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ICESat-2 and Multispectral Images Based Coral
Reefs Geomorphic Zone Mapping Using

a Deep Learning Approach
Jing Zhong , Jie Sun , and Zulong Lai

Abstract—The coral reef geomorphic zone classification
(CRGZC) map can provide a wealth of information for coastal man-
agement and protection. Remote sensing plays an important role in
CRGZC by virtue of its speed, wide range, and low cost. Although
many excellent results have been achieved in this field, there are
still some shortcomings. With the development of machine learning,
such methods are gradually introduced to CRGZC, yet the research
and application of deep learning methods are still relatively few.
In this article, based on ICESat-2 data and multispectral images,
a deep learning model coupled with convolutional neural network
(CNN) and random forest (RF) was proposed for coral reef geomor-
phic zone classification (CR_CRGZC). First, the priori bathymetry
points were extracted from ICESat-2. Then, a near-shore
bathymetry map was generated using a log-ratio model. Finally, to-
pographic data and multispectral images were combined to achieve
CRGZC through CR_CRGZC. The northeastern part of Coffin
Island (CI) and the southern part of Punta Vaquero (PV) in Puerto
Rico Island were selected as study areas. By comparing the clas-
sification results with those of CNN, RF, and maximum likelihood
classification, CR_CRGZC outperformed the other classification
methods. By quantitative analysis, the OA and Kappa coefficients of
CR_CRGZC were 91.91% and 0.9013 in the CI region; and 89.91%
and 0.8735 in the PV region, respectively. Under the same environ-
mental requirements, this approach can map high-precision sub-
meter CRGZC maps, providing a database for dynamic coral reef
habitat mapping, which contributes to marine coastal ecosystem
protection and coastal underwater topography monitoring.

Index Terms—Coral reef geomorphic zone classification
(CRGZC), deep learning, ICESat-2, multispectral image,
nearshore bathymetry.

I. INTRODUCTION

CORAL reefs are of great ecological and socio-economic
importance. However, coral reefs are facing many threats,

including climate change, marine pollution, and overfishing.
These threats are harming marine life and their habitats, which
in turn affects humans and the entire planet. Marine ecosystem
assessments and ocean management are necessary to protect
and preserve marine ecology, as well as for sustainable develop-
ment of the oceans, monitoring of environmental changes in

Manuscript received 26 June 2023; revised 28 January 2024; accepted 25
April 2024. Date of publication 6 May 2024; date of current version 23 May
2024. This work was supported by the National Natural Science Foundation of
China under Grant 42171373. (Corresponding author: Jie Sun.)

The authors are with the School of Geography and Information Engi-
neering, China University of Geosciences, Wuhan 430074, China (e-mail:
jingzhong@cug.edu.cn; jiesun@cug.edu.cn; laizulong@cug.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2024.3396374

the oceans, and trends in the evolution of underwater struc-
tures. Coral reef geomorphic zone classification (CRGZC) maps
provide effective tools for marine coastal ecosystem condition
assessment and ocean management, which are of great economic
value and environmental significance for humans [1]. CRGZC
schemes are constantly evolving and increasing with human
needs. The uncertainty of the scheme is due to the complexity
of underwater geomorphology, the habitats of coral reefs, and
the different roles of classification [2].

The classification and definition of coral reef geomorphology
have been controversial since the beginning of modern scientific
studies of the coral reef in the early 1980s. However, many at-
tempts have been made to solve the problem of inconsistent clas-
sification schemes, a globally applicable or complete solution
has not been found. This is the case because CRGZC schemes are
influenced by the available knowledge and the practical context,
and coral reef areas are multipurpose with studies that are closely
related to multiple disciplines. At the same time, because of the
complexity of coral reefs and the different roles of classification,
no single CRGZC scheme can serve all researchers for their
own particular purposes equally. Numerous CRGZC schemes
have been developed, which are mainly constructed based on
topography, species richness, and spatial coverage [3], [4]. To
study the intrinsic properties of coral reef underwater discrete ge-
omorphic zone systems, Short and Hesp [5], and Nordstrom [6]
conducted thematic CRGZC. Maxwell [7] and Purkis et al. [8]
classified marine coral reef ecosystems for monitoring marine
coral reef ecosystems. Wright and Short [9], Masselink [10], and
Nunn [11] implemented marine coral reef zone management and
planning through CRGZC. Kendall [12], and Monaco et al. [13]
developed special classification schemes in order to define and
describe underwater benthic habitats of coral reefs. These clas-
sification schemes range from site-specific or subject-specific
classification types to classification methods that cover large
geographic areas [14], [15]. None of these CRGZC schemes
are mutually exclusive, and they will overlap in some respects.
Kendall [12], and Kennedy et al. [16] have proposed an eco-
logical CRGZC scheme: the coral reef geomorphology always
can be divided into Shoreline/Intertidal, Lagoon, Back reef, Reef
crest, Fore reef, and Bank/shelf. Although this classification sys-
tem is not a detailed classification of coral reef geomorphology
in large biogeographic regions, this category is able to cover
all topographic features of the marine coastal shallows, while
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having greater consistency. Based on the scheme, this article will
provide a high-resolution, high-accuracy topographic database
for the next step of a more detailed classification of coral reef
benthic habitats.

In recent decades, optical, acoustic, and laser means have
been used for CRGZC. The development of acoustic technology
has provided advanced technical tools for classification [17],
[18], [19]. Current CRGZC through acoustic techniques includes
single-beam, side-scan sonar, and multibeam CRGZC. Despite
the technical maturity and convenience of these methods for
exploring coral reef geomorphology types, these acoustic de-
tection systems need to be carried on platforms over water and
at low altitudes for field detection, which makes it difficult for
the acoustic techniques to perform field measurements in many
shallow or area-constrained locations [20]. Airborne LiDAR has
also been applied to CRGZC. In spite of the high accuracy and
convenience of airborne LiDAR systems in acquiring coral reef
geomorphology, they are not economical. Meanwhile, airborne
LiDAR systems cannot perform field measurements in harsh
environments and shallow or area-constrained locations [21].
Remote sensing images are widely used for CRGZC by their
advantages of wide coverage, high timeliness, and independence
from environmental and regional restrictions [22], [23]. Yet,
it is difficult to adequately characterize the complex dynamic
ecosystem of marine underwater using optical remote sensing
imagery alone. Some research has shown that the combination
of remote sensing data from multiple resources can increase the
precision of CRGZC effectively [24], [25], [26]. In particular,
underwater topographic data can compensate for the information
of features that optical images cannot provide [27], hence under-
water topographic data also play an important role in CRGZC.

Underwater topographic data are mainly extracted from
bathymetry maps. Extracting underwater topography using ex-
isting bathymetry data would always face temporal resolution
beyond the range of coral reef geomorphology changes, mean-
while, the spatial resolution is low, and the spatial resolution
cannot be matched with optical images. Hence, in order to get a
bathymetry map that meets the above-mentioned requirements,
it is necessary to implement nearshore bathymetry. Active-
passive fusion bathymetry is currently a predominant nearshore
bathymetry method [28], [29], [30], where active bathymetry
mainly relies on the in-situ bathymetry points provided by Li-
DAR. To break through the shortcomings of traditional airborne
LiDAR such as expensive, low temporal resolution, and area
limitation, scholars have tried to obtain bathymetry information
using satellite-based LiDAR. Many scholars have found that
satellite-based LiDAR can also be processed to extract the
bathymetry points to meet people’s needs. Therefore, extracting
bathymetry points through a satellite-based LiDAR system grad-
ually becomes an alternative method for nearshore bathymetry
[31], [32], [33]. ICESat-2 is a space-borne system that uses a 531
nm photon-counting LiDAR with higher agility and underwater
penetration [34]. The bathymetry points that meet the accuracy
requirements can be quantitatively acquired from the ICESat-2
data after preprocessing and bathymetry error correction [35].
Simultaneously, the ICESat-2 interview cycle is 91 days, which
can provide us with global underwater topographic data with

a temporal resolution to classify coral reef geomorphology
within the range of coral reef geomorphology changes. In the
study, satellite-based ICESat-2 LiDAR and multispectral remote
sensing images were employed to generate submeter coral reef
bathymetry, from which topographic data are then extracted. The
combination of topographic data and multispectral data provides
sufficient features to achieve a highly accurate classification of
coral reef geomorphology.

Machine learning was widely used for CRGZC. Mohamed
et al. [36] used a combination of towed underwater cameras
and high-resolution satellite images to achieve CRGZC through
a support vector machine and K-nearest neighbor algorithm.
Wicaksono et al. [37] and Burns et al. [38] extracted coral
reef geomorphology from multispectral remote sensing imagery
while discovering geomorphology changes over time based on
general public machine learning algorithms. As deep learning
evolves, deep learning has shown its superiority in CRGZC
[39]. Fincham et al. [40] implemented CRGZC by convolutional
neural networks (CNNs). Dang et al. [41] used traditional CNN
to divide coral reef types along the coast of Vietnam. At present,
deep learning has been used relatively few times in CRGZC. The
majority of studies have extracted coral reef geomorphic zone
categories from a single optical remote sensing image, ignoring
the importance of topographic features in coral reef geomorphic
zone categorization, which leads to relatively low accuracy in
classifying coral reef underwater geomorphic zone features. In
addition, conventional CNN tends to improve the accuracy of
CRGZC by deepening the network structure. However, training
complex network structures requires a lot of computational
resources. Furthermore, deep learning models are susceptible to
overfitting and lack of robustness, which are problems that need
to be solved by current deep learning frameworks for coral reef
geomorphic zone classification. CNN can effectively extract fea-
ture information from the images through convolutional layers,
while random forest (RF) provides different interpretations of
decision trees with better classification performance and lower
computational cost. It has been shown that coupling CNN and
RF can greatly simplify the structure of CNN and solve the prob-
lem of small-size images that cannot be downsampled multiple
times, which can reduce the computational cost and improve the
computational efficiency of the model[42], [43], [44]. Moreover,
RF has a good classification performance to make up for the
uncertainty and robustness of the CNN in classification effect
[45]. Therefore, a deep learning-based classification model cou-
pled with CNN and RF was proposed, which can combine the
highly efficient capability of CNN for extracting features with
the outstanding recognition capability of RF classifier.

In conclusion, this article proposed a deep learning model
coupled with CNN and RF for CRGZC from ICESat-2 LiDAR
and multispectral images. To begin with, bathymetry points
obtained from ICESat-2 LiDAR were used as training sam-
ples for bathymetry inversion, and the traditional logarithmic
ratio bathymetry inversion model [46] was applied to generate
bathymetry maps of the two study areas. After that, underwater
topographic features were extracted from the bathymetry maps.
Then the combined features of multispectral images and topo-
graphic features were fed into CR_CRGZC for training with the
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Fig. 1. True color images of the south of Puerto Rico Island. (a) Northeast part of Coffin Island (CI). (b) South part of Punta Vaquero (PV). The color lines show
the orbitals of ICESat-2 utilized in the study.

training samples. Finally, the trained model was used to generate
CRGZC maps for the selected study areas. To quantitatively
evaluate the classification accuracy of the method, the classical
CNN, RF, and maximum likelihood classification (MLC) were
selected as the baseline methods.

II. DATA

A. High-Resolution Multispectral Images

With sensor development, an increasing number of satellite-
based remote sensing images are available with submeter reso-
lution and abundant wavebands, which provide strong support
for bathymetry inversion and CRGZC. In this study, an open
data source provided by the National Oceanic and Atmospheric
Administration (NOAA [47]) was selected to simulate the high-
resolution satellite remote sensing images dataset. The dataset
was acquired by the Leica ADS40 digital sensor and geometri-
cally corrected. The images of the dataset include four bands
having a spatial resolution of 0.3 m: band 1 (blue), band 2
(green), band 3 (red), and band 4 (near infrared). The water
column can absorb almost all of the incident energy of band 4 and
reflect little energy. Therefore, band 4 should be avoided when
performing underwater studies. Bands 1–3 can offer clear and
abundant detailed underwater features, including information
on the optical properties of different substrates on the bottom,
water depth, and underwater topography. Two areas containing
rich coral reef habitat types and complete coral reef geomorphic
zone architecture were selected as study areas in the south of
Puerto Rico Island. Fig. 1 shows true color images for two study
areas (bands 1–3).

B. ICESat-2

In this article, the nearshore priori bathymetry training points
were extracted from ICESat-2 relying on its excellent penetrat-
ing ability. The diameter of each footprint is 17 m and the spacing

TABLE I
NEARSHORE BATHYMETRY LIDAR DATA

along the orbit is 0.7 m, which makes the spatial resolution of
ICESat-2 sufficient for this study. Moreover, after the calibra-
tion, the obtained water depths in shallow and clear water areas
can satisfy the accuracy requirements [35]. The ATL03 dataset
includes height above the WGS 84 ellipsoid, latitude, longitude,
and time and is the collection of all photons emitted by the
Advanced Topographic Laser Altimeter System instrument on
ICESat-2 observatory [48]. Each ATL03 data includes six pieces
of ground laser tracks: gt1l, gt1r, gt2l, gt2r, gt3l, and gt3r. A
strong signal track data and a weak signal track data overlap
at the same laser track position to form a group of laser track
data. Only the strong signal laser track data in each group was
used in the study to achieve the extraction of bathymetry training
points. The distribution of the used ATL03 laser tracks is shown
in Fig. 1 and the track details are shown in Table I.
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Fig. 2. Underwater topographic architecture transects.

C. Validation Data

1) Bathymetry Validation Data: In the study, topographic
and bathymetry LiDAR data of coastal islands from NOAA [50]
were used as validation bathymetry points. The vertical accuracy
of this LiDAR bathymetry data can reach ((0.252) + (0.0075 ×
d)2) m (d represents the depth) in shallow water and ((0.302)
+ (0.013 × d)2) m in deep water at 95% confidence level. The
information on the topographic LiDAR data from NOAA used
in this article is shown in Table I.

2) Classification Validation Data: To accurately evaluate the
accuracy of the CRGZC, the first-level classification result of the
Puerto Rico Benthic Habitats Map and Geomorphic Zone Clas-
sification Map [51] was selected as our classification validation
data. This data from both the geomorphic zone classification
and the surface cover classification were carefully checked and
plotted by a panel of experts while undergoing peer review.
Since the sensor detection capability is limited underwater, six
coral reef geomorphic zone categories were performed from the
shoreline to the ocean shelf, as shown in Fig. 2. Six categories
were classified from the shoreline to the ocean shelf including
shoreline/intertidal, lagoon, back reef, reef crest, fore reef, and
bank/shelf.

Shoreline/intertidal is the zone that lies between the highest
water level that can be reached at high tide and the lowest
water level at low tide. The lagoon is the sunken shallow water
zone between the shoreline/intertidal, where the topography
drops, and the back reef, where the topography rises. Due to
the need to form a sunken zone, the presence of a lagoon must
be accompanied by the presence of a raised and elevated reef
crest. The back reef is the sloping slope of the transition from
lagoon to reef crest. The reef crest is the flat protruding portion of
the reef that can surface at low tide and can be clearly identified
in multispectral remote sensing imagery. The fore reef is the
sloping zone where the raised reef crest transitions to the flat
and wide oceanic bank/shelf. The bank/shelf is the zone that
extends from the fore reef to the deep sea to the continental cliffs,
which is located in an open flat area with a moderate span of
water depth. Fig. 2 and the above representations show that there
is an obvious distinguishability of each coral reef geomorphic
zone category in terms of underwater depth, slope, slope length,
and so on. Therefore, the underwater topographic features such

as water depth, slope, slope length, etc. are precisely used
to better extract the underwater coral reef geomorphic zone
types.

III. METHODS

A. Method Overview

This study consists of the following key steps. At first,
bathymetry points were retrieved from ICESat-2 data as a
priori depth points for bathymetry inversion. Based on the
bathymetry points, a bathymetry map was generated from
the multispectral remote sensing images by the band log-
ratio model. The bathymetry map was used for topographic
analysis to generate the bathymetry digital elevation model
(BDEM [52]), slope, aspect, length, and degree of relief (RFi
[27]). Then the spectral information of multispectral images
and topographic factors were combined to put into the clas-
sification framework (CR_CRGZC). Finally, the classifica-
tion accuracy was evaluated with the classification validation
data. Besides, to estimate the classification properties of the
CR_CRGZC proposed in the study, conventional classification
approaches such as MLC, CNN, and RF were employed as the
baseline.

B. Extraction of Priori Bathymetry Points

There are five key steps to retrieve priori bathymetry points
for bathymetry inversion from ICESat-2 as follows.

1) ICESat-2 LiDAR point cloud ellipsoidal height correction.
2) Sea level and seafloor were determined based on the

confidence information and height of ICESat-2 LiDAR
point cloud.

3) ICESat-2 LiDAR point cloud denoising based on the
density-based spatial clustering of applications with noise
method [53].

4) Seafloor points refraction correction [35].
5) Difference between the corrected height of the bottom

point cloud and the height of the sea surface to obtain
the prior depth points.

The comparison of ICESat-2 LiDAR point cloud bathymetry
before and after processing is shown in Fig. 3.

Assuming that the topographic variability of the ocean bottom
is negligible during the study years and only the tidal influence on
the ocean bathymetry is taken into account, a temporal matching
of multispectral data and ICESat-2 LiDAR data is required.
The inverse bathymetry of multispectral images can be tidally
corrected by mathematical expression (1) [54], [55]

HImage = HLidar − tideLidar + tideImage. (1)

The equation above, HImage is the instantaneous pixel
bathymetry value for multispectral data acquisition; HLidar

is the instantaneous bathymetry value extracted by ICESat-2
LiDAR; tideLidar represents the instantaneous tide value when
ICESat-2 LiDAR was performing the information acquisition
(tideLidar can be obtained by consulting the ICESat-2 track
property value.); and tideImage represents the instantaneous
tide value when multispectral data were acquired, which can be
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Fig. 3. Comparison of the original ICESat-2 LiDAR point cloud and the bathymetry processed ICESat-2 LiDAR point cloud. (a) Original ICESat-2 LiDAR point
cloud. (b) Bathymetry processed ICESat-2 LiDAR point cloud.

viewed and corrected by the National Ocean Data Center [56] for
the tidal information of the study area against the corresponding
tide stations.

C. Bathymetry Inversion Model

The bathymetry inversion model adopted the traditional wave-
band log-ratio model with the model mathematical expression
shown in (2). The model is to establish a log-ratio relationship
between the off-water reflectance of the two bands of the optical
image first, then a linear model based on the log-ratio of the op-
tical image bands and the priori bathymetry value is established.

Ĥ = m1
ln (nRB)

ln (nRG)
−m0 (2)

where Ĥ denotes the priori bathymetry value; RB and RG are
the off-water reflectances for optical images in the blue and green
bands, respectively; m0 represents the offset in the linear fit, m1

denotes the fit coefficient of the linear fit between the log-ratio
of optical image bands and the priori bathymetry value; and n
is generally fixed to 1000, to make the logarithms all true and
positive.

The multispectral remote sensing image was subjected to at-
mospheric correction and glare removal. Then the blue and green
band values of the corresponding pixel points with the priori
bathymetry points on the multispectral image were extracted to
establish a log-ratio model. In the end, the corresponding pre-
processed multispectral image bands were selected to calculate
the band log-ratio values and to generate a bathymetry map at

a high spatial resolution at 0.3 m by the established log-ratio
model.

D. Deep Learning Model for CRGZC

Eight features were put into the model for training, including
three multispectral bands (red, green, and blue) and five topo-
graphic features (BDEM, slope, aspect, length, and RFi).

CNN and RF are widely used in image classification and
regression analysis. In the study, a coupled CNN and RF-based
deep learning framework was designed for coral reef geomor-
phic zone classification (CR_CRGZC). There are few studies
using coupled CNN and RF models for CRGZC applications.
CNN can extract effective image features more efficiently, while
RF solves the problem of small-size images that cannot be
downsampled multiple times and provides different interpre-
tations of decision trees with better classification performance
and lower computational cost [45]. The deep learning frame-
work (CR_CRGZC), shown in Fig. 4, used the convolution
kernel and the nonlinear activation function. Rectified linear
unit (ReLU) was selected as the activation function. The role
of the convolution kernel is to retrieve the high-dimensional
feature information from the image considering the local spatial
correlation and to extend the feature information [57], [58].
ReLU is a nonlinear adjustment of the linear transformation
between neurons [59]. ReLU calculation expression is shown
in (3). The input feature tensor is transformed by wTx+ b and
then by max(0,wTx+ b) transform as the input feature tensor
for the next convolutional layer. The use of ReLU avoids the
gradient explosion and gradient disappearance more effectively
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Fig. 4. CNN and RF fusion model (CR_CRGZC) architecture.

than the inverse gradient descent and backward propagation

f (x) = max (0, x). (3)

The equation above x is the independent variable of the entered
network; f(x) denotes the calculated value of the function.

The former part of the network consists of a classical CNN,
including three convolutional layers containing 64, 128, and 256
neurons, respectively. ReLU was added between the two con-
volutional layers to nonlinearize the linear relationship. A fully
connected layer (FC) followed the convolutional layer directly,
with the output of the final classification results performed by
the RF decision tree which provides different interpretations of
decision trees with better classification performance and lower
computational cost [42]. RF can greatly reduce the network
structure of CNN [60], [61], [62]. Multiple downsampling is
usually required to extract efficient feature information for image
classification [63]. However, the input feature tensor is 8×3×3,
which cannot be downsampled multiple times. In the study, the
RF decision tree was used to solve this problem and simplify
the neural network structure. In addition, after the experiment,
it was found that different RFs have robustness.

Three multispectral bands and five topographic factors were
fused to generate eight bands of feature images. The classifica-
tion sample points were extracted in the study area according
to the prior knowledge to generate the classification a priori
sample dataset. The feature tensors of size 8 × 3 × 3 were
fed to CR_CRGZC, with the classification category of the priori
samples of CRGZC used as model training labels. Backpropaga-
tion was used together with the optimization method (Adaptive
moment estimation, Adam) for network training. The loss func-
tion (CrossEntropyLoss) was used to calculate the loss values
for the network classification. During training, the weights of
the network were adjusted and refreshed based on the learning
rate (α = 0.001). Adam was then performed using gradient
descent and iterated continuously. The model training epoch
was set to 1000. Model training was completed when the model
finished the training count while the loss function converged.
The optimal model with the lowest error was determined as our
model. The training dataset was input into the optimal model.
After the FC, the 256 × 3 × 3 three-dimensional (3-D) feature
tensors were converted into 256 1-D feature tensors. The output
feature tensors of the FC were input into the RF, which was
used to achieve CRGZC. The output of CR_CRGZC was the
total category of the classification.

E. Accuracy Evaluation

In the study, the root mean square error (RMSE) was se-
lected to quantitatively assess the bathymetry inversion pre-
cision. RMSE can be used to determine the deviation of the
model prediction value from the true value. A smaller RMSE
indicates that the accuracy of the model bathymetry is higher.
The coefficient of determination (R2) is used to describe the
fitting effect of the model. R2 can also measure the degree of
agreement in a regression model of the forecasted and true
values. Generally, the bigger the R2, the more well the model
fits. The expressions of RMSE and R2 are shown in (4) and (5)

RMSE =

√
1

N

∑N

1
(HEstimated −HTruth)

2 (4)

R2 = 1−
∑N

1 (HEstimated −HTruth)
2

∑N
1 (H̄Estimated −HTruth)

2 (5)

where N indicates the number of samples at the vali-
dation bathymetry points; HEstimated indicates the esti-
mated bathymetry; H̄Estimated denotes the estimated aver-
age of bathymetry; and HTruth indicates the airborne LiDAR
bathymetry data provided by NOAA.

To quantitatively evaluate the precision of the proposed clas-
sification model (CR_CRGZC), MLC, RF, and CNN were em-
ployed in the comparison experiments, meanwhile, the overall
classification accuracy (OA) and Kappa coefficient were used
to measure the consistency among the CRGZC results from the
proposed classification model and the classification validation
data. Greater OA and Kappa coefficients indicate greater accu-
racy of model classification in the case of a randomly balanced
distribution of samples. The OA and Kappa coefficients are
calculated as shown in (6)–(8)

OA =
(TP + TN)

(TP + TN + FP + FN)
(6)

Pe =
(TP+FN)× (TP+FP) + (FN + TN)× (TN + FP)

N2

(7)

Kappa =
P0 − Pe

1− Pe
. (8)

In the above-mentioned equation, TP indicates the true case;
TN indicates the true counter case; FP indicates the false positive
case; FN indicates the false counter case; N indicates the number
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Fig. 5. Log-ratio model inversion bathymetry maps. (a) CI bathymetry. (b) PV bathymetry.

Fig. 6. Scatter plot measuring the correlation of the depth labels and estimated depths of the validation dataset for the bathymetry inversion. (a) Scatter plot of
depth labels and estimated depths for the CI bathymetry validation dataset. (b) Scatter plot of depth labels and estimated depths for the PV bathymetry validation
dataset.

of classification validation samples; and the value ofP0 is equal
to the OA value.

IV. EXPERIMENT RESULTS AND DISCUSSION

A. Bathymetry Maps of Models

The priori bathymetry points extracted by ICESat-2 were used
to build a log-ratio model between multispectral remote sensing
images and bathymetry. The fitted parameters m1 and m0 of the
model at CI were −0.05 and 56.62, respectively. Meanwhile,
the m1 and m0 at PV were −0.04 and 58.50, respectively. Then,
the model was used to expand the point bathymetry information
into a bathymetry map with the same spatial resolution as the
multispectral images. As shown in Fig. 5, the bathymetry maps
of CI and PV clearly show the distributions of bathymetry in
space in both areas. The predicted maximum water depth in the
CI area is 12.76 m. As the distance from the shoreline increases,

the deepness of the CI slowly increases. The maximum predicted
water depth in PV can reach 14.03 m. The water depth from
near shore to far shore deepens sharply and then becomes
shallow.

B. Accuracy Analysis of Bathymetry Estimates

The scatter plot shown in Fig. 6 depicts the correlation be-
tween the estimated bathymetry and the validated bathymetry.
The model prediction accuracy was higher in the CI region with
an RMSE of 0.91 m. The predicted and verified data had a strong
correlation with an R2 of 0.81, uniformly distributing on both
sides of the y = x line. In the PV region, with more dramatic
water depth variations, bathymetry RMSE was 1.51 m and the
accuracy of model prediction was lower. The estimated value
deviated significantly from the true value, while the correspond-
ing R2 was only 0.73. The accuracy of bathymetry inversion
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TABLE II
COMPARISON EXPERIMENTS OF DIFFERENT SIZES OF SUBIMAGES

TABLE III
COMPARISON EXPERIMENTS OF DIFFERENT FEATURE COMBINATIONS

decreases as the water depth deepens, while the complexity of
the underwater topography also affects the bathymetry accuracy.
Overall, the simple log-ratio model is capable of detecting
shallow water depth effectively within the study area of this
article.

C. Subimage Size Tuning

The size of the subimage directly affects the spatial feature
information extracted by the convolution kernel. Excessively
small subimages will ignore the geospatial coherence informa-
tion, resulting in ineffective model fitting. Excessively large size
leads to redundant feature information, excessive model training
time, and model overfitting. Therefore, an appropriate image size
should be selected. Table II shows the classification accuracy

of CR_CRGZC using subimages of different sizes (with eight
feature factors). After comparison, the 3 × 3 pixels window size
had a relatively good performance.

D. Feature Factors Combination Tuning

The model training feature factors directly affect the clas-
sification accuracy. Insufficient feature factors cause the model
unable to fit effectively, on the contrary, excessive feature factors
cause the model to be overfitted and increase the time cost of
model training. Table III shows the comparison accuracy of the
model using different combinations of features for classification
(using a 3 × 3 pixels size image). By comparing different com-
binations of feature factors, adding topographic feature factors
to the red, green, and blue band features could quickly improve
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TABLE IV
COMPARISON OF CLASSIFICATION ACCURACY FOR DIFFERENT CLASSIFICATION MODELS

the model classification accuracy. Adding BDEM, slope, aspect,
length, andRFi features to the three bands (red, green, blue), the
OA of model classification improved by 11.72%% and 12.02%
in CI and PV, respectively. By comparing the accuracy of several
feature combinations listed in this article after model training it
has been found that relatively higher classification accuracy can
be obtained by utilizing eight features (red, green, blue, BDEM,
slope, aspect, length, RFi). Consequently, the combination of
eight feature factors for model training was used in the study.

E. CRGZC Map

The final CRGZC maps of the study area were generated as
shown in Fig. 7. The comparison of the two study areas shows
that CI has a complete set of six coral reef geomorphology
categories, while PV lacks a back reef. The bathymetry map
shown in Fig. 5 demonstrates that the underwater topography of
PV is intensely changing, rising sharply to a reef crest after a
wide and flat lagoon. Hence the lack of back reef transition.
Comparing the four classification methods, the classification
results showed obvious visual differences. The classification
results of CR_CRGZC and RF were more uniform and com-
plete without minor classification patches, while the MLC had
obvious fine-grained classification results and CNN was not
able to extract some categories completely. RF had the error of
misclassifying the center of some categories and CRCZ made
an improvement in this problem. In general, CR_CRGZC could
extract the different categories of coral reef geomorphology
more completely, simultaneously improving the problems of
classification refinement and misclassification. In contrast, it
appeared that the classification results of CNN differed signifi-
cantly from the other three methods, mainly in the back reef of
CI and the lagoon of PV. CNN was unable to accurately extract
the back reef in the CI study area and the lagoon in the PV study
area.

F. Accuracy Evaluation of CRGZC

To quantitatively assess the accurate qualification of the
CR_CRGZC model, the OA and Kappa coefficients of the four
classification methods of the two study areas were calculated,
respectively, while the accuracy results of all classification meth-
ods are shown in Table IV.

From Table IV, it can be noticed that the accuracy of
CR_CRGZC was the highest among the four classification
methods in both study areas. The OA and Kappa coefficients of
CR_CRGZC are 91.91% and 0.9013 in the CI region and 89.91%
and 0.8735 in the PV region, respectively. CR_CRGZC im-
proved OA by 5.77% and 4.67% over the commonly used MLC
in the two study areas, respectively. CNN had the worst classi-
fication results in both study areas, whereas both MLC and RF
classification accuracies were slightly lower than CR_CRGZC.
Extracting high-dimensional feature information of images with
CNN and then performing feature classification by RF could
effectively improve the classification accuracy.

Comparing the classification accuracies of the two study
areas, all four classification methods had higher classification
accuracies in CI than in PV. There are two possible explanations
for this phenomenon. First, the largest water depth attainable in
the PV study area exceeds the largest water depth in the CI study
area. As the depth of the water depth increases, the water column
conditions become more complex. Therefore, bathymetry accu-
racy and CRGZC accuracy both decrease as the water depth
increases. Second, dramatic underwater topographic changes
and complex underwater overburden types can cause a decrease
in classification accuracy. It is obvious from the bathymetry map
that there are intense topographic changes in the direction of PV
away from the coast, and also from the habitat classification
map [50], it can be seen that the bottom cover type of the PV
study area is more complex, which affects the accuracy of the
classification.

Confusion matrices were generated by comparing the val-
idation dataset classification labels with the CRGZC results
of CR_CRGZC for each of the two study regions, and the
confusion matrices are shown in Fig. 8. The distribution of
misclassifications can be seen in Fig. 8. In both study areas
shoreline/intertidal could be accurately classified, with compar-
atively obvious misclassification between all other coral reef
geomorphology categories. The lack of a back reef transition
between PV’s submerged lagoon and reef crest and the intense
topographic variation make it easier to confuse the two cate-
gories when they border each other.

G. Error Analysis of CRGZC

CRGZC error sources in the study mainly include bathymetry
maps, multispectral images, and the validation dataset of
CRGZC.
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Fig. 7. CRGZC maps. (a)–(d) CRGZC maps of CI obtained by CR_CRGZC, MLC, CNN, and RF, respectively. (e)–(g) are the CRGZC maps of PV obtained by
CR_CRGZC, MLC, CNN, and RF, respectively.
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Fig. 8. Confusion matrix calculated by the labels of the validation dataset and the results of CRGZC. 0-5 of Fig. 8 indicate shoreline/intertidal, lagoon, back reef,
reef crest, fore reef, and bank/shelf, respectively. (a) Confusion matrix for CI and (b) Confusion matrix for PV.

The error of the bathymetry map leads to the error of CRGZC.
First, the extraction of bathymetry points from ICESat-2 elim-
inated most of the errors after some preprocessing work, but
the effect of the refractive index of the water body still led to
the error of the bathymetry map [64]; meanwhile, due to the
noise and multipath effects, the processed sea level and bottom
of the sea both have a certain thickness, as shown in Fig. 2,
which also generates bathymetry maps with errors; finally, in-
situ bathymetry points were employed as validation dataset in
bathymetry inversion, but it is difficult to keep in-situ bathymetry
points and optical images synchronized in time, by which the
in-situ bathymetry data precision can also be influenced by
geographic position, ocean tides, and collection methods. Over-
all, the above-mentioned three aspects can produce errors on
bathymetry maps, which lead to errors in CRGZC.

Although the multispectral remote sensing images were pre-
processed with atmospheric correction and flare removal, small
amounts of clouds and solar flares are still present in some
regions. At the same time, waves will also be present in some
reef crest regions. These errors in the images may lead to
classification errors [65]. In addition, water properties, water
turbidity, submerged geomorphology, and complex submerged
coverage types could also impact the classification precision
[66], [67], [68].

The validation data span a large period of time from other
remote sensing data. Although some methods are used to reduce
errors, changes in underwater topography, ocean tides, and the
accuracy of validation data can introduce errors [30].

H. Transferability of CR_CRGZC

The transferability of the model proposed in this article was
verified using the ground truth field data for CRGZC provided
by Roelfsema (Access to the data can be accessed Online).1

1[Online]. Available at: https://figshare.com/collections/Benthic_and_
Geomorphic_Reference_Data_for_Global_Coral_Reef_Mapping/.

Fig. 9. CRGZC maps of PR island obtained by CR_CRGZC.

Due to the limitation of ground truth field data, a limited area
of fringing reefs in the southwest of Puer Rico (PR) island
was selected. The CRGZC map obtained by CR_CRGZC is
shown in Fig. 9. From the figure, it can be seen that the model
proposed in this article is able to completely extract the coral
reef geomorphic zone types in the region. At the same time,
the accuracy of CRGZC was assessed based on the ground
truth field data and the results are shown in Table V. From the
table, it can be seen that the CR_CRGZC has higher accuracy
in classifying coral reef geomorphic zones in the PR study area.
As a whole, it seems that CR_CRGZC proposed in this article
enables the classification of coral reef geomorphic zones more
accurately and has a certain degree of transferability. At the
same time, the finding also suggested that the CRGZC scheme
proposed by Kendall is also applicable to fringing reefs with
similar geomorphic distribution.

https://figshare.com/collections/Benthic_and_Geomorphic_Reference_Data_for_Global_Coral_Reef_Mapping/
https://figshare.com/collections/Benthic_and_Geomorphic_Reference_Data_for_Global_Coral_Reef_Mapping/
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TABLE V
CLASSIFICATION ACCURACY COMPARED TO GROUND TRUTH FIELD DATA

V. CONCLUSION AND PROSPECT

In this article, we proposed a deep learning framework with
coupled CNN and RF for CR_CRGZC. Initially, bathymetry
maps of the study areas were produced using priori bathymetry
points extracted from ICESat-2 LiDAR data and multispectral
images. Then topographic analysis was performed based on the
bathymetry map. Both multispectral images and topographic
features were used for the training of the CR_CRGZC. At last,
the CRGZC map of the study area was mapped by the optimal
trained model. The MLC, CNN, and RF were used for the
comparison experiments. It could be seen from the classification
results that CR_CRGZC had better coherence and completeness.
Simultaneously, CR_CRGZC improved the finesse of classifi-
cation results of other methods.

To quantitatively assess the precision of CR_CRGZC, the
CRGZC results of CR_CRGZC were compared with the
CRGZC maps from NOAA. The comparison revealed that the
CR_CRGZC classification accuracy was significantly higher
than the other three classification methods. The OA and Kappa
coefficients of CR_CRGZC were 91.91% and 0.9013 in the CI
region and 89.91% and 0.8735 in the PV region, respectively.
The CNN classification accuracy was the lowest, whereas the
RF classification accuracy was slightly higher than the MLC.

The confusion matrix of CRGZC results of CR_CRGZC sug-
gested that it was difficult to find regularity in misclassification.
Comparing the CRGZC results of CI and PV study areas, the
CRGZC accuracy of CR_CRGZC was found to decrease with
increasing water depth, as well as drastic topographic changes
and complex topography would reduce the classification accu-
racy. Using ground truth data of CRGZC to validate that the
model has a certain degree of transferability.

We are eager to test with more datasets to propose classifi-
cation models with higher robustness and apply them to high
accuracy global scale and multitemporal CRGZC. Meanwhile,
these highly accurate CRGZC maps will be useful for coral
reef resource development, underwater geological structure, and
environmental change monitoring.

Coral reef underwater plant and animal habitats are mainly
distributed within specific coral reef underwater zone areas,
so accurate CRGZC results can help us better understand the
distribution and characteristics of underwater plant and animal
habitats. The scholars used the CRGZC maps as first-level
classification maps and based on these, second-level coral reef
underwater habitat maps were developed. Consequently, the

inclusion of high-precision coral reef geomorphic zone features
in habitats classification is eager to increase the accuracy of coral
reef underwater habitats classification.
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