss
to improve the accuracy of MSCL-Net. This combined loss
includes center loss and PolyLoss, as expressed in

L =
1

m

m∑
i=1

LPL(Fi) + LCL (10)

where LCL and LPL denote the center loss and PolyLoss, respec-
tively. Fi represents different types of features extracted from
MSCL-Net.

IV. EXPERIMENTAL RESULTS

A. Dataset

The fine-grained ocean ship classification datasets based on
optical RSIs primarily include FGSCR-42 [30] and FGSC-
23 [20]. Currently, many researchers employ these two datasets

Fig. 5. (a) is from the training set of the Nimitz-class aircraft carrier category,
(b) is from the testing set of the same category, (c) is from the Lzumo-class
helicopter destroyer category, and (d) is from the Osumi-class landing ship
category.

to evaluate their methods. Nevertheless, the test set and training
set of FGSCR-42 contain numerous repeated images, and even
some images from different classes are repeated, as shown in
Fig. 5. Consequently, we used FGSC-23 to verify our proposed
method. Meanwhile, to avoid the result occasionally, we created
a new dataset named FGSC-41 to further evaluate MSCL-Net.
The images of FGSC-41 were collected from publicly available
optical remote sensing datasets, Google Earth resources, and
ship RSIs from the internet. It encompasses 41 distinct classes
of ships, including military and commercial ships. The details
of FGSC-23 and FGSC-41 are as follows.

1) FGSC-23: This dataset consists of high-resolution RSIs and
is usually used for FGSC. These images are primarily sourced
from Google Earth and Gaofen-1 (GF-1), which offers diverse
image scenes, intricate ship classification, and comprehensive
labeling. It comprises a total of 4080 images distributed across
23 different ship classes. In addition, FGSC-23 is partitioned
to the training set with 3256 samples and the test set with 824
samples.

2) FGSC-41: This is a self-built dataset constructed by crop-
ping, resizing, eliminating duplicates, and labeling the im-
ages sourced from DOTA [53], HRSC2016 [3], ShipRSIma-
geNet [54], FGSCR-42, and NWPUVHR-10 [55]. FGSC-41
includes 25 types of military ships (aircraft carriers, cruisers,
transport ships, etc.) and 16 types of civilian ships (cargo ships,
barge ships, oil tanker ships, fishing boats, yachts, motorboats,
etc.). The detailed information about FGSC-41 is presented in
Table I, which includes class details and the number of samples.
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TABLE I
DETAILED INFORMATION OF FGSC-41

FGSC-41 consists of a total of 9057 ship images. We partitioned
the dataset into training and testing sets at a 6:4 ratio, resulting in
5419 samples as the training set and 3638 samples as the testing
set.

B. Evaluation Metrics

Considering the sample imbalance in the FGSC datasets,
the overall accuracy (OA), average accuracy (AA), weighted
mean precision (MP), and P-R curve were selected as the main
metrics for evaluating the performance of the model. OA mainly

evaluates the model from the overall perspective. In short, it is the
proportion of correctly predicted samples from the total samples
and can be computed by

OA =
TP + TN

TP + TN + FP + FN
(11)

where true positive (TP) denotes the correct classification of
positive samples, true negative (TN) denotes the correct classi-
fication of negative samples, false positive (FP) represents the
error classification of positive samples, and false negative (FN)
indicates the error classification of negative samples.
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TABLE II
COMPARISON RESULTS OF DIFFERENT METHODS ON FGSC-23, INCLUDING OVERALL ACCURACY (OA%), MEAN PRECISION (MP%), AVERAGE ACCURACY

(AA%), AND THE ACCURACY OF EACH CLASS

AA denotes the average accuracy of each class, which can be
used to evaluate the performance of each class. The AA metric
is defined as

AA =
1

n

n∑
i=1

TPi + TNi

TPi + TNi + FPI + FNi
(12)

where n represents the number of classes. TPi denotes ith class
correct classification of positive samples.

Precision is usually used as the evaluation metric for im-
balanced datasets and is defined in (13). In our study, the
dataset is also imbalanced and includes multiple classes. We use
the weighted MP to evaluate the performance and compute it
by (14)

Precision =
TP

TP + FP
(13)

MP =

n∑
i=1

(Pi ×Wi) (14)

where Pi and Wi represent the precision and weight of the ith
classes, respectively. The P-R curve represents the relationship
between recall and precision and can show the classification
performance more intuitively and clearly.

In addition, floating point operations (FLOPs) and model
parameters (Params) are adopted to illustrate the computational
complexity of the network in the inference phase.

C. Implementation Details

All the experiments were implemented on an NVIDIA
GeForce RTX 2080ti using PyTorch 1.9.1. We did not use
auxiliary information in the experiment, and the class label
of the image is the only label used for training. During the
preprocessing, the images in datasets are resized to 224×224.
Moreover, the random gradient descent optimizer (SGD) is used.
The initial learning rate was set at 0.01 and gradually decreased
with increasing epochs.

D. Comparison With State-of-the-art Methods

With the advance of fine-grained classification, plenty of state-
of-the-art methods have been proposed for FGSC or FGVC, such
as PRF-Net [5], MMAL-Net [6], EFM-Net [21], P 2Net [23],
and GLPM [17]. We evaluate the performance of MSCL-Net by
comparing with these methods on FGSC-23 and FGSC-41. The
detailed comparison results are as follows.
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TABLE III
COMPARISON RESULTS OF DIFFERENT METHODS ON FGSC-41, INCLUDING OVERALL ACCURACY (OA%), MEAN PRECISION (MP%), AVERAGE ACCURACY

(AA%), AND THE ACCURACY OF EACH CLASS

1) Results of OA, MP, AA, FLOPs and Params: Table II
shows the comparison results of different methods on FGSC-23,
including OA, MP, AA, and the accuracy of each class. The
OA, MP, and AA of MSCL-Net are 91.50, 91.63, and 91.40,
respectively, which are the highest compared with those of other
state-of-the-art methods. Specifically, OA is 3.88 higher, MP is
3.69 higher, and AA is 2.97 higher. By analyzing the accuracy
of each class, the accuracy of most classes is higher than that
of other state-of-the-art methods. Notably, the accuracy of each

class is very balanced, unlike other methods, which have very
low accuracy for some particular classes. This phenomenon
proves that the generalization ability and stability of MSCL-Net
for different classes of images are better.

Table III shows the comparison results of different meth-
ods on FGSC-41. FGSC-41 is a dataset that consists of more
classes than FGSC-23, which can be used to evaluate better the
performance of MSCL-Net. The OA, MP, and AA of MSCL-Net
are 85.18, 85.21, and 84.00 on FGSC-41. OA is 2.58 higher
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TABLE IV
COMPARISON OF MODEL PARAMETERS AND FLOPS

than the state-of-art methods, MP is 2.77 higher, and AA is
2.26 higher. In addition, the accuracy of each class on FGSC-41
is also better balanced, which is consistent with the results on
FGSC-23. These results mean the performance of MSCL-Net is
also the best for the more complex datasets.

From Tables II and III, we can discover that the perfor-
mance of EFM-Net surpasses that of other comparative methods,
indicating the importance of essential features for FGSC. In
addition, the results of MMAL-Net, GLPM-Net, and PRF-Net
are almost consistent on FGSC-23, while PRF-Net outperforms
MMAL-Net and GLPM-Net on FGSC-41. These methods all
utilize local and global features for FGSC, and PRF-Net incor-
porates additional attention mechanisms and region cropping
networks. This represents that attention mechanisms and region-
focused features are useful for FGSC, particularly in the case
with significant interclass similarity and intraclass differences.

Table IV shows the compare result of model parameters
and FLOPs. The floating point operations and parameters of
MSCL-Net are 13.55 G and 24.67 M. The FLOPs are the lowest
compared to those of the other methods, which means that the
computational complexity of MSCL-Net is lower. The number
of parameters of MMAL-Net is the lowest, which is 1.08 M
lower than that of MSCL-Net. The reason can be that MSCL-Net
adds the FPN for FGSC compared with MMAL-Net. However,
although the design of MSCL-Net has increased parameters, it
has also improved accuracy steeply. The MSCL-Net balances the
computational efficiency and parameters compared with other
methods, ensuring that the computational complexity can be kept
low even when the parameters are slightly higher.

We further explore Table III and observe the accuracy of class
2, class 7, class 26, and class 33 are close to 50. By analyzing
the original images of FGSC-41, we discovered that the images
of these classes are fuzzy and should be seriously influenced by
various degradation, noise effects, or variabilities. Our method
can locate the similarity feature of the same image and the
fine-grained feature in RSI, which can address the challenge
of complex backgrounds. However, spectral variability and
environmental variability can lead to the same class of ship ex-
hibiting different visual features, which increases the difficulty
of FGSC. At present, some methods are proposed to address
the challenge caused by spectral variability. Specifically, Hong
et al. [56] proposed an augmented linear mixing model (ALMM)
to address spectral variability for hyperspectral unmixing. The
ALMM utilizes not only the principal scaling factor but also

introduces the spectral variability dictionary to expand the scal-
ability of the endmember dictionary. The results of ALMM
are better than those of methods that do not consider spectral
variability. These impact factors imply designing the methods
based on the process of the noise data or considering spectral
variability may be efficient in future work.

2) Visual Analysis: To more clearly analyze the results,
we further provided some visual analysis. Fig. 6 shows
the precision-recall (P-R) curve of MSCL-Net on FGSC-23
and FGSC-41, which provides a clear visual representation.
Generally, the P-R curve approaching the top-right corner
demonstrates that the model achieves high precision while main-
taining a high recall rate. Likewise, in Fig. 6, the curve of
MSCL-Net approaches the top-right corner, which also indicates
that the performance of MSCL-Net is best.

We also observe that the performance of MMAL-Net is
lower than PRF-Net on FGSC-41, while it is higher on FGSC-
23. In addition, PRF-Net incorporates features from multiple
stages of ResNet50 and attention mechanisms for fine-grained
classification, unlike MMAL-Net. In FGSC-41, the size of ship
targets in RSIs varies, further indicating that multilayer features
of ResNet50 are useful for FGSC.

E. Parameter Sensitivity Analysis

In the section on implementation details, we introduce two
important parameters when training the network: the learning
rate and batch size. The learning rate controls the step size during
optimization. A learning rate that is too small may unnecessarily
lengthen the training process and lead to a suboptimal solution.
A value that is too large can cause instability in the learning
process. To evaluate the learning rate sensitivity, we trained
MSCL-Net with learning rates of 0.0001, 0.0005, 0.001, 0.005,
0.01, 0.05, and 0.1. The batch size defines the number of train-
ing samples considered for each calculation of weight update.
Setting this hyperparameter too high can result in high memory
requirements. A value that is too low can cause the model to
bounce back and forth without converging. We evaluated the
performance of MSCL-Net with batch sizes of 8,16, 32, and 64.

Table VI shows the results with different learning rates and
batch sizes on FGSC-23. The higher results center on the learn-
ing rates of 0.01–0.001 and batch sizes of 8 and 16, consistent
with the well-known learning rate and batch size setting. These
results show it is not essential to set a particular learning rate
and batch size for MSCL-Net during training, which means our
network is minimally impacted by the parameters that we set.

V. DISCUSSION

MSCL-Net mainly includes four parts: multiscale feature
learning, contrastive learning, feature fusion, and combined
loss. The multiscale feature learning can be further divided into
multilayer feature extract of network and fine-grained feature
extract. Likewise, the combined loss includes two aspects of
improvement. Specifically, the PolyLoss is used to replace the
cross-entropy, and the center loss increases the distance between
different class features in the feature space. To evaluate the
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Fig. 6. P-R curves of MSCL-Net on FGSC-23 and FGSC-41.

Fig. 7. Feature distribution of the predicted features on FGSC-23.
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Fig. 8. Feature distribution of the predicted features on FGSC-41.

contributions of each part of MSCL-Net, we conducted a series
of ablation studies.

We investigate the ablation studies of different parts in two
ways. First, we explore the influence of each part by remov-
ing one part. Second, to analyze the relationships among the
different parts, we designed the ablation studies by randomly
removing two main parts. Specifically, we focus on studying the
relationships among multilayer feature extraction, fine-grained
feature extraction, and contrastive learning, that is, exploring
whether the fusion of these parts contributes to improving the
accuracy of FGSC.

Table V shows the ablation results on FGSC-23 and FGSC-41.
The result of randomly removing one or two parts is lower than
that of MSCL-Net, which implies that these parts contribute to
improving the performance of the network. Furthermore, the
OA, MP, and AA are 87.14, 87.77, and 88.22 when removing
the part of the fine-grained feature extraction on FGSC-23.
Likewise, the OA, MP, and AA are 79.80, 79.67, and 77.25
on FGSC-41. The results of removing the fine-grained feature

extraction are the lowest, representing the part with the greatest
contribution to FGSC. In addition, we can discover the accuracy
of removing center loss is closest to MSCL-Net, which repre-
sents the parts that can be difficult to distinguish the features
in the feature space due to the challenge of significant inter-
class similarity and intraclass difference. The AA of replacing
PolyLoss with cross-entropy on FGSC-23 is closer to the accu-
racy of MSCL-Net than the result on FGSC-41. The reason is
that the dataset of FGSC-41 is more imbalanced than FGSC-23,
which means that PolyLoss is efficient in improving the accuracy
of the network with the imbalanced dataset.

The results of removing two parts of contrastive learn-
ing and fine-grained feature extraction are 86.77, 87.11, and
86.36 on FGSC-23. The OA, MP, and AA are 4.73, 4.52, and
5.04 lower than the results of MSCL-Net on FGSC-23. The
results of remove contrastive learning are 1.09, 0.83, and 0.69
lower than the results of MSCL-Net. The results of removing
fine-grained feature extract are 4.36, 3.86, and 3.18 lower than
the results of MSCL-Net. Generally, the results of removing
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Fig. 9. Heatmap of the features of three images with the same class. Figures (a), (d), and (g) are the heatmap using the predicted feature of MSCL-Net. Figures
(b), (e), and (h) are the heatmap using the predicted feature of removing the contrastive learning part. Figures (c), (f), and (i) are the heatmap using the predicted
feature of removing the fusion feature part.

these two parts should be 5.45, 4.69, and 3.87 lower than the
results of MSCL-Net. However, OA and MP are higher, and
AA is lower, representing that combining contrastive learn-
ing and fine-grained feature extraction can improve the total
classification accuracy and balance the network performance.
Similarly, removing contrastive learning and multilayer feature

extraction results are 1.69, 1.75, and 1.26 lower than the result
of MSCL-Net on FGSC-23. The results of MP and AA are
higher, and OA is lower than the mean of independent removal
of the two parts, which represents these two parts as being
more focused on the classification of each class. The results
for removing the multilayer feature and fine-grained feature
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TABLE V
RESULTS OF THE ABLATION EXPERIMENT ON FGSC-23 AND FGSC-41

TABLE VI
RESULTS WITH DIFFERENT LEARNING RATES AND BATCH SIZES ON FGSC-23

extraction are higher than the mean for independently removing
the two parts, demonstrating that multiscale feature learning
contributes to improving the performance of the network for
FGSC.

Likewise, the results on FGSC-41 of removing the contrastive
learning and fine-grained feature extraction, as well as removing
the two parts of multiscale, are consistent with the results on
FGSC-23. However, different from the results on FGSC-23, the
removed contrastive learning and multilayer feature extract re-
sults are 0.57, 0.29, and 2.43 lower than the result of MSCL-Net
on FGSC-41. The results of OA, MP, and AA are higher than the
mean of independent removing the two parts. The reason can be
the ship target size on FGSC-41 is various, and numerous images
of ship targets exist with small sizes.

T-distributed stochastic neighbor embedding (t-SNE) is often
used for 2-D visualization of high-dimensional features. To
further explore the contributions of each part, we use the t-SNE
to visualize the feature distribution of the predicted features. The
vision image is shown in Figs. 7 and 8. The result images show
the distribution of removing the fine-grained feature extraction
is the most chaotic, which represents the part of the fine-grained
feature extraction that is more important for FGSC. In addition,
for the MSCL-Net, we can see that classes are much farther away
from each other, while images of the same class are much closer.

In addition, the most important parts of MCSL-Net are con-
trastive learning and feature fusion. These two parts ensure that
the network can locate the most similar area of the same class
and avoid the influence of complex backgrounds. To explore

the mechanism, we use the predicted feature of MSCL-Net, the
predicted feature of removing the contrastive learning part, and
the predicted feature of removing the fusion feature part to draw
a heatmap. The results are shown in Fig. 9. Fig. 9(a), (d), and
(g) is the heatmap using the predicted feature of MSCL-Net.
Fig. 9(b), (e), and (h) is the heatmap using the predicted feature
of removing the contrastive learning part. Fig. 9(c), (f), and
(i) is the heatmap using the predicted feature of removing the
fusion feature part. By observing the left of Fig. 9, we can easily
discover that the attention area of MSCL-Net extracted is the
same for two images of the same class, and the attention area is
the ship rather than the background.

The center part of Fig. 9 displays the area attention is different.
The result implies that contrastive learning can make the network
notice the similarity area of the same class image. The right
part of Fig. 9 shows the result of the predicted feature after
removing the feature fusion. We can see that the attention area
of the predicted feature focuses on the background area, which
means that the part of fine-grained feature extraction and feature
fusion contributes to addressing the challenge of the complex
background in RSI. These results prove it is correct for our
motivation.

VI. CONCLUSION

Two challenges still exist in FGSC: significant interclass
similarity and intraclass difference and background complexity.
To challenge these challenges, we proposed a novel MSCL-Net.
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In contrastive learning, the CSAM is proposed to extract the
channel similarity feature and use spatial similarity to enhance
the channel similarity feature. In multiscale feature learning, we
use FPN to extract the multilayer features of ResNet50, which
include rich semantic and detailed information. Meanwhile, we
propose an RCEM to cut the original images, which aims to crop
and enlarge the maximum attention area of the mask matrix
and as the input of ResNet50. In feature fusion, we utilize
the CSAM to fuse the fine-grained feature and the feature of
the original image, which can extract the most similar channel
feature and enhance the spatial similarity feature. Moreover,
we propose a combined loss, including PolyLoss and center
loss, to improve the performance of MSCL-Net. We evaluate
MSCL-Net on FGSC-23 and FGSC-41 and design a series of
ablation experiments to verify the efficiency of each part. The
results show that MSCL-Net is superior to other state-of-the-art
methods.

In addition, spectral variability and environmental variability
can lead to the same class of ship exhibiting different visual
features, which increases the difficulty of FGSC. In future work,
we will design the FGSC network based on the process of the
noise data or consider spectral variability to address the influence
caused by spectral variability and environmental variability.
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