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Abstract—Semantic segmentation is a crucial step in the in-
telligent interpretation of high-resolution remote sensing images
(HRSIs). Convolutional neural networks and transformers are
widely used for semantic feature extraction in remote sensing
images, but the former inevitably has limitations in modeling long-
range spatial dependency information, while the latter lacks the
ability to learn local semantic features. Existing remote sensing
image segmentation methods are optimized and modified based
on the backbone networks used in natural image processing. De-
spite achieving relatively good results, the complexity of their
network structures leads to high computational costs and limited
improvements in accuracy. These methods have limited boundary
distinction for ground objects in complex environments, especially
for small targets. In this article, we propose an efficient semantic
segmentation architecture for HRSIs called MCAT-UNet, which
utilizes multiscale convolutional attention (MSCA) and the cross-
shaped window transformer (CSWT) to reconstruct UNet. The
encoder stacks a sequence of MSCA to exploit the advantages of
convolution attention to encode context information more effec-
tively and enhance hierarchical multiscale representation learning.
The proposed U-shaped decoder integrates three skip connections
using the CSWT block to further capture long-range spatial de-
pendency and gradually restore the size of the feature map. We
benchmark MCAT-UNet on three common datasets, Potsdam, Vai-
hingen, and LoveDA. Comprehensive experiments and extensive
ablation studies show that our proposed MCAT-UNet outperforms
previous state-of-the-art methods with remarkable performance.

Index Terms—Convolutional attention, cross-shaped
self-attention, remote sensing image, semantic segmentation,
transformer.
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1. INTRODUCTION

N THE geomatics community, remote sensing images have

become increasingly important for earth observation since
they are easy to access, can be obtained in real time, and
contain abundant spatial details and rich potential semantic
content. It is highly important in many remote sensing ap-
plications such as agricultural planning [1], land cover [2],
land change [3], climate change [4], disaster monitoring [5],
and deforested regions [6]. This is a challenging task because
some land covers that characterize a given class may have large
variability, objects from the same category normally present
different shape layouts, and class distributions at different lo-
cations in the HRSIs [7]. Moreover, due to the complex back-
ground environment, objects belonging to different categories
can have similar appearances, making them difficult to identify,
especially for small targets, which severely impacts the perfor-
mance of semantic segmentation networks [8], [9], [10]. To cope
with those limitations, it is essential to obtain strong semantic
representations at both the global context level and the local
level.

As an effective method for extracting hierarchical multiscale
visual features from images, convolutional neural networks
(CNNp5s) are the most common neural networks [8], [11], [12],
[13]. For semantic segmentation, fully convolutional networks
(FCN ) [14] achieve impressive results on challenging segmen-
tation benchmarks. FCN and its variants employ a convolutional
encoder-decoder architecture. The typical U-shaped network,
the UNet architecture [15], introduces a symmetric encoder—
decoder structure with skip connections to enhance detail reten-
tion. Many variants of UNet have been proposed in subsequent
studies to further improve segmentation performance [16], [17],
[18]. However, long-range spatial dependency is limited by the
locality property of CNN-based methods. Many approaches
attempt to enlarge the receptive field of CNNs. DeepLab [19]
and Dilation [20] introduce atrous convolution. Chen et al. [21]
adopted an atrous spatial pyramid pooling module, which probes
convolutional features at multiple scales to capture long-range
context. PSPNet [22] designs a pyramid pooling module to
capture global context information that contains multiscale in-
formation. DANet [23] introduces dual attention modules to cap-
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ture global dependencies in the spatial and channel dimensions.
CFNet [24] and OCNet [25] consider the relations between the
pixels and aggregate the representations of the contextual pixels.
CCNet [26] uses two consecutive criss-cross attention modules
to aggregate contextual information in the horizontal and vertical
directions. K-Net [27] splits an image into different groups with
learned static kernels and then iteratively improves these kernels
and their partitioning of the image by the features assembled
from their split groups. Although these methods have improved
feature representation, the limited receptive fields of convolution
kernels are unable to learn global context information, which is
essential for dense prediction tasks. Moreover, these methods
are proposed based on natural image processing, and whether
they can be applied to remote sensing image processing needs
further verification.

Recently, vision transformers have shown great potential
in various computer vision tasks because of their ability to
model long-range dependencies using self-attention mecha-
nisms. Transformers can outperform standard CNNs by a signif-
icant margin, such as classification, segmentation, and object de-
tection [28], [29], [30], [31]. Motivated by this, many researchers
in the remote sensing field have applied transformers for remote
sensing image semantic segmentation. DC-Swin [32] combines
the Swin transformer and densely connected feature aggregation
module to extract multiscale relation-enhanced semantic fea-
tures for precise segmentation. Wang et al. [33] proposed a new
rotated varied-size attention mechanism to extract rich context
from generated diverse windows. ST-Unet [34] constitutes a
novel dual encoder structure of the Swin transformer and CNN
in parallel to obtain more discriminative features. CG-Swin [35]
introduces the Swin transformer as the encoder and designs
a class-guided Transformer block to construct the decoder.
Zhang et al. [36] used Swin as the backbone to extract features,
obtained multiscale context information from depth-separable
products, and used a U-decoder to gradually restore the size
of feature maps. Despite the success of these approaches, they
enlarge the receptive field quite slowly, and a great number of
blocks need to be stacked to achieve global self-attention. More-
over, they are limited in modeling local visual structures and
scale-invariant representations, and the completeness of object
boundaries and the precise identification of small objects are still
insufficient.

Inspired by Guo et al. [37] and Dong et al. [30], we apply
convolutional attention and cross-shaped window self-attention
to reconstruct the U-shaped encoder—decoder network, which
can model long-range spatial dependency and extract local
representations effectively, and capture multiscale targets more
accurately, greatly reducing time and memory complexity. We
conduct extensive experiments on various challenging remote
sensing semantic segmentation datasets, i.e., LoveDA, Potsdam,
and Vaihingen. Our proposed MCAT-UNet is superior to multi-
scale context schemes such as PSPNet [22] and UPerNet [38];
recent relational context schemes such as CCNet [26], DANet
[23], and OCRNet [39]; and recent remote sensing image se-
mantic segmentation methods such as EMRT [40], UNetFormer
[41], ST-UNet [34], and DCSwin [32]; moreover, its efficiency
has improved.
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Fig. 1. Comparison with previous methods in terms of performance and effi-
ciency on Potsdam and LovDA dataset. The size of each bubble corresponding
to the FLOPs of the variant segmentation methods, the larger the bubble, the
higher the computational complexity. MCAT-UNet achieves state-of-the-art
performance with a 75.44% and 53.58% mloU on the Potsdam and LoveDA
dataset, significantly reducing computational overhead while maintaining a
competitive performance. (a) On potsdam. (b) On LoveDA.

Our main contributions are summarized as follows.

1) By utilizing multiscale convolutional attention (MSCA)
and the cross-shaped window transformer (CSWT), we
have reconstructed a more efficient and accurate U-shaped
encoder and decoder architecture. It can extract local rep-
resentations and capture long-range spatial dependencies,
enabling more effective segmentation of the geo-objects
in complex scenes.

2) The proposed U-shaped decoder performs three skip con-
nections between MSCA and CSWT, further capturing
long-range spatial dependencies, segmenting small tar-
gets, significantly improving segmentation results, and
without the need for complex and computationally de-
manding modules.

3) We comprehensively compared the effects of several of the
most popular semantic segmentation methods of remote
sensing images and natural images. As shown in Fig. 1, the
proposed MCAT-UNet significantly outperforms the exist-
ing alternative approaches and achieves great performance
on three challenging datasets: the LoveDA, Potsdam, and
Vaihingen datasets.

II. RELATED WORK

Semantic segmentation aims to partition an image into several
visually meaningful or interesting regions for visual understand-
ing according to semantic information. Since FCNs [14] have
made great progress in image semantic segmentation, CNNs
[15], [21], [22], [42], [43], [44] have achieved great success
and become the mainstream framework in computer vision.
Recently, transformer-based methods [45], [46], [47], [48],
[49] have shown the great potential of attention-based models
and achieved significantly better performance than CNN-based
methods on different visual tasks. We start this section by
reviewing CNN-based methods and Transformer-based meth-
ods for computer vision tasks. Then, we turn our focus to a
review of remote sensing image segmentation using deep neural
networks.

A. CNN-Based Methods in Computer Vision Tasks

Over the past decade, CNNs have dominated vision archi-
tectures in the computer vision field since AlexNet was first
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proposed [50]. CNNs are naturally equipped with the intrinsic
inductive bias of scale invariance and locality to greatly im-
prove the effectiveness of neural networks [22], [43], [51], [52].
Deeper and more effective convolutional neural architectures,
e.g., ResNet [51], DenseNet [53], EfficientNet [54], and Mo-
bilenetv3 [55], have been proposed to further improve computer
vision performance.

Encoder—decoder CNN-based methods have achieved encour-
aging performance, but CNN-based segmentation networks with
limited receptive fields can extract only local semantic features
and lack the capability to model global information from whole
images. Recently, CNN-based methods [37], [56], [57], [58],
such as PoolFormer, ConvNeXt, VAN, and SegNeXt, have been
shown to perform comparably to transformer-based methods
with proper design while retaining simplicity and efficiency.
ConvNeXt [57] is constructed entirely from pure ConvNet
modules and competes favorably with Transformers in terms of
accuracy and scalability. PoolFormer [56] replaces the attention
module in Transformers with a simple spatial pooling operator
to conduct only basic token mixing. VAN [58] leverages the
large-kernel attention mechanism, which absorbs the advantages
of convolution and self-attention to build both channel and
spatial attention. By using a cheaper and larger multiscale con-
volutional attention module to evoke spatial attention, SegNeXt
[37] showed that convolutional attention is a more efficient
and effective way to encode multiscale contexts from local to
global levels than both standard convolutions and self-attention
in spatial information encoding.

B. Transformer-Based Methods in Computer Vision Tasks

Transformers have been applied with notable success in
fundamental computer vision tasks such as image recognition
[29], [59], object detection [31], [60], image segmentation [61],
[62], and video captioning [63], [64]. Vision transformer [29]
represents the first attempt to apply the transformer structure to
image tasks. In semantic segmentation, SETR [61] adopts ViT as
a backbone to demonstrate the feasibility of using transformers.
Segmenter [46] adopts ViT [29] as a backbone and incorporates
a transformer-based decoder generating class masks to improve
the performance. Transformer architectures are good at estab-
lishing global relations but are less robust at extracting local
information and handling tiny objects. The quadratic complexity
of full-attention is too expensive for high-resolution images,
which seriously affects its potential and feasibility for remote
sensing image-related real-time applications.

To address these limitations, some efficient approaches have
been proposed. For example, SegFormer [45] proposed a novel
hierarchically structured transformer encoder and a simple mul-
tilayer perceptron (MLP) decoder to render powerful represen-
tations. ResT [65] designed a multihead self-attention module to
reduce the computational cost. Swin transformer [28] proposed
shifted windows to increase efficiency by limiting self-attention
computations to nonoverlapping local windows while also al-
lowing for cross window connections. Wang et al. [66] proposed
a pyramid vision transformer (PVT), which achieved consid-
erable improvements over its ResNet [51] counterpart in se-
mantic segmentation. Beit [67] proposed a masked image mod-
elling task to pretrain vision Transformers in a self-supervised
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manner. Twins [68] presented two powerful vision transformer
backbones called Twins-PCPVT and Twins-SVT; the former
explored the applicability of conditional positional encodings
in PVTs, and the latter revisited the current attention design to
propose a more efficient attention paradigm. Moreover, CSWin
[30] developed the cross-shaped window self-attention mecha-
nism for computing self-attention in the horizontal and vertical
stripes in parallel, which introduces no extra computational cost
while enlarging the receptive field for computing self-attention.

C. Remote Sensing Image Segmentation

Modern satellite imagery provides higher resolution than
traditional satellite images, which allows collected images to
more closely match the actual scene and increases the number
of multiscale and multiclass objects. Consequently, semantic
segmentation of remote sensing images faces the challenges
of large intraclass and small interclass variances in the pixel
values of objects of interest. To this end, CNN-based models
and Transformer architecture-based models are improved upon
to capture important edge, shape and textural features.

FCNs [14] and their variants have become popular solutions
for remote sensing image segmentation and have performed well
on numerous datasets. BANet [69] and ABCNet [70] capture
abundant details and global context information through two
branches, where the spatial path is a simple convolution stack
and can only obtain limited spatial information. MANet [71]
integrates different levels of semantic information through a
multiscale strategy and combines the self-attention module to
hierarchically aggregate relevant contextual features. MAResU-
Net [17] reconstructed the skip connections in the raw UNet
based on ResNet and the proposed linear attention mechanism
and improved the classification accuracy and computational ef-
ficiency. UNetFormer [41] constructed a UNet-like transformer
and developed an efficient global-local attention mechanism
to model both global and local contextual information in a
decoder for real-time urban scene segmentation. These methods
have made significant progress, but CNN-based backbones are
unable to model long-distance dependencies due to their limited
receptive fields.

Recently, researchers have begun to actively explore the
application of transformers to improve remote sensing image
semantic segmentation. EMRT [40] adopts the deformable self-
attention mechanism in transformer to achieve the context on
multiscale feature maps. MMT [72] proposes a mixed-mask
attention mechanism to learn more explicit intraclass and inter-
class correlations by capturing long-range interdependent rep-
resentations and solves the problem of large-scale-varied targets
in remote sensing images. AerialFormer [73] created a hybrid
model that incorporates a transformer encoder with a multidi-
lated CNN decoder to effectively capture the global context and
local features simultaneously. Despite their relatively favorable
accuracy, these methods are commonly associated with exces-
sively intricate network structures. The excessive calculation
of transformer results in the need for additional memory space
and computing resources to train the model, which severely
hinders the processing of high-resolution remote sensing
images.
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Fig. 2. Pipeline of the proposed MCAT-UNet framework for semantic seg-
mentation of remote sensing image.

Unlike the models proposed in previous works, MCAT-UNet
employs a novel multiscale convolutional attention mechanism
to evoke spatial attention, which is more effective than standard
convolutions and recent self-attention in spatial information
encoding. The MSCA sequences are stacked to generate a
convolutional encoder for capturing multiscale feature targets
more accurately. Additionally, cross-shaped self-attention is
embedded in a U-shaped decoder to further capture long-range
spatial dependency. Extensive experimenttal results evaluate the
efficiency of our proposed method.

III. PROPOSED METHOD

In this section, we introduce the MCAT-UNet model in de-
tail. Section III-A describes the overall design of our pipeline.
Section III-B describes the principle and network structure of
the MSCAN. Section III-C describes the structure of the cross-
shaped window transformer decoder. The details are described
in the following sections.

A. Overall Network Architecture

An overview of our MCAT-UNet framework is presented in
Fig. 2. This framework proposes an enhanced UNet by utilizing
convolutional attention and cross-shaped window self-attention,
which can model long-range spatial dependencies, extract local
representations, and capture multiscale targets more accurately.

1) The UNet encoder utilizes an MSCAN CNN-based en-
coder for multilevel feature extraction. For the building
block in the encoder, a novel multiscale convolutional
attention module is designed to aggregate local informa-
tion, capture multiscale context, and model relationships
between different channels.

2) Weuse CSWT blocks to construct the decoder of U-shaped
structure. Three skip connections are built between the
encoder and decoder feature maps of identical spatial
resolution to preserve the global and local details and
facilitate the communication of multiscale features.
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Fig. 3. Illustration of the proposed MSCAN and MSCA. Here, d, k; X kg
means a depth-wise convolution (d) using a kernel size of k; X kg. (a) Stage of
MACAN. (b) MSCA.

B. Multiscale Convolutional Attention Encoders

Recently, CNN-based methods have been compared to
transformer-based methods [37], [57], [58]. We apply the CNN-
style backbone of MSCAN as the encoder to capture multilevel
and multiscale features. As depicted in Fig. 3(a), the encoder
adopts a novel multiscale convolutional attention module that
contains three parts: a depthwise convolution to aggregate the
local context, multibranch depthwise strip convolutions to cap-
ture multiscale information, and a 1 x 1 convolution to simulate
the relationships between different channels. The output of the
1x1 convolution is used for the attention weights and the input
of the MSCA is directly reweighted. Mathematically, the MSCA
can be formulated as follows:

3
Att = Convy (Z Scale;(DW — Conv(F))) (1)

i=0
Out = Att ®@ F ()

where F is the input feature, Att and Out are the attention map
and output, respectively, ® is the elementwise matrix multiplica-
tion operation, DW-Conv represents depthwise convolution and
Scale;, i € {0, 1,2, 3}, represents the ith branch in Fig. 3(b). In
each branch, two depthwise strip convolutions are used to ap-
proximate standard depthwise convolutions with large kernels.
Here, the kernel sizes of the branches are setto 7, 11, and 21.
Stacking a sequence of MSCA yields the proposed convo-
lutional encoder MSCAN; we adopt a hierarchical structure
similar to traditional CNNs [50], [51] and recent hierarchi-
cal transformer variants [28], [65], which contains four stages
with decreasing output spatial resolutions H/4 x W/4, H/8 x WIS,
H/I16xW/16, H/I32xW/32. Here, H and W represent the width
and height of the input image, respectively. With decreasing
resolution, the number of output channels is C, 2C, 4C, and 8C,
where C is set to 64 in our experiments for fair comparison.
The encoder produces multilevel and multiscale features given
an input image. These features provide both low-resolution
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Fig. 4. Illustration of cross-shaped window self-attention.

fine-grained features and high-resolution coarse features that
boost the performance of semantic segmentation.

C. Cross-Shaped Window Transformer-Based Decoder

We adopt a U-shaped decoder to gradually restore the size
of the feature map and predict the semantic segmentation re-
sult. Skip connections are established between the encoder and
decoder feature maps of the same size to preserve the global
and local details and facilitate the communication of multiscale
features. The cross-shaped self-attention window transformer is
used to further capture the long-range spatial dependency.

1) Cross-Shaped Window Self-Attention: To capture long-
range context, mainstream solutions focus on attaching a single
attention block at the end of the network or introducing trans-
former as the encoder. The former approach cannot capture mul-
tiscale global features, whereas the latter significantly increases
the computational complexity of the network and causes spatial
details to be lost. To address this issue, we present the cross-
shaped window self-attention mechanism, which can enlarge the
attention area and achieve global self-attention more efficiently,
as shown in Fig. 4. First, we split multiple heads ({h,...,ht})
into two groups and perform self-attention simultaneously on
the horizontal and vertical stripes. Second, we adjust the stripe
to balance the learning capacity and computational complex-
ity. According to the multihead self-attention mechanism, the
input feature X € RUT*W)*C s first linearly projected to K
parallel attention heads, after which each head performs local
self-attention within either the horizontal or vertical stripes.
For horizontal stripe self-attention, X is evenly divided into
nonoverlapping horizontal stripes [X/, ..., X™] of equal width sw,
and each of them contains swx W tokens.

Formally, the projection queries, keys and values of the k¢,
head all have dimensions dy; then, the output of the horizontal
self-attention for the k™ head is defined as follows:

X = [x',x2,. . xM] ¥
Y;! = Attention ([XinXiW’f(’XiW’XD @

H — Attention (X ) = [Ykla Y YkM} o)
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Fig. 5. Illustration of the cross-shaped window transformer block.

where X' € ROVW) »x C and M = H/sw, i=1,..., M.
WkQ € RO, WK € RO*dx and W)Y € RC*dk, represent
the projection matrices of queries, keys and values for the k™
head, respectively, and dj, is set as C/K. Similarly, the vertical
stripe self-attention can be derived, and its output for the k™ head
is denoted as V-Attention(X).

The K heads are equally splitinto two parallel groups (each has
K/2 heads, where K is often an even value). One group performs
horizontal stripe self-attention, and the other group performs
vertical stripe self-attention. Finally, the outputs of these two
parallel groups are concatenated

CSAttention(X) = Concat(heady, . ..head )W  (6)

_ | H-Attenton,(X) k=1,....K/2
headk_{V—Attentonk(X) k=K/2+41,....K N

where WO € RE*C is the projection matrix that projects the
self-attention results into the target output dimension. As de-
scribed above, one key insight in cross-shaped self-attention
mechanism design is splitting the multiple heads into different
groups and using different self-attention operations. In contrast,
existing self-attention mechanisms apply the same self-attention
operations across multiple heads. In the experimental section, we
illustrate that this design results in better performance.

2) Cross-Shaped Window Transformer (CSWT) Block:
Cross-shaped self-attention is crucial for semantic segmentation
of long-range information and is embedded into the Transformer
architecture, as shown in Fig. 5. The Transformer block deploys
cross-shaped self-attention, which is achieved by conducting
self-attention on horizontal and vertical stripes in parallel to
form a cross-shaped window to capture the global context. The
stripe width sw is set to 1, 4, and 4 for the three stages by
default. The details of the cross-shaped window transformer
can be found in the CSwin transformer [30]. Finally, we employ
layer normalization and acommon MLP layer to characterize the
fine-grained global context. The Transformer block is formally
defined as follows:

X' = MLP (LN (CSAttention (LN (X'1)) + X'"1)) (8)

where X' represents the output of the /th transformer block.
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IV. EXPERIMENTS

In this section, to evaluate the rationality of our proposed
model, we first conduct a series of ablation experiments on
the validation sets of LoveDA, Potsdam, and Vaihingen with
different settings and frameworks. Next, we compare our meth-
ods with other approaches on public benchmarks and show the
superiority of our proposed model in terms of computational
complexity.

A. Dataset Description

1) LoveDA: TheLoveDA' dataset contains 5987 fine-resolu-
tion optical remote sensing images (GSD 0.3 m) with a size of
1024x 1024 pixels and includes seven land cover categories,
i.e., building, road, water, barren, forest, agriculture, and back-
ground. Specifically, 2522 images were used for training, 1669
images were used for validation, and 1796 images were officially
provided for testing. The dataset encompasses two scenes (urban
and rural) collected from three cities (Nanjing, Changzhou, and
Wuhan) in China. Consequently, the dataset presents a signifi-
cantresearch challenge due to the presence of multiscale objects,
complex backgrounds, and inconsistent class distributions.

2) Potsdam: The Potsdam? dataset was collected by aerial
cameras with a resolution of 6000x6000 pixels over Potsdam
city, and the ground sampling distance was 5 cm. The dataset
has 38 samples, with 24 for training and 14 for testing. Each
sample contains three images with a true orthophoto (TOP),
a digital surface model (DSM), and ground truth. The dataset
was manually classified into the six most common land cover
categories, and the ground sampling distance between the TOP
and the DSM was 5 cm. In this article, we follow the approach
used in and use 23 images (excluding image 7_10 with error
annotations) for training and 14 images for testing.

3) Vaihingen: The village of Vaihingen® comprises many in-
dividual buildings and small multistory buildings, and similar to
the Potsdam dataset, it has been classified into six common land
cover categories. The dataset includes 3-band remote sensing
TIFF files (near-infrared, red, green) and a single band DSM,
with 33 HRS images of varying sizes. For the experiment, we
followed [74] to select the remote sensing images with IDs 2,
4,6,8,10, 12, 14, 16, 20, 22, 24, 27, 29, 31, 33, 35, and 38 for
testing, while the remaining 16 images were used for training.

B. Experimental Details

1) Training Settings: We use mmsegmentation [74] code-
bases and follow the commonly used training settings. All the
models in the experiments are implemented with the PyTorch
framework on a single NVIDIA GTX 3090 GPU. Unless other-
wise stated, all of the networks use the following settings from
[28]: we use the AdamW optimizer with an initial learning rate
of 6e-5, a weight decay of 0.01, and a total number of iterations

![Online]. Available: https://github.com/Junjue-Wang/LoveDA

2[Online]. Available: https://www.isprs.org/education/benchmarks/
UrbanSemLab/2d-sem-label-potsdam.aspx

3[Online]. Available: https://www.isprs.org/education/benchmarks/
UrbanSemLab/2d-sem-1abel-vaihingen.aspx
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of 100K. The parameters of all the models are initialized with of-
ficially provided pretraining weights. The learning rate warmups
with 1500 iterations at the beginning and decays with a linear
decay strategy. We use the default augmentation settings for
mmsegmentation, which includes random horizontal flipping,
random rescaling (ratio range [0.5, 2.0]) and random photomet-
ric distortion. All the models are trained with an input size of
512x512. In regard to testing, we report both the single-scale
test results and the multiscale test results ([0.5, 0.75, 1.0, 1.25,
1.5, 1.75] x of that in training). The soft cross-entropy loss
function is used.

2) Evaluation Metric: We use the floating-point operations
per second (FLOPs), the number of parameters (Param.) and
frames per second (FPS) to evaluate the computational cost of
the model. To evaluate the performance, we adopt three common
metrics, namely, the overall accuracy (OA), mean intersection
over union (mloU), and Fl-score (mF1), which are chosen as
evaluation indices.

C. Ablation Study

1) Influence of Difference Encoders: We first explored the
performance of several backbone networks based on CNN and
transformer combined with our proposed CSWT decoder on the
Potsdam dataset. The CNN-based backbone networks include
ResNet [53], PoolFormer [56], ConvNeXt [57], VAN [58],
and SegNeXt [37]; the transformer-based backbone networks
include SegFormer [45], Swin [28], Beit [67], Twins [68],
and CSWin [30]. Most of the models are recently proposed
methods designed to extract features. Limited by our GPU
memory, and to ensure a fair comparison, we set the input
image size to 512x512 and the batch size to 4. As shown in
Table I, ConvNeXt, the VAN, and MACAN achieved mloU
results of 74.57%, 75.12%, and 75.48%, respectively, on Pots-
dam, demonstrating that a well-designed convolution model
can compete favorably with state-of-the-art hierarchical vision
Transformers with relatively fewer parameters and FLOPs. Even
a more classic and simple structure, such as ResNet18, achieves
a relatively high score of 72.11%, indicating that the cross-
shaped window transformer can capture long-range dependency
information more efficiently. MSCAN achieves the best mloU
of 75.48%, mF1 of 85.02%, and OA of 83.40% on Potsdam,
which indicate that embedding multiscale convolution attention
and cross-window transformers in UNet can significantly im-
prove segmentation performance. PoolFormer achieves a lower
performance (73.65%) on the mloU, as it only uses simple
space pooling operations for basic token mixing. Considering the
model complexity and hardware resources, we apply MACAN
as the backbone in our subsequent experiments.

2) Each Component of MCAT-UNet: To better evaluate the
performance of each critical design in the proposed MCAT-UNet
on the Potsdam dataset. We conduct a series of ablation experi-
ments under a completely fair setting in which we use the same
architecture and hyperparameter for the following experiments.
For fair comparison, we set the input image size to 512x512
and the batch size to 8. The results are illustrated in Table II.


https://github.com/Junjue-Wang/LoveDA
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-potsdam.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-label-vaihingen.aspx
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TABLE I
COMPARISON WITH STATE-OF-THE-ART ENCODERS ON THE LOVEDA AND POTSDAM DATASETS

Potsdam
Model Backbone Param. FLOPs FPS

mloU(%) mF1(%) OA(%)

MiT-B1 [45] 22.9 15.6 52.5 74.07 83.75 82.11

Swin-Tiny [28] 47.6 35.7 39.3 74.65 84.26 82.69

Transfomer-Based Beit [67] 138.2 187.4 28.1 74.86 84.33 82.67
Twins-S [68] 325 21.8 325 75.13 84.65 83.17

CSWin-Tiny [30] 30.7 29.0 20.8 74.93 84.44 82.87

ResNet50 [51] 170 92.5 42.5 73.76 83.48 81.83

ResNetl8 [51] 20.1 153 81.1 72.11 82.29 80.48

PoolFormer-S24 [56] 30.7 22.9 48.6 73.65 83.45 81.70

CNN-Based .

ConvNeXt-Tiny [57] 47.8 33.4 63.1 74.57 84.25 82.87

VAN-Small [58] 23.1 18.2 50.1 75.12 84.63 83.11

MACAN-Small [37] 23.2 18.5 51.7 75.48 85.02 83.40

TABLE I
ABLATION STUDY OF EACH COMPONENT OF THE MCAT-UNET ON THE
POTSDAM DATASET

Dataset Method. mloU (%) mF1 (%) OA(%)

Baseline 74.88 84.50 82.81

Potsdam . eline-CSWT 75.50 84.92 83.27
TABLE III

DIFFERENT BATCH SIZE ON SINGLE GPU FOR TRAINING MODEL ON THE
LOVEDA DATASET

Batch size mloU(%) mF1(%) OA(%) Train-time
2 71.26 80.38 80.38 4:20"
4 73.88 82.09 82.09 4:30"
8 73.89 82.11 82.11 4:35'
16 74.06 82.24 82.24 5:30"
32 73.47 81.87 81.87 9:00'

a) Baseline: Thebaseline was constructed by the MSCAN
backbone with a U-shaped decoder, which can achieve multi-
scale context from local to global, obtain adaptability in spatial
and channel dimensions, and aggregate information from low to
high levels.

b) The cross-shaped window transformer (CSWT) block:
The CSWT block is incorporated into the baseline to construct
the baseline+CSWT. As shown in Table II, the deployment of
the CSWT significantly increases the mloU, mF1, and OA by
0.62%, 0.42%, and 0.46%, respectively, on the Potsdam dataset.
This is because the cross-shaped window transformer deeply
models the long-distance dependencies and further extracts
global contextual information.

3) Comparison of Different Batch Sizes: Batch size is im-
portant because it affects both the training time and the gen-
eralization of the model. To our knowledge, no one has run
mmsegmentation [74] on a single GPU to train their model.
In this experiment, we investigate the effect of batch size on
training dynamics to determine the appropriate batch size for a
single GPU for the following experiments. Limited by our GPU
memory, the input image size is 256 x256. We can only perform
our implementation on a single NVIDIA GTX 3090 GPU by
using mmsegmentation codebases. Table III shows the influence

of different batch sizes {2, 4, 8, 16, 32}. When other settings are
kept constant, batch sizes of 4, 8, and 16 result in comparable
top performances. Furthermore, further increases in the batch
size (32) lead to a decrease in performance but also a significant
increase in training time. This finding illustrates that increasing
the batch size merely to train MCAT-UNet does not necessarily
lead to performance improvements. For fair comparison, we set
the batch size equal to 8 by default to balance the performance
and calculation amount in all the following experiments unless
otherwise specified.

4) Influence of Different Input Sizes: We conduct experi-
ments on the Potsdam dataset to analyze the influence of dif-
ferent input sizes during training, including square inputs of
256x256,512x512, and 1024 x 1024, as well as rectangular in-
puts of 256512 and 512 x 1024. Due to the memory limitations
of our GPU, the batch size is 4, and the maximum input size that
can be loaded is 1024x1024. As shown in Table IV, square
inputs yield relatively higher scores than rectangular inputs, and
the maximum deviation in the mloU between 256x256 and
1024% 1024 is 2.2%. As the input size increases, the mloU
deviation decreases gradually, and the training time also in-
creases. With an input size of 1024x 1024, the best mloU is
76.08%, the mF1 is 85.33%, and the OA is 83.81% on the
Potsdam dataset. Moreover, in the segmentation of small objects,
such as the “car” class, the segmentation accuracy is signifi-
cantly improved, indicating its effectiveness in segmenting small
objects in HRSIs. A smaller input image produces a coarser
predictive representation, and a smaller sequence is produced
so that transformer can process it faster. Large-scale images can
help improve the segmentation performance of the model, but it
is necessary to pay attention to calculations in a longer sequence,
which increases the training time and calculation cost. For fair
comparison, in terms of experimental efficiency, an input size of
512x512 is selected as the default to balance the experimental
efficiency and performance in all the following experiments.

D. Experimental Results

In this section, we compare the proposed method with several
state-of-the-art semantic segmentation methods on three differ-
ent remote sensing datasets from LoveDA, Potsdam, and Vai-
hingen, including natural image segmentation methods, such as
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TABLE IV
ABLATION STUDIES OF DIFFERENT INPUT SIZES ON THE POTSMAN DATASET

Input size Imp.surf. Building Lowveg. Tree Car Clutter mloU(%) mF1(%) OA(%)
256x256 83.27 90.46 73.35 75.16 81.18 39.87 73.88 83.82 82.09
256%512 80.64 89.03 70.70 73.20 81.40 30.03 70.83 81.13 79.45
512x512 84.69 92.05 73.88 75.90 82.79 43.57 75.48 85.02 83.40
512x1024 83.07 91.49 72.47 75.34 83.17 35.25 73.47 83.20 81.6

1024x1024 85.35 92.72 75.01 76.65 84.06 42.69 76.08 85.33 83.81

TABLE V
ABLATION STUDIES OF DIFFERENT DECODER WITH THE MSCAN ON THE LOVEDA AND POTSDAM DATASET
LoveDA Potsdam
Model Params.(Mb) FLOPs(Gbps) FPS

mloU(%) mF1(%) OA(%) mloU(%) mF1(%) OA(%)

LightHamHead [37] 13.9 15.6 49.0 51.84 67.41 64.92 74.53 84.27 82.81
UPerNet [38] 43.1 228.4 345 51.46 66.87 64.90 75.18 84.67 83.07
DANet [23] 27.9 4239 20.9 50.60 66.13 65.04 75.43 85.02 83.64
CCNet [26] 27.9 267.3 26.2 52.71 68.15 65.63 75.06 84.61 83.18
OCRNet [39] 19.9 116.7 41.1 52.92 68.27 65.37 75.26 84.72 82.11
PSPNet [22] 29.7 251.9 31.0 52.22 67.38 65.70 74.85 84.42 82.80
ALL-MLP [45] 15.0 31.9 54.7 51.79 67.14 64.13 75.17 84.70 83.12
K-Net [27] 56.3 241.7 28.2 51.91 67.25 65.25 74.81 84.31 82.63
MCAT-UNet(Ours) 23.2 18.5 51.7 53.48 68.83 66.28 75.48 85.02 83.40

UPerNet [38], DANet [23], CCNet [26], OCRNet [39], PSPNet
[22], Knet [27], DeeplabV3+- [44], and ALL-MLP [45]; remote
sensing image segmentation methods, such as BANet [69],
ABCNet [70], MANet [71], MARes-UNet [17], SRANet [76],
DCSwin [32], ST-UNet [34], UNetFormer [41], and EMRT [40].
Among these methods, EMRT, UNetFormer, DCSwin, SRANet,
and ST-UNet have recently been proposed. All the models are
trained with an input size of 512x 512, and the batch size is set to
8. We analyze the segmentation performance on three datasets
and benchmark our MCAT-UNet using various metrics, namely,
the mloU, mF1, OA, and IoU per category. The quantitative
performance comparisons between our MCAT-UNet and previ-
ous state-of-the-art models are presented in Tables V—VIII. The
bold and underlined values in each column represent the best and
second-best performances, respectively. The comparison details
as follows.

1) Comparison of Difference Decoders: Many semantic seg-
mentation methods for remote sensing images (e.g., [17], [32],
[34], [41], [69], [701, [711, [72], [73], [77], etc.) utilize the
backbone of computer vision, but the validity of these methods
have not been fully proven. We compare our MCAT-UNet with
the state-of-the-art decoders initially designed for natural images
on the LoveDA and Potsdam datasets using the same backbone,
e.g., MSCAN. Limited by our GPU memory, and to ensure a
fair comparison, we set the input image size to 512x512 and
the batch size to 4. As shown in Table V, MCAT-UNet has
the lowest computational complexity (e.g., FLOPs only 15.9%
of OCRNet, at least 8.1% of UPerNet, CCNet, PSPNet, and
K-Net; and 4.4% of DANet) and achieves the most competi-
tive performance; the mloU is 53.48% and 75.48%, the mF1
is 68.83% and 85.02%, and the OA is 66.28% and 83.40%,
by integrating global and local contextual information respec-
tively. MCAT-UNet is superior to all the previous decoders,
which validates the effectiveness of convolutional attention and

cross-shaped self-attention in obtaining context from both lo-
cal and global perspectives. Additionally, we found that many
methods proposed for natural images are equally effective when
transferred to the task of remote sensing image segmentation.
By comparing Tables V-VII, we observed that many methods in
the field of remote sensing do not perform as well as the methods
in natural images, but our method outperforms them.

2) Results on the LoveDA Dataset: We compare the perfor-
mances of MCAT-UNet and several state-of-the-art methods
on the LoveDA dataset. Different from typical datasets, the
LoveDA dataset contains real urban and rural remote sensing
images and is recognized as a challenging HSRI dataset for
land cover domain adaptive semantic segmentation. This dataset
presents three challenges in large-scale remote sensing mapping,
namely, multiscale objects, complex background samples, and
inconsistent class distributions. Thus, it is difficult to obtain high
scores on this dataset. As shown in Table VI, all the models are
initialized with officially provided pretraining weights. Com-
pared with other methods, our method demonstrates superior
performance, with an mloU of 53.58%, an mF1 of 68.88%,
and an OA of 66.32%, especially for categories with large
intraclass variations, such as roads and water. Moreover, the
proposed method obtains the highest IoU values for buildings,
roads, water, and agriculture, where the road category is typically
characterized by narrow and elongated features. Whether in rural
or urban scenarios or dense or sparsely distributed, our method
can accurately segment objects in complex environments with
high confidence. This finding illustrates that the effectiveness
of MCAT-UNet is sufficient for learning long-range spatial
dependencies and capturing multiscale targets more accurately
to enhance the differences among objects.

Furthermore, Fig. 6 provides some examples of visual com-
parisons, which also demonstrate the effectiveness of our
method. As we can see, the visualization results of the proposed



WANG et al.: MCAT-UNET: CONVOLUTIONAL AND CROSS-SHAPED WINDOW ATTENTION ENHANCED UNET 9753
TABLE VI
QUANTITATIVE COMPARISON RESULTS BETWEEN OUR METHOD AND OTHER PUBLISHED METHODS ON THE LOVEDA DATASET
Model Backbone  Backgroud Building Road  Water Barren  Forest Agriculture  mloU(%) mF1(%)  OA(%)
DeepLapV3+ [75] ResNet50 51.73 62.34  55.05 64.99 23.09 40.06 47.88 49.31 6490 62.22
BANet [69] ResT 53.55 60.91 53.57 63.74 30.41 40.89 54.09 51.02 66.85  64.08
ABCNet [70] ResNet18 52.02 60.41 50.71  61.08 32.84 39.02 50.51 49.51 65.66 62.85
MANet [71] ResNet50 52.96 62.09 5425 65.12 25.21 38.56 47.15 49.33 65.01 61.17
MAResU-Net [17] ResNet18 52.85 60.29  52.87  68.58 30.80 40.85 50.47 50.96 66.73  64.34
DCSwin [32] SwinTiny 53.92 62.89 5628  66.74 34.24 42.30 47.89 52.04 67.80 65.48
ST-UNet [34] SwinTiny 50.61 5459 4687 59.71 21.13 34.82 44.61 44.62 60.67 64.74
UNetFormer [41] ResNet18 51.64 59.1 5499  65.16 30.59 40.07 49.83 50.20 66.13  64.54
EMRT [40] ResNet50 53.98 61.39 5537  66.12 29.25 39.52 49.56 50.74 66.46  63.48
MCAT-UNet(Ours) MSCAN-S 53.77 63.25 56.7 71.26 31.48 41.32 57.26 53.58 68.88  66.32
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Fig. 6. Qualitative comparison with different methods on the LoveDA dataset.
TABLE VII
QUANTITATIVE COMPARISON RESULTS BETWEEN OUR METHOD AND OTHER PUBLISHED METHODS ON THE POTSDAM DATASET

Model Backbone Imp.surf. Building Lowveg Tree Car Clutter mloU(%) mF1(%) OA(%)
DeepLapV3+ [75] ResNet50 83.73 91.78 73.02 75.14 83.49 38.27 74.24 83.91 82.39
BANet [69] ResT 82.66 90.37 72.43 73.88 81.27 34.33 72.49 82.54 80.95
ABCNet [70] ResNet18 82.31 90.15 71.17 73.92 80.40 34.35 72.05 82.26 80.55
MANet [71] ResNet50 83.54 91.68 72.47 74.75 82.78 36.13 73.56 83.32 81.73
MAResU-Net [17] ResNet18 83.10 90.98 71.65 73.81 81.81 34.25 72.60 82.58 80.87
DCSwin [32] SwinTiny 84.17 91.80 73.72 75.40 81.93 39.75 74.46 84.16 82.69
ST-UNet [34] / 79.68 86.37 70.08 70.55 77.44 32.50 69.43 85.77 80.48
UNetFormer [41] ResNet18 82.84 90.29 71.45 74.32 82.51 34.67 72.68 82.67 81.04

SRANet [76] ResNet50 81.63 89.11 71.69 73.12 81.91 35.62 72.18 82.45 -

EMRT [40] ResNet50 83.91 91.63 72.85 74.89 83.32 36.19 73.80 83.48 81.83
MCAT-UNet(Ours) MSCAN-S 84.63 92.46 74.3 76.33 83.75 41.15 75.44 84.84 83.31

method are more complete predictions for large objects (e.g.,
agriculture, water, and forest) and small multiscale objects (e.g.,
buildings and roads), where the boundaries remain accurate and
smooth without any additional processing. Compared with other
methods, MCAT-UNet has higher edge segmentation accuracy
for adjacent objects while preserving better spatial details. The
results show that MCAT-UNet has higher edge segmentation
accuracy for adjacent objects while preserving better spatial

details. The results show that MCAT-UNet can effectively in-
tegrate global-local context information and achieve better per-
formance by capturing full image dependencies; this approach
is an important design for efficient segmentation.

3) Results on the Potsdam Dataset: To further verify the gen-
erality of MCAT-UNet, we perform experiments on the Potsdam
dataset. As shown in Table VII, compared with other remote
sensing image semantic segmentation methods, MCAT-UNet
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achieves state-of-the-art performance with an mloU of 75.44%,
an mF1 of 84.84%, and an OA of 83.31% on the Potsdam dataset
and achieves the highest accuracy in all six categories. These
results indicate the effectiveness of the proposed strategy. More-
over, on the small class (e.g., car), our method achieves an IoU
of 83.75%, which is much better than that of the previous state-
of-the-art method. In particular, the car category is typically
characterized by small features, which require global and local
information for segmentation. Extracting contextual information
is an effective method for improving model recognition. This
result fully indicates that MCAT-UNet has better performance
for small target segmentation in HRSIs.

We also provide four representative visualization results to
show the preferential performance of our network. As shown in
Fig. 7, the small yellow box in the first row is unmarked in the
ground truth, and the target object is very small; thus, only our
model can make an accurate prediction. The objects in the large
red boxes in the second row were marked incorrectly, but our
method can correctly identify them. The results of the second
row demonstrate that our methods can more precisely identify
challenging samples within buildings, and the boundaries of the
buildings are smoother and more accurate. The results in the third
row show that our methods can identify small samples of cars
more accurately. In the first and fourth rows of the results, there
are three regions of low vegetation that exhibit visual properties
similar to those of trees and impervious surfaces, respectively,
with high interclass homogeneity. Most of the methods seriously
misidentify low vegetation in this area, but our method is still
able to discriminate them accurately. In general, the proposed
MCAT- UNet can obtain more accurate segmentation maps,
especially for complex irregular targets, and yield finer boundary
details.

4) Results on the Vaihingen Dataset: We also compare the
proposed methods on the ISPRS Vaihingen dataset. This dataset
includes a large number of houses obscured by tree branches
and multistory small villages, so the networks need to more
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Qualitative comparison results of different methods on the potsdam dataset.

accurately identify and segment small targets. As shown in
Table VIII, the proposed method achieves the best mloU of
74.52%, mF1 of 84.01%, and OA of 81.41%. These methods are
much better than previous methods. Further analysis of the IoU
score of each category showed that the proposed MCAT-UNet
achieves the best performance in the four categories of imper-
vious surfaces, building, low vegetation, and car, and is second
best in the tree class, following DCSwin. Notably, our method
achieves an IoU of 78.81% on the car class, which is more than
2.08% higher than that of other networks. This demonstrates
that our method is more capable of modeling complex irregular
targets and further reveals the importance of global long-range
interaction representations for semantic segmentation of remote
sensing images.

A visualization of the results is shown in Fig. 8, which also
demonstrates that our proposed models achieve better perfor-
mance. In regions affected by building shadows, such as the red
box marked in the middle of the third row, which represents
a tree, and the red box marked in the first and second rows,
which represents a car, most of the methods lose spatial infor-
mation, resulting in incorrect identification of low vegetation
or severe missing contours around cars; moreover, the results
of our method more closely match the ground truths. Due to
the high similarity of trees and low vegetation appearances
and because they always appear in adjacent locations, most
methods tend to incorrectly predict low vegetations as trees
or vice versa; however, our method is still able to accurately
distinguish them, such as the red marked boxes in the second
and fourth rows. We select images with intraclass variation in
the second row, marked with a yellow box, for comparison.
Unlike regular buildings, the marked building appears red in
the image and has a very confusing appearance that is similar
to that of low vegetation. Many methods completely ignore the
building and even incorrectly predict areas with low vegetation
coverage. Despite the improvements in the Transformer-based
methods, the shape of the object is still incomplete. Our method
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TABLE VIII
QUANTITATIVE COMPARISON RESULTS BETWEEN OUR METHOD AND OTHER PUBLISHED METHODS ON THE VAIHINGEN
Model Backbone Imp.surf. Building Lowveg Tree Car Clutter mloU(%) mF1(%) OA(%)
DeepLapV3+ [75] ResNet50 83.73 91.78 73.02 75.14  83.49 38.27 74.24 83.91 82.39
BANet [69] ResT 82.66 90.37 72.43 73.88  81.27 34.33 72.49 82.54 80.95
ABCNet [70] ResNet18 82.31 90.15 71.17 7392 80.40 34.35 72.05 82.26 80.55
MANet [71] ResNet50 83.54 91.68 72.47 7475  82.78 36.13 73.56 83.32 81.73
MAResU-Net [17] ResNet18 83.10 90.98 71.65 73.81  81.81 34.25 72.60 82.58 80.87
DCSwin [32] SwinTiny 84.17 91.80 73.72 7540  81.93 39.75 74.46 84.16 82.69
ST-UNet [34] / 79.68 86.37 70.08 70.55  77.44 32.50 69.43 85.77 80.48
UNetFormer [41] ResNet18 82.84 90.29 71.45 7432 8251 34.67 72.68 82.67 81.04
SRANGet [76] ResNet50 81.63 89.11 71.69 73.12 8191 35.62 72.18 82.45 -
EMRT [40] ResNet50 83.91 91.63 72.85 7489  83.32 36.19 73.80 83.48 81.83
MCAT-UNet(Ours) MSCAN-S 84.63 92.46 74.3 7633  83.75 41.15 75.44 84.84 83.31
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achieves more accurate and consistent segmentation results for
buildings with large variations in appearance, illustrating its
feature extraction capability.

E. Feature Visualization

We apply class activation maps to visualize the predicted class
on the given image, highlighting the discriminative object parts
detected by the MCAT-UNet and its baseline at four stages, to
confirm the effectiveness of the model. As shown in Fig. 9,
it can be clearly observed that the discriminative regions of
the “car” class in the images are highlighted, and as the lay-
ers deepen, the class becomes more prominent. Furthermore,
compared to the baseline, the MCAT-UNet exhibits stronger
attention to the “car” class at each stage. The yellow boxes in
the second and third rows indicate the “clutter” class, where
we see that MMAT-UNet shows stronger attention. The red
boxes in the second and third rows represent the “car” class,
and we observe that the MCAT-UNet exhibits stronger attention
on the “car” class. Even in complex background environments,
MCAT-UNet can effectively identify small targets with similar
appearances belonging to different categories, which are difficult
to distinguish. This indicates that MCAT-UNet generates local
attention similar to convolutions and nonlocal attention similar
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Qualitative comparison results of different methods on the Vaihingen dataset.
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Fig. 9. Visualizations of the output features of the “car” and “clutter” classes
by the MCAT-UNet and its baseline at four stages.

to transformers at each stage, which is beneficial for effectively
capturing both local and contextual information.

F. Complexity Analysis

Table IX shows the efficiency comparisons of different models
on LoveDA, Potsdam, and Vaihingen. We calculate the overall
complexity of the encoder and decoder. The complexity is
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TABLE IX
EFFICIENCY COMPARISON OF DIFFERENT METHODS IN TERMS OF PARAMETERS AND FLOPS

LoveDA Potsdam Vaihingen
Model Params.(Mb) FLOPs(Gbps)
mloU(%)  mF1(%) mloU(%) mF1(%) mloU(%) mF1(%)
DeepLapV3+ [75] 412 181.2 4931 64.90 74.24 83.91 73.78 83.61
BANet [69] 12.7 152 51.02 66.85 72.49 82.54 70.93 81.01
ABCNet [70] 14.0 17.0 49.51 65.66 72.05 82.26 72.37 82.79
MANet [71] 35.9 55.5 4933 65.01 73.56 83.32 73.44 83.36
MAResU-Net [17] 16.2 20.4 50.96 66.73 72.60 82.58 71.66 81.93
DCSwin [32] 45.6 48.4 52.04 67.80 74.46 84.16 72.54 82.26
UNetFormer [41] 11.7 13.0 50.20 66.13 72.68 82.67 71.80 82.12
EMRT [40] 51.7 158.7 50.74 66.46 73.80 83.48 74.03 83.86
MCAT-UNet(Ours) 232 18.5 53.58 68.88 75.44 84.84 74.52 84.01

measured by a 512x512 input. We evaluate the computational
efficiency against the number of parameters (Param.) measured
in million (Mb) and FLOPs. Although the computational com-
plexity of MCAT-UNet is not the lowest, it performs best on the
F1, OA, and IoU metrics across the three datasets, with at least
increases of 1.54% (mlIoU) and 1.08% (mF1) on LoveDA; 0.98%
(mlIoU) and 0.68% (mF1) on Potsdam; and 0.49% (mloU) and
0.15% (mF1) on Vaihingen. It is obvious that the performance
of the proposed method is significantly improved with relatively
few computing resources.

V. CONCLUSION

In this article, we propose an efficient U-shaped encoder
architecture that applies multiscale convolutional attention and
a cross-shaped window transformer to reconstruct UNet for
efficient HRSI segmentation. The proposed MCAT-UNet can
efficiently model long-range spatial dependency with low com-
putational complexity, extract local representations, and enhance
hierarchical multiscale targets more accurately. In particular,
MCAT-UNet achieves more complete predictions for large-scale
varied objects and small discrete multiscale objects, where the
boundaries remain accurate and smooth. A comprehensive set
of experiments and ablation studies on the LoveDA, ISPRS
Vaihingen and Potsdam datasets demonstrate the superiority of
the proposed approach compared with other related methods. We
expect this enhanced UNet design approach becoming an inter-
esting direction for future research in remote sensing semantic
segmentation.
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