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Open-Set Cross-Domain Hyperspectral
Image Classification Based on Manifold

Mapping Alignment
Xiangrong Zhang and Baisen Liu

Abstract—Cross-scene hyperspectral image (HSI) classification
using transfer learning can effectively address the challenge of in-
sufficient labeled samples in classification. The majority of existing
transfer learning methods assume consistency in feature labels be-
tween the source and target HSI. In practical situations, the target-
domain hyperspectral data are likely to contain some categories
that do not exist in the source-domain hyperspectral data. In order
to solve this problem, this article proposes an unsupervised open-set
cross-domain manifold mapping aligned method for target-domain
HSI classification. This method designs manifold embedding maps
to align the spectral–spatial features of hyperspectral in differ-
ent scenes. The spectral–spatial feature data are mapped to the
subspace using both the source-domain and target-domain map-
ping matrices. Gradually, target-domain samples are chosen for
pseudolabeling within the shared subspace, while samples from un-
known classes are rejected. This method achieves subspace learning
and pseudolabeled sample updating through iteration, reducing the
intraclass distance of all the classes and pushing rejected target data
away from known classes. Experiments on the three cross-domain
hyperspectral data pairs demonstrate that the proposed method
outperforms related state-of-the-art methods.

Index Terms—Domain adaptation, open set, transfer learning.

I. INTRODUCTION

RAPID advancements in computer data processing technol-
ogy and detector technology have significantly contributed

to the development of hyperspectral imaging spectrometers,
thereby greatly promoting the field of remote sensing technology
[1]. Hyperspectral images (HSIs) captured by hyperspectral re-
mote sensing platforms usually contain dozens or even hundreds
of spectral bands [2]. HSIs have the high spectral resolution, and
the rich spectral information of HSI can be used for fine-ground
object recognition [3]. Due to their rich repository of spectral
and spatial information about ground objects, HSIs find broad
applications in agriculture [4], [5], military contexts [6], [7],
environmental studies [8], ecology [9], and various other fields.
HSI feature classification has always been a hot research topic
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[10], [11], [12]. The evolution from traditional manual features
to deep feature extraction [13], [14] has significantly enhanced
the performance of remote sensing image feature classification
[15]. However, the majority of HSI classification methods focus
solely on classifying a single remote sensing image and require
sufficient labeled data. In practical situations, the labeling of HSI
is time-consuming and laborious. The annotation information in
a newly acquired HSI is often limited and cannot directly achieve
high-precision classification. Since there are insufficient labeled
samples in a single scene, the cross-scene transfer learning
method can be used to assist classification with the help of
other data with rich labels and similar ground object scenes.
Similar labeled samples in the auxiliary data can serve as training
samples to classify unlabeled data and transfer sufficient sample
information from the source domain to the target scene, thereby
achieving the classification of the target scene. However, in
practical situations, the acquisition of two sets of data with
similar ground objects is often influenced by various factors,
including lighting conditions and sensor nonlinearity. Conse-
quently, using sufficient labeled hyperspectral data directly to
assist target scene classification may result in negative transfer.
Most importantly, there may be classes in the target HSI that are
not present in the auxiliary HSI. Therefore, the main purpose of
this article is to assist the classification of target scene images
by using sufficiently labeled source scene images to improve the
classification ability of target scene images while distinguishing
unknown categories existing in the target scene images.

The cross-scene HSI classification problem can be regarded
as a multimodal problem [16]. The main problem is how to
effectively transfer the valuable information of the source field
image to the target scene HSI. Since there is spectral drift or
spectral mismatch between different HSIs, the main problem
is to solve the distribution difference between the auxiliary
source hyperspectral data and the target hyperspectral data.
With the development of machine learning algorithms, transfer
learning can solve the problem of different distributions between
the source domain and the target domain [17], [18], [19]. In
traditional transfer learning methods, they can be divided into
data-centric methods [20] and subspace-centric methods [21],
[22]. The joint distribution adaptation method [23] reduced the
difference in the marginal and conditional distribution between
domains. Cross-domain landmark selection method [24] learns
a domain-invariant feature subspace to adapt the distribution of
two domains. In the field of remote sensing, Tuia et al. [25]
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proposed a semisupervised manifold alignment method to
achieve multimodal remote sensing image classification. Hong
et al. [26] improved the classification capabilities of multispec-
tral data by learning the common subspaces of multispectral data
and hyperspectral data and using hyperspectral data training.
Guo et al. [27] introduced discriminative least squares and
learned two different projection matrices to learn the discrim-
inative features between multispectral data and hyperspectral
data and achieve collaborative classification of the two. With
the rapid development of deep learning, many scholars employ
deep networks to align source-domain and target-domain data
[28], [29], [30], [31], [32]. A deep adaptation network [32]
adopts the multiple-kernel maximum mean discrepancy metric
in three adaptive layers to transfer knowledge. Guo et al. [33]
utilized the local maximum mean difference to constrain the
difference in relevant subdomains between the source domain
and the target domain, and achieved good results. Zhang et al.
[34] learned nonlocal topological relationships across scene data
through a graph convolutional network and aligned the distribu-
tion between two scenes through graph optimal transmission. Qu
et al. [35] projected the source-domain HSI and target-domain
HSI into a shared abundance space through physical features
to achieve information migration. However, the above methods
all assume that the source-domain hyperspectral data and the
target-domain HSI share the same label space.

In actual situations, due to inconsistent shooting scenes, cate-
gories that do not exist in the source domain are likely to appear
in the target-domain HSI, constituting the open-set problem [36],
[37]. In the computer field, Saito et al. [38] realize the iden-
tification of unknown classes by designing a backpropagation
network. Some scholars [39], [40], [41], [42] realize open-set
domain adaptation by improving the transferability between
domains. Nevertheless, existing methods are not suitable for re-
mote sensing images because the interclass differences between
remote sensing image categories are small. Therefore, this article
aims to classify unlabeled target-domain HSIs using labeled
source-domain HSIs while also identifying unknown classes and
achieving domain adaptation. The main contributions are given
as follows. First, a novel manifold embedding alignment algo-
rithm is designed to simultaneously achieve feature alignment of
known classes between HSIs and identify unknown class sam-
ples. This algorithm maintains the local structural characteristics
of samples through manifold structure-preserving constraints
in both the source and target domains, significantly reducing
the intraclass difference in the subspace. Second, a strategy for
identifying unknown class samples is proposed. The algorithm
iteratively updates, continuously selects, and rejects pseudola-
beled target-domain hyperspectral data. This process aims to
enhance classification accuracy, separate unknown classes from
known ones, and improve the ability to identify unknown classes.

The rest of this article is organized as follows. Section II
provides a detailed introduction to the proposed method. In
Section III, we delve into the analysis of the experimental results
obtained using the proposed method. In Section IV, the discus-
sion of the proposed method is presented. Finally, Section V
concludes this article.

II. PROPOSED METHODS

A. Motivation

Most existing hyperspectral classification methods assume
that all training and test data come from the same label space.
However, in practical applications, this assumption is often
invalid. In such scenarios, traditional classification methods
will misclassify unknown categories into known categories. To
achieve more accurate classification outcomes, it is essential not
only to accurately classify known categories but also to precisely
identify unknown categories. Therefore, the primary objective
of this article is to effectively leverage the information in the
source-domain HSI and transfer it to the target-domain HSI to
achieve the accurate separation between known and unknown
categories in the target HSI, thereby enhancing classification
accuracy.

B. Method Overview

Fig. 1 illustrates the workflow of the proposed method. Ini-
tially, the morphological operator is used to extract the mul-
tiscale spectral–spatial features of the source-domain hyper-
spectral data and the target-domain hyperspectral data, where
the multiscale spatial spectrum features of the source-domain
hyperspectral data are denoted as Xs ∈ Rds×ns , and the target-
domain hyperspectral spectral–spatial features are denoted as
Xt ∈ Rdt×nt , where ns and nt are the number of source
and target data samples, respectively, and ds and dt are the
dimensions of multiscale features. Through the adaptation of
multispectral spatial–spectral features of the two domains, the
goal of this article is to find two projection matrices Fs ∈ Rds×d

and Ft ∈ Rdt×d put the mapped source-domain hyperspectral
feature data Zs = FsXs and target-domain hyperspectral fea-
ture data Zt = FtXt in the same common subspace. At the same
time, pseudolabels are used to iterate, and unknown class data
are rejected while continuously optimizing the mapping matrix,
thereby achieving feature migration between the source-domain
hyperspectral feature data and target-domain hyperspectral data.
The method achieves the classification of unknown categories
while classifying the known categories of hyperspectral data in
the target domain. The main symbols are summarized in Table I
for clarity, where matrices are represented by bold entities.

C. Manifold Mapping Alignment

In domain adaptation, it is very important to maintain the
structural characteristics of the source domain and the target
domain, which can improve the discriminability of extracted
features. To maintain the structural information of both the
source-domain hyperspectral feature data and the target hyper-
spectral feature data, constraints are imposed using the manifold
information of the spatial–spectral features in the source-domain
hyperspectral data and the manifold information of the target-
domain hyperspectral features. These constraints ensure that the
nearest-neighbor (NN) points of the hyperspectral and target-
domain hyperspectral spatial–spectral features in the original
space remain close neighbors even after being mapped to the
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Fig. 1. Workflow of the proposed method.

TABLE I
SUMMARY OF MAIN SYMBOLS

common subspace. First, the spectral–spatial feature constraints
between the source-domain hyperspectral and target-domain
hyperspectral cross domains can be expressed as follows:

Jc =
∑
xi∈S

∑
xj∈T

(FT
s xi − FT

t xj)
2
Wc(i, j). (1)

In (1), xi and xj come from the source-domain hyperspec-
tral data and the target-domain hyperspectral data, respectively.
Minimization Js can align the features between the two domains
andWij

c measures the similarity between the source domain and
the target domain. The similarity matrix is expressed as follows:

Wc(i, j) =

{
1 ysi = ŷtj
0 else

(2)

where ysi represents the label from the source-domain hyper-
spectral feature, and ŷtj represents the pseudolabel of the target-
domain spatial spectrum feature. The pseudolabels of target-
domain hyperspectral data can be known classes or unknown
classes. Before the last iteration of the proposed method, the
hyperspectral feature data in the target domain only consider
samples that confirm selection or rejection. All other samples
are treated as uncertain, with a similarity score of 0 between
the uncertain sample and other samples. Similar to the manifold
constraints between cross-domain data, source-domain hyper-
spectral data must maintain the original spatial structure before
and after mapping to the subspace. In other words, hyperspectral
samples that are far away in the original space will also remain
far away after mapping, and vice-versa. Therefore, the manifold
constraints of source-domain hyperspectral can be expressed as
follows:

Js =
∑
xi∈S

∑
xj∈S

(FT
s xi − FT

s xj)
2
Ws(i, j) (3)

where ysi and ysj represent the labels from source-domain hyper-
spectral features. Similarly, the hyperspectral data in the target
domain that are closed before mapping must also be closed
after mapping. Since the target-domain data do not have labels,
pseudolabels are used for constraints. The manifold constraints
for target-domain hyperspectral data are given as follows:

Jt =
∑
xi∈T

∑
xj∈T

(FT
t xi − FT

t xj)
2
Wt(i, j). (4)

Minimizing the above formula can map points that are origi-
nally close in the target-domain closer. The similarity matrix is
expressed as follows:

Wt(i, j) =

{
1 ŷti = ŷtj
0 else

(5)
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where ŷti and ŷtj represent the labels from hyperspectral features
of the target domain.

D. Pseudolabel Iterative Approach

After calculating the mapping matrix, the source-domain
hyperspectral data and the target-domain hyperspectral data can
be mapped as follows:

Zs = FT
s Xs (6)

Zt = FT
t Xt. (7)

The data are labeled with pseudolabels by calculating the
category average of the multiscale spatial spectrum features.
The category average of the features is expressed as follows:

uc =
1

nc

∑
ys
i=c

zsi (8)

where nc is the number of source-domain hyperspectral data
belonging to category C. D(zt, u) is the Euclidean distance
between the target hyperspectral data and the source-domain
hyperspectral data; the pseudolabel of the target-domain hyper-
spectral data can be expressed as follows:

ŷt = argmin
c

D(zt, u). (9)

The probability is calculated as follows:

p(ŷt = c) =
e−D(zt,u)∑
c e

−D(zt,u)
. (10)

Let the total number of runs of the algorithm be T. In the
tth cycle, the first ŷt = (t+ 1)/T samples are selected for the
next pseudolabel learning. The NN algorithm is used to identify
unknown categories. In other words, a hyperspectral sample
under test is rejected if its nearest sample in the subspace
is a rejected sample. Therefore, through the above algorithm,
unknown classes can be distinguished and known classes can be
accurately classified.

E. Optimization

Definition FT = [FT
s ,F

T
t ], X

T = [XT
s ,X

T
t ], expand Jc, Js,

and Jt

Jc =
∑
xi∈S

∑
xj∈T

(
FT

s xi − FT
t xj

)2
Wc(i, j)

= 2FTX(D−W)XTF

= 2FTXLXTF (11)

where D is a diagonal matrix, D(i, j) =
∑
j

Wc(i, j), and L =

D−W is a Laplacian matrix

Js =
∑
xi∈S

∑
xj∈S

(
FT

s xi − FT
s xj

)2
Ws(i, j)

= 2FTX (DS −WS)X
TF

= 2FTXLSX
TF (12)

where Ds is the diagonal matrix, Ds(i, j) =
∑

j Ws(i, j),
Ls = Ds −Ws

Jt =
∑
xi∈T

∑
xj∈T

(
FT

t xi − FT
t xj

)2
Wt(i, j)

= 2FTX (DT −WT )X
TF

= 2FTXLTX
TF (13)

where DT is the diagonal matrix, DT (i, j) =
∑

j Wt

(i, j), LT = DT −WT .
In summary, the overall objective function can be obtained by

adding the above constraints

J = Jc + αJs + (1− α)Jt
= FTXLXTF+ αFTXLSX

TF+ (1− α)FTXLTX
TF
(14)

where the parameter α is used to control the weight contribution
of the two constraint items. Therefore, the target vector that
needs to be solved in the problem is

F∗ = argFs,FT
min Jc + αJs + (1− α)Jt

= argFs,FT
minFTXLXTF+ αFTXLSX

TF

+ (1− α)FTXLTX
TF. (15)

It can be seen that the above formula is a generalized
Rayleigh quotient problem. According to the mathematical so-
lution method, the solution of this formula is the eigenvector
corresponding to the largest generalized eigenvalue

X(L+ αLS + (1− α)LT )X
T . (16)

When d >1, the transformation projection matrix can be
formed by taking the eigenvectors corresponding to the first d
largest nonzero eigenvalues.

III. EXPERIMENTAL RESULTS AND RESULT ANALYSIS

A. Data Description

In this section, three sets of hyperspectral datasets, Houston
2013–Houston 2018, PaviaC–PaviaU, and Dioni–Loukia, are
employed to verify the effectiveness of the proposed algorithm.

1) Houston 2013–Houston 2018: The first sets of cross-
domain datasets are Houston 2018 and Houston 2013 data, in
which Houston 2018 data are used as the source domain to
classify the target-domain Houston 2013 data. The Houston
2013 data size is 1905 × 349, including a total of 144 spectral
bands, and the Houston 2018 data size is 955 × 209, with 48
spectral bands. In order to better conduct experiments, this article
selected the 2018 Houston image and the 2013 Houston image
of 954 × 209 pixels. Fig. 2 shows the false color map and
ground-truth map of the source-domain and target-domain data.
The category and quantity settings of the experimental data are
shown in Table II.

2) PaviaC–PaviaU: The second dataset is Pavia University
(PaviaU) and Pavia Center (PaviaC). In the experiment, PaviaC
data are used as source-domain data, and PaviaU data are used
as target-domain data. Both the PaviaC and PaviaU sets were
acquired by the DAIS hyperspectral sensor. Among them, the
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Fig. 2. Pseudocolor image and ground-truth map of Houston 2013–Houston 2018 dataset. (a) Pseudocolor image of Houston 2013. (b) Pseudocolor image of
Houston 2018. (c) Ground-truth map of Houston 2013. (d) Ground-truth map of Houston 2018.

Fig. 3. Pseudocolor image and ground-truth map of PaviaC–PaviaU dataset. (a) Pseudocolor image of PaviaC. (b) Pseudocolor image of PaviaU. (c) Ground-truth
map of PaviaC. (d) Ground-truth map of PaviaU.

TABLE II
INFORMATION FOR THE HOUSTON 2013–HOUSTON 2018 DATASET

size of the former is 1096 × 715 pixels, and the number of
bands is 102. The size of the PaviaU image is 610 × 340 pixels,
and the number of spectral bands is 103. The false color maps
and ground-truth maps of PaviaU and PaviaC are shown in
Fig. 3. Detailed experimental configurations for the datasets are
provided in Table III.

3) Dioni–Loukia dataset: The Dioni–Loukia dataset was re-
leased by the International Society for Photogrammetry and
Remote Sensing (ISPRS) Scientific Initiatives and sourced from
the EO-1 satellite, including both Dioni and Loukia datasets. In
the experiments of this article, Dioni data serve as source-domain

TABLE III
INFORMATION FOR THE PAVIAC–PAVIAU DATASET

data, and Loukia data are designated as target-domain data. The
size of Loukia is 249 × 945 pixels. On the other hand, the Dioni
data size is 250 × 1376 pixels. Fig. 4 shows the pseudocolor
images in the experiment, while Table IV provides a detailed
overview of the experimental data settings.

B. Experimental Setting

The proposed method is compared with four related do-
main adaptation classification methods, which include close-set
domain adaptation methods and open-set domain adaptation
methods.
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Fig. 4. Pseudocolor image and ground-truth map of Dioni–Loukia dataset. (a) Pseudocolor or image of Dioni. (b) Pseudocolor image of Loukia. (c) Ground-truth
map of Dioni. (d) Ground-truth map of Loukia.

TABLE IV
INFORMATION FOR THE DIONI–LOUKIA DATASET

1) OSNN [41] is the open-set multiclass classifier that ex-
tends upon the NN classifier.

2) JDA+OSNN [23] first uses JDA to align the features of
the source domain and the target domain, and then uses
OSNN to separate unknown categories.

3) DAOD [39] learns the target classifier to classify unknown
classes by optimizing the structural risk function, joint
distribution, and open-set difference.

4) OSDA-ETD [42] identifies unknown classes by reducing
local and global distribution differences. In order to en-
sure the fairness of the experiment, we use the optimal
parameters. In the method proposed in this article, we set
the subspace dimension to 30.

C. Evaluation Index

We use overall accuracy (OA) and Kappa coefficient (KC) to
evaluate the classification effect, respectively. For the evaluation

of open-set classification, we adopt the same evaluation as
previous work, namely class-specific accuracy (CA), OS, OS∗,
and HOS. HOS is the harmonic mean of OS∗ and Unk. Unk is
the classification accuracy of the unknown class. The specific
expressions of the evaluation indicators are given as follows:

CA =

∣∣x : x ∈ Di
t ∧ ŷ(x) = i

∣∣∣∣x : x ∈ Di
t

∣∣ (17)

UNK =

∣∣x : x ∈ Dunk
t ∧ ŷ(x) = unk

∣∣∣∣x : x ∈ Dunk
t

∣∣ (18)

OS∗ =
1

C

C∑
i=1

∣∣x : x ∈ Di
t ∧ ŷ(x) = i

∣∣∣∣x : x ∈ Di
t

∣∣ (19)

OS =
1

C + 1

C+1∑
i=1

∣∣x : x ∈ Di
t ∧ ŷ(x) = i

∣∣∣∣x : x ∈ Di
t

∣∣ (20)

HOS =
2×OS∗ × UNK
OS∗ + UNK

. (21)

D. Compared With Other Methods

This section uses three cross-domain HSI datasets, the Hous-
ton 2013–Houston 2018 dataset, the Dioni–Loukia dataset, and
the PaviaC–PaviaU dataset, to verify the effectiveness of the
proposed method. To prevent unexpected errors, we conducted
ten independent experiments and calculated the average accu-
racy. In each set of experiments, 5% of the samples from the
source-domain hyperspectral data were employed for classify-
ing the target hyperspectral data. The experimental results are
shown in Tables V–VII, with the best classification result in
each row highlighted in bold. As shown in Table V, showing
the classification results of the Houston 2013–Houston 2018
dataset, it can be seen that the proposed method has a closed-set
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TABLE V
CLASSIFICATION RESULTS ON THE HOUSTON 2013–HOUSTON 2018 DATASET

Fig. 5. Classification map on the Houston 2013–Houston 2018 dataset. (a) OSNN. (b) JDA. (c) DAOD. (d) OSDA-ETD. (e) Ours. (f) Ground-truth map.

evaluation index OS∗ higher than the second highest method
OSDA-ETD about 8.18%.

In the open-set evaluation indicators, HOS and OS are 4.01%
and 4.66% higher than OSDA-ETD, respectively. It can be seen
that the HOS index of the JDA method is the lowest at only
23.95%. The JDA method has the worst classification effect on
the location category, with an accuracy of only 14.39%. This
is because the JDA method is designed for transfer learning of
closed sets. When unknown classes appear, the JDA method
cannot better adapt the source domain and the target domain,
and thus cannot achieve good classification results. DAOD,
OSDA-ETD, and the proposed classification method all perform
better than OSNN, which shows that the distribution and data
alignment between domains are very important in cross-domain
open-set classification. In order to further demonstrate the

classification effect of the proposed method, the classification
maps are shown in Fig. 5. It can be seen that the proposed method
is closest to the true value map. In the blue rectangular box,
most methods divide unknown classes into residential buildings’
classes. In the red rectangular box, the OSNN method, JDA
method, and DAOD method misclassify the trees category into
the grass healthy category, which may be due to some similarity
in the spectra between them. It can be seen that the proposed
method is significantly better than the other domain adaptive
methods. Tables VI and Fig. 6 show the classification results and
classification maps of the PaviaC–PaviaU dataset. It can be seen
that the proposed method achieves the optimal effect in all evalu-
ation indicators, and the classification accuracy of the method is
the highest for most categories. The OS of the proposed method
reaches 83.73%, which is better than the second-highest method
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TABLE VI
CLASSIFICATION RESULTS ON THE PAVIAC–PAVIAU DATASET

Fig. 6. Classification map on the PaviaC–PaviaU dataset. (a) OSNN. (b) JDA. (c) DAOD. (d) OSDA-ETD. (e) Ours. (f) Ground-truth map.

TABLE VII
CLASSIFICATION RESULTS ON THE DIONI–LOUKIA DATASET

OSDA-ETD. The OS∗ accuracy of the OSDA-ETD method is
better than that of DAOD. Among all classification methods, the
JDA method achieved the worst results, which may be due to
the phenomenon of negative transfer caused by the emergence
of unknown categories. The classification accuracy of the pro-
posed method for unknown categories reaches 54.7%, which is
better than the comparable cross-domain open-set classification
method. It shows that the proposed method can adapt the source
domain and the target domain and effectively separate unknown

samples, thereby achieving better classification results. In the
classification maps, it can also be seen that our method, the
classification map, of the method proposed in this article has
less noise and is smoother. For the Dioni–Loukia dataset, the
classification results are shown in Table VII and Fig. 7. It can be
seen that among these three sets of cross-scenario HSI datasets,
the classification results of Loukia are relatively poor. This may
be because the spectra of some ground objects in this dataset are
relatively similar, and the degree of distinction is significantly
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Fig. 7. Classification map on the Dioni–Loukia dataset. (a) OSNN. (b) JDA. (c) DAOD. (d) OSDA-ETD. (e) Ours. (f) Ground-truth map.

lower than that of urban scene data, such as the fourth type of
Fruit Trees and the fifth type of Coniferous Forest. However,
it can be seen that the method proposed in this article still
achieves the optimal classification results. The proposed method
achieves the best results on all evaluation indicators of OS, OS∗,
HOS, OA, and Kappa. Similar to the Houston dataset results,
the JDA method has the worst classification effect on unknown
categories, followed by the OSNN method. Although the clas-
sification accuracy of the JDA method for unknown categories
is lower than OSNN, other categories are better than OSNN,
which shows that the probabilistic adaptation between the source
domain and the target domain is very important. Our method
demonstrates the best classification effectiveness for unknown
categories at 50.76% while achieving an overall accuracy of
71.6%. Our method closely approximates the ground-truth map.
In the OSDA-ETD method, most of the unknown classes in
the lower half of the image are mistakenly divided into tree
and brick classes, while the JDA method hardly separates all
unknown classes. The OSDA-ETD method is better than the
DAOD method, indicating that the OSDA-ETD method effec-
tively reduces local and global distribution differences between
the source domain and the target domain. In the classification
result maps, as shown in Fig. 7, most of the Rocks and Sand
categories are mistakenly classified into the nonirrigated arable
land category in the JDA method, and some of the sparsely
vegetated areas’ categories are mistakenly classified into the
unknown category in the OSNN method. It can be seen from

Fig. 7 that the classification results of the method proposed
in this article are closest to the true value map, especially in
the rectangular frame part, which proves the superiority of the
proposed method.

IV. DISCUSSION

A. Alignment Performance

In order to further demonstrate the proposed method, the
t-SNE maps are used to map the features before classification.
As shown in Figs. 8–10, the source-domain data are represented
by “·”, and the target-domain data are represented by “+.” As
can be seen in Fig. 8, our method adapts the source domain
and the target domain. The intraclass distance between different
categories is reduced and the interclass distance is increased.
As shown in the figure, our method gathers unknown categories
together after mapping, which can better distinguish them from
other categories and reduce aliasing. It can be seen that, in the
OSNN method and the JDA method, the unknown category and
the Grass Healthy category are seriously aliased, so the unknown
class is mistakenly divided into the class Grass Healthy and class
Trees in the classification map. In the OSDA-ETD method, some
unknown categories and class Trees are mixed, which also lead
to the misclassification of the two categories. It can be seen in
Fig. 9 that our method perfectly adapts the source-domain and
target-domain data of the same category, such as the class Grass
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Fig. 8. t-SNE maps of the Houston 2013–Houston 2018 dataset. (a) OSNN. (b) JDA. (c) DAOD. (d) OSDA-ETD. (e) Ours.

Fig. 9. t-SNE maps of the Houston 2013–Houston 2018 dataset. (a) OSNN. (b) JDA. (c) DAOD. (d) OSDA-ETD. (e) Ours.

healthy and Grass stressed and Trees, effectively reducing the in-
traclass distance. For unknown categories, the method proposed
in this article further distinguishes unknown categories from
other known categories and also clusters unknown categories
together. Therefore, the method proposed in this article achieves

better classification results. Fig. 10 displays the mapping results
obtained from the Houston datasets. In the map, aliasing is
observed among most categories, with particularly severe alias-
ing in the JDA method. This highlights that, when unknown
categories are present, domain adaptation methods designed for
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Fig. 10. t-SNE maps of the Houston 2013–Houston 2018 dataset. (a) OSNN. (b) JDA. (c) DAOD. (d) OSDA-ETD. (e) Ours.

Fig. 11. Parameter sensitivity analysis on three datasets.

closed sets may struggle to effectively adapt between the source
domain and the target domain. The method proposed in this
article distinguishes most categories and reduces the distance
between the source domain and the target domain, such as
the class Dense Sderophyllous Vegetation and the class Sparce
Sderophyllous Vegetation.

B. Parameter Sensitivity

The proposed method mainly involves the parameter α used
to control the weight contribution of the two constraint items
from the source domain and the target domain. As shown in
Fig. 11, it demonstrates the impact of changing the parameters
within the appropriate range on the OAs’ indicators of the three
datasets. Specifically, the optimal parameter α for the Houston

2013–Houston 2018 dataset is 0.4, while it is 0.6 for both the
PaviaC–PaviaU and Dioni–Loukia datasets. In the experiment,
we used these optimal parameters.

V. CONCLUSION

In this article, we propose a cross-domain open-set classifi-
cation method, which breaks the bottleneck of existing transfer
learning methods that can only perform closed-set classification.
The method proposed in this article first extracts multiscale
spatial–spectral features of the source-domain hyperspectral
data and target-domain hyperspectral data, and then proposes
manifold embedding mapping alignment to adapt the features
between source-domain hyperspectral and target-domain HSIs.
By learning two mapping matrices, the feature data of the two
domains are mapped into a common subspace. At the same
time, the proposed method assigns pseudolabels to the target
hyperspectral data through step-by-step iteration and selection.
Through gradual iteration, the feature data of the source domain
and the target domain are continuously adapted, pushing the
unknown category data away from the known category data,
reducing the intracategory distance, and improving the discrim-
inability of the features. Compared with the state-of-the-art
methods, the method proposed in this article achieves better
results on three sets of hyperspectral datasets, indicating the
effectiveness of the method proposed in this article. In the
future, we will conduct research on open-set classification of
cross-modal data.
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