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Scanning Error Compensation in Ground-Based
ArcSAR Monitoring

Yunkai Deng , Hanpu Zhou , Weiming Tian , Xin Xie , Wenyu Li , and Cheng Hu

Abstract—Ground-based arc-scanning synthetic aperture radar
(GB-ArcSAR) can perform 360° scanning and has a large field
of view. Based on the differential interferometry technique, GB-
ArcSAR can be utilized to measure the surface deformation.
However, affected by the rotating motion, rescanning angle error
and rotation center offset during repeated scanning could occur.
Through theoretical analysis, this article proves that the rescanning
angle error has nearly no effect on the interferometric phase and
can be negligible. The phase error caused by the rotation center
offset can be built as a linear multiparameter model based on the
multivariate Taylor expansion. Simulations are made to analyze
the effect of the rotation center offset. A compensation method
based on permanent scatterer technology is proposed, by using the
least squares method, which jointly compensates the rotation center
offset error and the atmospheric phase disturbance error. The
compensation performance of the proposed method is validated
in different scenarios, which can effectively improve the accuracy
of deformation measurement.

Index Terms—Ground-based arc-scanning synthetic aperture
radar (Gb-ArcSAR), multiparameter model, permanent scatterer
(PS), rotation center offset error.

I. INTRODUCTION

D EFORMATION monitoring is an important basis for
predicting and warning landslide disasters, frozen soil

pavement, construction, and other fields [1]. Synthetic aperture
radar (SAR) has a wide range of applications in deformation
monitoring, with the advantages of being all-time, all-weather,
and large-scale [2], [3], which is typically based on differential
interferometric technology [4]. Spaceborne SAR has a large cov-
erage range, but its measurement period is limited by the revisit
period, and the observation perspective is not flexible enough
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[5]. Ground-based SAR (GB-SAR) works on a ground platform
and can adjust its placement according to the observation scene.
It has a short monitoring period and performs near real-time
deformation monitoring [6], [7]. The deformation measurement
accuracy of GB-SAR can reach millimeter to submillimeter
level [8].

GB-SAR can be divided into three types: line-scanning
GB-SAR, ground-based arc-scanning SAR (GB-ArcSAR),
and ground-based multiple-input multiple-output (GB-MIMO)
radar, according to different synthetic aperture modes [1]. The
transmitting and receiving antennas of line-scanning GB-SAR
move along the slide track to form a large synthetic aperture
[9], and the GB-MIMO radar uses multiple transmitting and
receiving antennas to form a special array [10]. Both of them
can only observe at a certain angle range covered by the antenna
beam. GB-ArcSAR can obtain a 360˚ view through rotation
and has a much larger monitoring coverage than the other two
types [11].

However, in practice, it is difficult to avoid the rotation errors
of a GB-ArcSAR system by other means. Typical rotation errors
include the angle deviation when rescanning and a slight offset
of the rotation center. Both cases would cause error phase com-
ponents in the differential interferometry measurement. In the
long-term monitoring, if the error phase components cannot be
compensated with high accuracy, the deformation measurement
accuracy will be affected. The rescanning angle error and the
rotation center offset error are both very small when adopting
a high-precision turntable, but they cannot be ignored in order
to ensure the deformation measurement accuracy on the sub-
millimeter level. However, it is difficult to measure the rotation
errors directly by other means in practice.

In GB-ArcSAR measurement, errors caused by the rotation
arm are commonly omitted. The main error source is the at-
mospheric phase disturbance, and it can be compensated by
building a multiparameter model using the unwrapping phase
of permanent scatterer (PS) [12]. As for the rescanning error,
there are some related research works on linear scanning GB-
SAR. The first type considers the mechanical reset error of
the sliding track. When the radar cannot accurately move from
the starting to the end of the sliding track every time during
repeating measurements, small reset errors due to the imperfect
repeatability of synthetic aperture scans on the submillimeter
or millimeter scale can occur and it can be compensated by
building a simplified model related with the azimuth angle [13].
The second type considers the repositioning error in GB-SAR
discontinuous monitoring, since the radar system needs to be
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Fig. 1. Schematic diagram of differential interferometry.

installed and disassembled repeatedly [14], [15]. For continuous
measurement of GB-ArcSAR, there is also a rotational center
offset error. When the radar rotates in the azimuth direction
to form an arc-shaped synthetic aperture, it may be affected
by external interference and other factors, resulting in a slight
deviation of the rotation circle. At the present stage, no relevant
research works on how to model and compensate for the rotation
errors of GB-ArcSAR have been reported.

This article analyses the effect of the rescanning angle error
and the rotation center offset error on the interferometric phase.
Theoretical analysis proves that the rescanning angle error can
be negligible. Then, this article analyzes the rotation center
offset error based on the GB-ArcSAR imaging geometry, and
obtains the functional relationship between the error model and
the three-dimensional (3-D) coordinates of the targets based on
the multivariate Taylor expansion. This article proposes a differ-
ential interferometric measurement error compensation method
based on the PS technology. By using the least squares method,
this article estimates the error phase and jointly compensates for
the rotation center offset error and the atmospheric disturbance
phase. Coner reflector experiments and real-scene monitoring
experiments were conducted on the GB-ArcSAR system. The
effectiveness of the proposed method was verified by comparing
and analyzing the results of only atmospheric phase compensa-
tion and joint compensation.

II. ROTATION ERROR IN GB-ARCSAR

GB-ArcSAR utilizes the differential interferometry technique
to measure the surface deformations [16]. The basic principle
is shown in Fig. 1. If the position of a target changes during
two acquisitions, under ideal conditions, its phase change can
be expressed as

Δϕ = ϕ1 − ϕ2 = 4π
R1 −R2

λ
=

4π

λ
ΔR (1)

where R1 is the initial distance between the target and the radar,
R2 is its changed distance, λ is the radar wavelength, and Δϕ is
the deformation phase without considering the phase wrapping.
The deformation ΔR can be estimated based on (1).

GB-ArcSAR acquires a large synthetic aperture by rotating
the antennas in the horizontal plane. In the long-term repeated
mechanical scanning, two types of rotation errors, including the
rescanning angle error and the rotation center offset error, are
inevitable. The rescanning angle error is the angular reset error
when the antennas rotate from or return to the starting position,
resulting in an overall angle deviation in the azimuth direction

Fig. 2. Rescanning error diagram.

during repeated measurements. The rotation center offset error is
caused by the instability of the rotation platform itself, resulting
in a phase error due to the range variation between the target and
the radar system.

A. Rescanning Angle Error

Fig. 2 shows a schematic diagram of the rescanning angle
error in the range-azimuth plane. O is the rotation center and
its coordinate is (00,0). P is a target with the coordinate of (0,
R, h). Its coherent integral arc is Q1refQ2ref. Qref is the middle
point of the arc, and its coordinate is (0, r,0). Considering the
phenomenon of azimuth translation invariance in GB-ArcSAR
imaging, the azimuth coordinates of the target P and the arc
center Qref are both set to be zero. Their distance |PQref|can be
expressed as

|PQref| =
√

(R− r)2 + h2. (2)

When there is a rescanning angle error ε, assume that the

coherent integral arc of P changes to
�

Q1Q2, and Q is the middle
point of the arc. The distance |PQ| between P and Q is

|PQ| =
√

r2 +R2 + h2 − 2rR cos ε. (3)

The phase component caused by the rescanning angle error
can be expressed as

ϕre =
4π

λ
(|PQref| − |PQ|)

=
4π

λ

(√
(R− r)2 + h2 −

√
r2 +R2 + h2 − 2rR cos ε

)

=
4π

λ

[
− Rrε2√

r2 +R2 + h2 − 2rR cos ε
+O(ε3)

]
. (4)

To quantitively analyze the value of ϕre, a numerical simula-
tion is made, using rotation radius r = 1.177 m and wavelength
λ= 0.0185 m. Fig. 3(a) shows the change ofϕrewith rescanning
angle error and range when the height is 10 m. Fig. 3(b) shows
the change of ϕrewith reset angle error and height when the
range is 300 m. The error phase value of both is just on the order
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Fig. 3. Phase component cause by the rescanning angle error. (a) Variation of
error phase with range and reset error. (b) Variation of error phase with height
and reset error.

Fig. 4. Geometry diagram of the rotation center offset.

of 10-3 rad. Therefore, for a rotating platform with an angle
repetition accuracy better than 0.1°, the rescanning angle error
can be negligible.

B. Rotation Center Offset Error

Fig. 4 shows the geometric relationship before and after the
rotation center offset, where x is the azimuth axis, y is the range
axis, and z is the height axis [17]. P denotes the target, and
its coordinate is (xp, yp, zp). O is the rotation center, and its
coordinate is (00,0). C is the position of the antenna, which is
located at the end of the rotation arm. r is the rotation radius.

The azimuth angle of P is θ = tan−1(xp/yp). Then the range
R between P and C can be expressed as

R =
√

(xp − r cos θ)2 + (yp − r sin θ)2 + z2p. (5)

O’ is the rotation center after offset, and its coordinate is
assumed to be (εx, εy, εz). The azimuth angle θ′ of the target
P is

θ′ = tan−1 ((xp − εx) / (yp − εy)) . (6)

Since the offsets εxandεy are both small and their values are
typically on the submillimeter or millimeter level, which are
much smaller than the ground range, θ′ can be approximated as
θ.

The range R′ between P and C ′after the rotation center offset
can be expressed as

R′ (εx, εy, εz) =√
(xp − r cos θ − εx)

2 + (yp − r sin θ − εy)
2 + (zp − εz)

2.

(7)

Performing a multivariate Taylor series expansion on
R′(εx, εy, εz) at (00,0), we can obtain

R′ (εx, εy, εz) ≈ R′ ∣∣
(0,0,0)

+

[
∂R′
∂εx

∣∣∣
(0,0,0)

∂R′
∂εy

∣∣∣
(0,0,0)

∂R′
∂εz

∣∣∣
(0,0,0)

]⎡
⎣εxεy
εz

⎤
⎦

+
1

2

[
εx εy εz

]
⎡
⎢⎢⎢⎢⎣

∂2R′
∂ε2x

∣∣∣
(0,0,0)

∂2R′
∂εx∂εy

∣∣∣
(0,0,0)

∂2R′
∂εx∂εz

∣∣∣
(0,0,0)

∂2R′
∂εx∂εy

∣∣∣
(0,0,0)

∂2R′
∂ε2y

∣∣∣
(0,0,0)

∂2R′
∂εy∂εz

∣∣∣
(0,0,0)

∂2R′
∂εx∂εz

∣∣∣
(0,0,0)

∂2R′
∂εy∂εz

∣∣∣
(0,0,0)

∂2R′
∂ε2z

∣∣∣
(0,0,0)

⎤
⎥⎥⎥⎥⎦

⎡
⎣εxεy
εz

⎤
⎦

= R− xp − r cos θ

R
εx − yp − r sin θ

R
εy − zp

R
εz

+

(
R2

1 − (xp − r cos θ)2
)

2R3
ε2x +

(
R2

1 − (yp − r sin θ)2
)

2R3
ε2y

+

(
R2

1 − z2p
)

2R3
ε2z

− (xp − r cos θ) (yp − r sin θ)

R3
εxεy − (xp − r cos θ) zp

R3
εxεz

− (yp − r sin θ) zp
R3

εyεz. (8)

In (8), R′|(0,0,0) = R.
Therefore, the range variation ΔR is

ΔR = R′ (εx, εy, εz)−R = −xp − r cos θ

R
εx

− yp − r sin θ

R
εy − zp

R
εz

+

(
R2 − (xp − r cos θ)2

)
2R3

ε2x

+

(
R2 − (yp − r sin θ)2

)
2R3

ε2y +

(
R2 − z2p

)
2R3

ε2z

− (xp − r cos θ) (yp − r sin θ)

R3
εxεy

− (xp − r cos θ) zp
R3

εxεz − (yp − r sin θ) zp
R3

εyεz.

(9)

Since the rotation center offset is much smaller than the slant
range, the quadratic term is much smaller than the linear one,
and it can be ignored. Therefore, the error phase caused by the
rotation center offset can be expressed as

Δϕgeom = −4π

λ

(
xp − r cos θ

R
εx +

yp − r sin θ

R
εy +

zp
R
εz

)
.

(10)
To illustrate the effects of the rotation center offset error, the

interferometric phase under different types of rotation center
offsets is simulated with wavelength λ = 0.0185 m. As shown
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Fig. 5. Error phase of different error components. (a) Simulated terrain.
(b) εx = 1mm, εy = 0, εz = 0. (c) εx = 0, εy = 1mm, εz = 0. (d) εx =
0, εy = 0, εz = 1mm.

in Fig. 5(a), a circular 3-D terrain composed of a flat land
and a slope is constructed. Fig. 5(b)–(d) shows the error phase
diagram under different offsets. When there is only rotation
offset error component in the azimuth direction with εx = 1
mm, the error phase Δϕgeom changes with the azimuth angle.
When the rotation error is set as εy = 1mm, the error phase
Δϕgeom also changes with the azimuth angle. When there is only
vertical error component εz = 1mm, the error phase Δϕgeom in
the flat area is 0, but in the slope area, the error phase gradually
increases as the slope height increases. Therefore, the error phase
introduced by εx and εy changes with the azimuth angle and is
almost unaffected by the height, and the error phase introduced
by εz is only affected by the height.

III. ERROR COMPENSATION BASED ON PS TECHNOLOGY

Interferometric phase quality is the most crucial element that
determines the accuracy of GB-ArcSAR deformation measure-
ment. To select pixels suitable for phase analysis, the PS tech-
nique is commonly applied. The PS method estimates pixels’
phase stability with the amplitude dispersion index (ADI) [18].
The interferometric phase of a PS after phase unwrapping can
be modeled as

ΔϕPS = Δϕdefo +Δϕatmo +Δϕgeom +Δϕnoise (11)

where Δϕdefo is the deformation phase, Δϕatmo is the atmo-
spheric disturbance phase, Δϕgeom is the rotation error phase,
and Δϕnoise is the phase error caused by thermal noise.

The phase error caused by the rotation center offset is modeled
as

Δϕgeom =
4π

λ

(
A1

xp − r cos θ

R
+A2

yp − r sin θ

R
+A3

zp
R

)
.

(12)

For the atmospheric disturbance phase Δϕatmo, when the
atmosphere in the scene is uniformly distributed, Δϕatmo can
be constructed into a model that changes linearly with the slant
range

Δϕatmo =
4π

λ
(B1R+B2) (13)

where B1 is the linear coefficient and B2 is a constant.
When the atmosphere is nonuniformly distributed, the atmo-

spheric phase shows complex spatial variability and some com-
plicated parametrical models are utilized to simulate Δϕatmo.
When considering that the refractivity distribution may exhibit
horizontal inhomogeneity, a new interferometric signal model
to jointly estimate the deformation velocity and residual atmo-
spheric disturbance phase is proposed [19]. When there are ter-
rain changes in the scene, the atmospheric refraction will change
with the scene height. Then the atmospheric phase component
can be constructed as a range-height model [20]

Δϕatmo =
4π

λ
(C1R+ C2Rzp + C3) (14)

where C1 is the linear coefficient, C2 is the “range-height”
coefficient, and C3 is a constant.

Taking the atmospheric disturbance phase in (14) as an ex-
ample, the interferometric phase ΔϕPS of a PS without defor-
mation can be expressed as

ΔϕPS =
4π

λ

(
A1

xp − r cos θ

R
+A2

yp − r sin θ

R
+A3

zp
R

+ C1R+ C2Rzp + C3 + e

)
(15)

where [A1, A2, A3, C1, C2, C3] is the parameter to be estimated,
and e is the random noise phase.

A system of equations can be built as follows:

ΔΦ = Xβ + E (16)

where

ΔΦ =

⎡
⎢⎢⎢⎣
Δϕ1

Δϕ2

...
ΔϕN

⎤
⎥⎥⎥⎦X =

4π

λ

⎡
⎢⎢⎢⎢⎣

x1−r cos θ1
R1

y1−r sin θ1
R1

z1
R1

R1 R1z1 1
x2−r cos θ2

R2

y2−r sin θ2
R2

z2
R2

R2 R2z2 1
...

...
...

... ...
...

xN−r cos θN
RN

yN−r sin θN
RN

zN
RN

RN RNzN 1

⎤
⎥⎥⎥⎥⎦

β =

⎡
⎢⎢⎢⎢⎢⎢⎣

A1

A2

A3

C1

C2

C3

⎤
⎥⎥⎥⎥⎥⎥⎦

E =
4π

λ

⎡
⎢⎢⎢⎣
e1
e2
...
eN

⎤
⎥⎥⎥⎦ (17)

where ΔΦ is an N × 1-dimensional vector composed of the
interferometric phases of N PSs. X is a N × 6 matrix depending
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Fig. 6. System and experimental scene.

TABLE I
SYSTEM PARAMETERS

on the 3-D coordinates, slant range, and azimuth angle of the PSs.
β is a 6× 1 vector composed of the parameters to be estimated,
and E is an N × 1 vector composed of random errors.

According to the least squares estimation algorithm, the pa-
rameter vector β is estimated, and we can obtain

β̂ =
(
XTX

)−1
XTΔΦ (18)

where T is the matrix transpose.
Hence, the estimated error component ΔΦ̂ of the PSs is

ΔΦ̂ = Xβ̂. (19)

Finally, ΔΦ̂ is subtracted from ΔΦ to achieve error phase
compensation. In actual processing, there are PSs with deforma-
tions that will affect the estimation accuracy. In order to improve
the measurement accuracy, unreliable PSs can be filtered out
according to (20) [21]. The typical value of ϕT is within 0.1–0.2
rad, and then a secondary estimation compensation is performed∣∣∣ΔΦ−ΔΦ̂

∣∣∣ < ϕT . (20)

IV. EXPERIMENTAL RESULTS

A. Corner Reflector (CR) Experiment

Fig. 6 shows the GB-ArcSAR system independently devel-
oped by the Radar Research Laboratory of Beijing Institute of
Technology. Table I shows the system parameters. The right side
of the scene is a building, the other three sides are low walls,
and there are some evenly distributed plastic pipes in the middle.
During the experiment, two CRs were placed on the left side and
a displacement CR (DCR) was placed in the middle of the scene.

Fig. 7. (a) SNR image. (b) PS selection result.

Fig. 8. Deformation curves of three CRs. (a) CR1. (b)CR2. (c) DCR.

The radar system works in a fan scan mode. The scanning angle
range is -90°to 90°, and the rotation speed is 5°/s.

The collection started at 16:20 on July 13, 2022, and ended
at 17:08. A total of 54 images were collected. The DCR was
set to move 1 mm on the 11th and 15th image, 2 mm on the
20th and 25th images, and 3 mm on the 35th and 46th images.
Fig. 7(a) is the signal-to-noise ratio (SNR) map. An amplitude
dispersion threshold of 0.1 and an SNR threshold of 15 dB were
used for the PS selection, and a total of 2083 PSs were selected.
Fig. 7(b) shows the PS selection result and marks the positions
of the CRs.

Two models are respectively utilized to compensate for the
error phase components. A model is the slant range-height model
in (13), which is only utilized to compensate the atmospheric
disturbance phase, and B model is the joint compensation model
in (15).

Fig. 8 shows the time series deformation curves of different
CRs after compensation using models A and B. The two fixed
CRs are used as reference. It can be noted that the deformation
value fluctuations are smaller when using B model. For the
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TABLE II
STANDARD DEVIATION OF THE DEFORMATION MEASUREMENT ERRORS AFTER

COMPENSATION WITH DIFFERENT MODELS

Fig. 9. (a) Experimental scene. (b) SAR image.

DCR, its deformation values are consistent with the preset
displacement.

Table II shows the standard deviation of the deformation error
when using different compensation models. The deformation
measurement accuracy after compensation by models A and B
has been greatly improved, but model B has a better improve-
ment performance and it reaches submillimeter accuracy. This
result verifies the accuracy of the model proposed in this article.

B. Open Pit Mine Experiment

Beijing Shouyun Iron Mine (N 40◦22′51′′,E 117◦1′54′′) is an
open-pit mine with sparse vegetation. The experimental scene
is shown in Fig. 9(a). The sector denotes the location of the
radar system. The system parameters are shown in Table I.
The collection started at 12:58 on March 28, 2023, and ended
at 15:08, which lasted for 2 h and 10 min. A total of 113
images were collected. Fig. 9(b) shows the SAR image in polar
coordinates. The scene in the lower left corner is a puddle, and
the hillside texture on the right is clear.

Set the amplitude dispersion threshold to 0.1, and the SNR
threshold to 10 dB. A total of 41 108 PSs are selected. The
interferometric phase map of the PSs acquired with the 96th
and 97th images is shown in Fig. 10.

Interferometry processing was performed on two adjacent
SAR images, and a total of 112 interferometric phase images
were obtained. Using A model to estimate the error phase of
the PSs, the scatter diagram SD(k)

A−R (SD, Scattered Diagram)
of the interferometric phase distribution along with the slant
range is shown in Fig. 11(a) and SD(k)

A−A along with the azimuth
angles is shown in Fig. 11(b), where (k) is the kth interferometric
phase map. It can be noted that using only the atmospheric phase
model, the distribution of the model estimation results and the
actual interferometric phase cannot accurately match. Fig. 11(c)
and (d) shows the scatter diagrams SD(97)

B−R and SD(97)
B−Aestimated

Fig. 10. Interferometric phase map of the selected PSs after phase unwrapping.

Fig. 11. Estimation results of model A and B. (a) SD(97)
A−R. (b) SD(97)

A−A. (c)

SD(97)
B−R. (d) SD(97)

B−A.

Fig. 12. Scatter diagram of compensated phase. (a) Model A, 97th image. (b)
Model B, 97th image.

by the model B respectively. It can be seen from Fig. 11(c) and
(d) that when the rotation center offset error and atmospheric
phase are jointly compensated, the distribution of the estimated
results is consistent with that of the interferometric phase.

Fig. 12 shows the residual error phase diagram of the 97th
interferometric phase map after compensation using the A and B
models. The residual error phase refers to the difference between



DENG et al.: SCANNING ERROR COMPENSATION IN GROUND-BASED ARCSAR MONITORING 6221

Fig. 13. Accumulated deformation phase after compensation. (a) A model.
(b) B Model.

Fig. 14. Cumulative deformation phase distribution curves of different mod-
els.

the phase estimated by the models and the real unwrapped
phase of PSs. When only the range-height model is used, the
compensation effect is poor, and large residuals still exist after
compensation. When using the A and B models, the compen-
sated phase standard deviations of the 97th map are 0.2395
rad and 0.0763 rad respectively. The compensation performance
with the B model is better.

Fig. 13 shows the cumulative deformation phase maps with
the two models. It can be seen that when the A model is used
for compensation, a large number of PSs still retain phase com-
ponents that change along the azimuth. Model B estimates and
compensates for the rotation center offset error, and the residual
phase is basically distributed around 0 rad. The distribution
of the cumulative deformation phase is shown in Fig. 14. We
can conclude that a better compensation performance could be
achieved using model B, which jointly compensates the phase
error.

C. Foundation Pit Monitoring Experiment

A differential interferometry experiment was conducted in
Pinggu district, Beijing, on May 10, 2023. The system param-
eters are shown in Table I. The collection started at 12:19 and
ended at 15:54. A total of 185 images were collected, which
lasted for 3 h and 35 min. Fig. 15(a) shows the scene of the
foundation pit, and Fig. 15(b) shows the SAR image in polar
coordinates.

Fig. 15. (a) Experimental scene. (b) SAR image.

Fig. 16. PS selection result.

Fig. 17. Phase estimation results with the A and B models. (a) SD(2)
A−R. (b)

SD(2)
A−A. (c) SD(2)

B−R. (d) SD(2)
B−A.

Using all the 185 images, 12 988 PSs were selected by using
the amplitude deviation threshold of 0.15 and the SNR threshold
of 25 dB. Fig. 16 shows the interferometric phase of the PSs.

When using the A model, the scatter plot SD(2)
A−R and SD(2)

A−A

are shown in Fig. 17(a) and (b). When using the B model,
SD(2)

B−R and SD(2)
B−A are shown in Fig. 17(c) and (d). It can
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Fig. 18. Compensated phase distribution. (a) Over slant range with model A.
(b) Over slant range with model B. (c) Over azimuth angle with model A. (d)
Over azimuth angle with model B.

Fig. 19. Cumulative deformation phase distribution curves with different
models.

be noted that when using the A model, the estimated phase
distribution has a large difference from the interferometric phase
distribution. When considering the offset of the rotation center,
the estimated phase agrees much better with the interferometric
phase.

Fig. 18 shows the phase diagram of the 2nd image with or
without compensation using the rotation center offset model.
The results after compensation are distributed around 0 rad.

Fig. 19 shows the cumulative deformation phase distribution
curve after compensation. Fig. 20 shows the cumulative defor-
mation phase diagram using the A and B models. When the
rotation center offset error is not compensated, a large number
of PSs retain phase components that change along the azimuth.
After removal, the remaining phases are basically distributed
around 0 rad. It can be noted that the proposed method can
effectively compensate the scanning error phase in differential
interferometry.

Fig. 20. Accumulated deformation phase after compensation. (a) Model A.
(b) Model B.

V. CONCLUSION

In GB-ArcSAR differential interferometry, the mechanical
rotation might cause the rotation center to shift, which affects
the deformation measurement accuracy. This article establishes
a rotation center offset error model based on the radar imag-
ing geometry. Based on the multivariate Taylor expansion, the
functional relationship between the error model and the scene
terrain is obtained, which illustrates the influence of different
error components on the interferometric phase. A differential
interferometry error compensation method based on the PS
technology is proposed. This method uses the least squares
method to estimate and jointly compensate for the rotation center
offset error and the atmospheric disturbance phase. Through
the CR and actual scene experiments, the effectiveness of this
method is verified.
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