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Abstract—Given the ever-growing availability of remote sensing
data (e.g., Gaofen in China, Sentinel in the EU, and Landsat in the
USA), multimodal remote sensing techniques have been garnering
increasing attention and have made extraordinary progress in
various Earth observation (EO)-related tasks. The data acquired
by different platforms can provide diverse and complementary
information. The joint exploitation of multimodal remote sensing
has been proven effective in improving the existing methods of
land-use/land-cover segmentation in urban environments. To boost
technical breakthroughs and accelerate the development of EO
applications across cities and regions, one important task is to build
novel cross-city semantic segmentation models based on modern ar-
tificial intelligence technologies and emerging multimodal remote
sensing data. This leads to the development of better semantic
segmentation models with high transferability among different
cities and regions. The Cross-City Semantic Segmentation contest is
organized in conjunction with the 13th Workshop on Hyperspec-
tral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS).

Index Terms—Artificial intelligence (AI), cross-city, deep
learning, hyperspectral, land cover, multimodal benchmark
datasets, remote sensing, semantic segmentation.

I. INTRODUCTION

R EMOTE sensing (RS) presents an essential and promi-
nent approach to acquiring large-scale and high-quality

Earth observation (EO) data in a short time, which significantly
advances the development of EO techniques. Nevertheless, the
traditional expert system-centric RS data analysis has almost

Manuscript received 19 January 2024; revised 31 March 2024; accepted 4
April 2024. Date of current version 29 April 2024. This work was supported in
part by the National Key Research and Development Program of China under
Grant 2022YFB3903401, in part by the National Natural Science Foundation
of China under Grant 42241109, Grant 42271350, and Grant 62201553. (Cor-
responding authors: Hao Li; Danfeng Hong.)

Please see the Acknowledgment section of this article for the author
affiliations.

The data and code used for the contest are publicly available at:
https://github.com/danfenghong/Outcome-of-the-2023-IEEE-WHISPERS-
C2Seg-Challenge.

Digital Object Identifier 10.1109/JSTARS.2024.3388464

reached its potential, and thus, becomes insufficient to facilitate
the increasing demand of the big EO data era, particularly when
dealing with complex urban scenes on a global scale. Artificial
intelligence (AI) techniques [1] provide one promising solution
that is capable of discovering potentially valuable knowledge
from the vast amount of existing EO data more efficiently,
enabling a fast and accurate understanding of the contemporary
urban environment.

Given advances in the development of AI models, e.g., deep
learning, there have been successful applications for numerous
RS and geoscience applications [2], [3], [4], [5], [6], [7], [8], [9],
[10], which have been proven to be particularly applicable to
urban environments where the types, characteristics, and spatial
distributions of surface elements are significantly consistent and
similar. However, the capability of adapting to diverse urban
environmental differences with highly spatio-temporal and re-
gional change remains limited. In this context, one can envision
a possible solution as being twofold: on the one hand, the joint
exploitation of multimodal RS data has been proven to help
improve the processing ability of cross-city or cross-regional
cases since the RS data acquired from different platforms or
sensors can provide richer and more diverse complementary
information. On the other hand, designing more leading-edge
AI models with a focus on promoting the generalization ability
across cities or regions is an unavoidable trend to mitigate the
semantic gap between different urban environments, making it
mutually transferable for AI-based RS data analysis.

Existing methods for semantic segmentation of RS images in
terms of the design of network architecture, module details, and
the use of loss functions have achieved promising and superior
performance [11], [12], [13], [14]. However, these models are
more often than not well-designed for individual study scenes
only. A change to another area will lead to poor model perfor-
mance, especially for cross-city or cross-region studies. To this
end, researchers have started gradually paying more attention to
the task of semantic segmentation across regions or cities.

Recently, there has been increasing research interest in the
joint use of multimodal RS data to better mine the representation
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Fig. 1. Contest banner of cross-city multimodal semantic segmentation challenge.

ability of diverse RS modalities for semantic segmentation. By
incorporating the complementary information extracted from
multimodal RS data, a more robust and reliable model can
be built for many RS image analytic tasks (e.g., change de-
tection, LULC classification, etc.). In this context, multimodal
RS data fusion is becoming an increasing field to break out
of the dilemma induced by unimodal data [15]. For instance,
Hong et al. [16] aimed at the semisupervised transfer learning
challenge for cross-scene land cover semantic classification in
RS via a cross-modal deep network called X-ModelNet. More-
over, Wu et al. [17] proposed a cross-channel reconstruction
strategy for more accurate multimodal RS data classification.
In [18], Zhao et al. proposed a multiscale progressive network to
cascade three subnetworks for gradually segmenting objects into
small-scale, large-scale, and another-scale for accurate semantic
segmentation of RS data. These aforementioned methods can be
unified into a general multimodal deep learning framework for
RS-base semantic segmentation on both individual and cross-
region environments, e.g., in [19].

To boost technical breakthroughs and accelerate the devel-
opment of EO applications across cities or regions, it becomes
necessary to create multimodal RS benchmark datasets for cross-
city land cover segmentation and develop novel AI models with
high generalization ability. The cross-city multimodal semantic
segmentation (C2Seg) challenge offers a unique and timely
opportunity to fill the abovementioned important research gap
in the RS community. It is worth noting that the C2Seg dataset is
created and available openly and freely in [20], which is used for
the contest organization as the Challenge Track 1 in conjunction
with the 13th Workshop on Hyperspectral Image and Signal Pro-
cessing: Evolution in Remote Sensing (WHISPERS), Athens,
Greece 2023 as shown in Fig. 1 following a successful edition in
last year [21], which is both supported by the IEEE Geoscience
and Remote Sensing Society (GRSS) Image Analysis and Data
Fusion (IADF) Technical Committee.

The C2Seg Contest received a total of ten highly competitive
submissions from international groups, out of which the Top3
teams were announced as the winners of the challenge and
presented their solutions in the C2Seg special session during
the WHISPERS 2023 conference. In this article, we present
a holistic overview of the C2Seg Challenge by elaborating on
the methodological design of the Top3 solutions and provid-
ing an openly available code base for their implementations

Fig. 2. Visualizing C2Seg-AB datasets for semantic segmentation study scene
across Berlin and Augsburg cities in Germany using multimodal RS data. Figure
from [20].

together with the C2Seg dataset [20] itself. We hope the lessons
learned and the resources provided will lead to a huge impact in
promoting the general topic of cross-city multimodal semantic
segmentation in the general RS community.

II. DATASET AND EVALUATION

In the context of the C2Seg Challenge, we use a new collection
of multimodal RS benchmark datasets [20], including hyper-
spectral, multispectral, and SAR data, for research into cross-city
semantic segmentation (i.e., C2Seg). The C2Seg datasets consist
of two cross-city scenes as follows.

1) C2Seg-AB (Fig. 2): Berlin-Augsburg cities in Ger-
many, which are collected from EnMAP, Sentinel-2, and
Sentinel-1 satellite missions on dates as close as possible,
and accordingly preprocessed via ESA’s SNAP toolbox.

2) C2Seg-BW (Fig. 3): Beijing–Wuhan cities in China, which
are collected from Gaofen-5, Gaofen-6, and Gaofen-3
satellite missions on dates as close as possible, and pre-
processed using the ENVI software.

To generate the reference data for semantic segmentation, we
retrieved land use and land cover (LULC)-labeled data from
OpenStreetMap (OSM) LULC platform at https://osmlanduse.
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Fig. 3. Visualizing C2Seg-BW datasets for semantic segmentation study scene
across Beijing and Wuhan cities in China. Figure from [20].

org/ and considered 12 main classes that are well-defined in
OSMLULC. We manually checked annotations and completed
the semantic segmentation masks. We also included the major
street network from OSM and appended it to the existing 12
classes, which ensures the granularity and accuracy of the final
labeled data [8], [22]. This leads to 13 distinct semantic segmen-
tation categories: 0) Background, 1) Surface water; 2) Street; 3)
Urban Fabric; 4) Industrial, commercial, and transport; 5) Mine,
dump, and construction sites; 6) Artificial, vegetated areas; 7)
Arable land; 8) Permanent crops; 9) Pastures; 10) Forests; 11)
Shrub; 12) Open spaces with no vegetation; and 13) Inland
wetlands.

For the final evaluation, all submissions were evaluated with
the ground truth data by taking the average of both C2Seg
datasets (C2Seg-AB and C2Seg-BW). In total, we considered
four semantic segmentation metrics, namely, the overall accu-
racy (OA), the kappa coefficient (Kappa), the F1 score (F1),
and the mean intersection over union (mIoU). As C2Seg is a
semantic segmentation task, we decided to rank the final results
based on the mIoU scores.

III. TOP1 SOLUTION: MMGLOTS - MULTIMODAL

GLOBAL-LOCAL TRANSFORMER SEGMENTOR FOR REMOTE

SENSING IMAGE SEGMENTATION

This section introduces the multimodal global-local trans-
former segmentor (MMGLOTS), which is the first-place solu-
tion of the 2023 C2Seg Challenge. MMGLOTS is composed
of three parts: 1) a multimodal semantic feature extractor, 2) a
global–local transformer, and 3) a prediction restorer (PR). The
overall workflow of the proposed MMGLOTS is shown in Fig. 4.

A. Multimodal Semantic Feature Extractor

The design criteria of the multimodal semantic feature extrac-
tor (MMSFE) are based on the observation that multimodal data
have different characteristics. For example, the hyperspectral
image (HSI) has rich spectral information, while synthetic aper-
ture radar (SAR) can penetrate clouds and dry surface media to
some extent. Due to the fact that the multispectral image (MSI)
has the highest spatial resolution and provides critical spatial
and textural information needed for semantic segmentation, we
design an asymmetric feature modeling module, employing a

main transformer encoder to extract the spatial and semantic
information of MSIs and two weight-shared convolutional neu-
ral networks (CNN) encoders to encode the features of HSI and
SAR, respectively. Later, a global–local transformer was used to
fuse the multimodal RS data for accurate semantic segmentation.

The main transformer encoder adopts the masked image
modeling (MIM) pretrained model [1], which is suitable for
feature modeling in semantic segmentation tasks. Given an MSI
Xm ∈ RH×W×C , the main transformer encoder first projects
the input feature into a latent space RH×W×D, where D is
the dimension of the latent space. Then, the main transformer
encoder adopts a multihead self-attention module to model the
spatial and semantic information of the MSI. The output of the
main transformer encoder is denoted as X′

m ∈ RH×W×D.
The HSI encoder and SAR encoder are both composed of

a series of convolutional layers. For the sake of simplicity,
we denote the output of the HSI encoder and SAR encoder
as X′

h ∈ RH×W×D and X′
s ∈ RH×W×D, respectively. These

features from different modalities are then fused to form the
multimodal semantic feature Xmm ∈ RH×W×D, which is de-
fined as follows:

Xmm = X′
m + αX′

h + βX′
s (1)

whereα and β denote the adaptive fusion factors that are learned
during the training process, adjusting the contribution of each
modality to the final multimodal semantic feature. This multi-
modal semantic feature Xmm is then fed into the global–local
transformer.

B. Global–Local Transformer

The global–local transformer is designed to model the global
and local information of the multimodal semantic feature, fol-
lowing the design of the global–local transformer in [23]. The
global–local transformer comprises three basic components: 1)
Global attention (GA) module, 2) local attention (LA) module,
and 2) interaction module. The multimodal features are mainly
processed by the LA module, which models the representations
in a local context for complexity reduction. The GA module is
used to integrate the global dependencies to enhance the local
representations. The interaction module is designed to fuse the
global and local information and promote the interaction be-
tween individual local features, inspired by the shifted window
mechanism in [24].

C. Prediction Restorer

It is essential and effective to restore the resolution of encoded
features progressively instead of directly upsampling the low-
resolution features to the original resolution. MMGLOTS em-
beds the upsampling process into the global–local transformer,
using simple bilinear interpolation to restore the resolution of
the multimodal features. The progressive upsampling process
restores the resolution of the multimodal features by a factor of
two at each stage, which is the most common setting for visual
tasks. The restored features are further resized to the original
resolution by the PR. For the sake of simplicity, we employ a
single convolutional layer and a softmax layer to obtain the final
prediction result.

https://osmlanduse.org/
https://osmlanduse.org/
https://osmlanduse.org/
https://osmlanduse.org/
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Fig. 4. Overall framework of the Top1 solution - MMGLOTS. It contains three main components: The multimodal semantic feature extractor, the global-local
transformer, and the PR.

TABLE I
RESULTS ON THE TEST SETS ON THE TWO C2SEG DATASETS

D. Experiments and Discussion

The MMGLOTS is evaluated on two multimodal remote sens-
ing datasets of the C2Seg Challenge, i.e., the Berlin–Augsburg
(C2Seg-AB) and the Beijing–Wuhan (C2Seg-BW) datasets. For
further comparisons, we choose some single modal methods
as baseline methods, including U-Net [25], SegNet [26], and
Deeplabv3+ [27]. Furthermore, the results from the second-
place team and the third-place team are also included in the
comparison, as shown in Table I.

It can be seen that the MMGLOTS achieves the best perfor-
mance in terms of mIoU and mF1 by averaging the results on
the two datasets, with a slight decrease in OA compared to the
second-place team.

Overall, the motivation of the MMGLOTS is straightforward,
i.e., to fully exploit the characteristics of multimodal data by
an asymmetric feature modeling module, which mainly concen-
trates on the high spatial resolution modality and regards the
other modalities as auxiliary information.

IV. TOP2: MULTIMODAL UNSUPERVISED DOMAIN

ADAPTATION FOR REMOTE SENSING IMAGE SEGMENTATION.

This section introduces the multimodal unsupervised domain
adaption method of the second-place team in four parts, in-
cluding constructing the multimodal generator network, the
discriminator and adversarial strategy, the loss function, and the
postprocessing strategy.

A. Multimodal Generator Network

To enhance the integration of multimodal data [15], we devise
the multimodal generator consisting of four specific branches
that extract domain-specific information from the HSI, MSI,
and SAR, along with a shared branch dedicated to capturing the
shared information present in the concatenated multimodal data,
as depicted in Fig. 5(b). By default, we employ the Seg-HRNet
with HRNet48 [28] for the four branches due to Seg-HRNet’s
superior ability to maintain resolution and capture semantic
information.

The features extracted from the four branches are combined
using a feature pyramid network (FPN) decoder to yield the
semantic segmentation results. We utilize bilinear upsampling
to rescale low-resolution features to align with high-resolution
features while preserving the same number of channels. These
four features are concatenated and processed through a 1× 1
convolution module to generate the predicted segmentation re-
sults.

B. Discriminator Network and Adversarial Strategy

According to [29], when the model is pretrained on the source
domain and predicts an image from the same domain, the seg-
mentation output will exhibit a high level of confidence, leading
to a low entropy in the segmentation result. Conversely, when
predicting an image from the target domain, the dissimilarity in
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Fig. 5. Overall workflow of the Top2 solution, namely, the multimodal unsupervised domain adaptation network.

distribution between the target and source domains will induce
low confidence in the segmentation result, resulting in higher
entropy of the segmentation result. Based on this theory, we can
use the entropy map of the generator’s prediction as input to the
discriminator. By comparing the entropy values, the discrimi-
nator can classify the prediction into either the source or target
domain. In this article, a five-layer convolutional perceptron is
constructed for binary classification of the input entropy map,
where all convolutional layers use a kernel size of 4, a stride of
2, and a padding of 1. This enables the model to predict whether
the original image belongs to the source domain (0) or the target
domain (1).

C. Loss Function

The loss function of the multimodal unsupervised domain
adaptation method consists of three components: 1) supervised
segmentation loss for the multimodal generator using the source
domain data, 2) adversarial loss for the multimodal generator
using the target domain data, and 3) discriminant loss for the
discriminator using the source domain and target domain data.

For the supervised segmentation loss, we employ the conven-
tional cross-entropy loss function [30], [31] to minimize the dis-
parity between the segmentation results and their corresponding
reference labels, i.e.,

LCE = − 1

N

N∑

i=1

C∑

c=1

ŷic log (pic) (2)

where N is the number of labeled samples, C is the number of
categories, ŷic represents the one-hot encoded label for the ith
sample belonging to the cth class, and pic denotes the predicted
probability that the ith sample belongs to the cth class.

The binary cross-entropy function is adopted to compute the
generator’s adversarial loss, i.e.,

LAdv = BCE (ŷt, 0) (3)

where ŷt denotes the prediction result of the target domain im-
age. During this process, we keep the discriminator parameters
fixed and focus on misleading the discriminator by leading it
to believe that the prediction result of the target domain image
belongs to the source domain.

For the discriminant loss of the discriminator, we also utilize
the binary cross-entropy loss. After calculating the adversarial
loss, we keep the generator parameters fixed and enhance the
discriminator’s discriminative ability using the loss function

LDisc = BCE (ŷs, 0) + BCE (ŷt, 1) (4)

where ŷs represents the prediction result of the source domain
image.

D. Post-Processing

Inspired by our previous work [32], we further enhance the
performance by training three advanced models, including the
HRNet 32, ResNeXt 101 [33], and EfficientNet b7 [34]. These
models are selected based on their state-of-the-art performance
on other benchmark datasets, with each offering distinct network
structures that learn variable feature patterns. The predicted
results from these models and HRNet 48 are fused.

Furthermore, we observe that the MSI data effectively cap-
tures land details with its relatively high resolution. On the
other hand, the HSI data provides stable large-scale land-cover
results due to its ample spectral information. Models trained
on SAR data demonstrate remarkable performance in detecting
water bodies. To fully leverage the strengths of these different
modalities, we also train separate models using MSI, HSI, and
SAR data and then combine their results to obtain the final
land-cover maps, specifically focusing on the classes of “Street,”
“Water,” and “Arable land.”

E. Results and Discussion

Fig. 6 presents the segmentation results from different meth-
ods on the C2Seg-AB and C2Seg-BW datasets. The top row
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Fig. 6. False color images and predicted segmentation results on the C2Seg-AB and C2Seg-BW datasets of the Top2 solution.

shows the segmentation results on the C2Seg-AB dataset, while
the bottom row shows the results on the C2Seg-BW dataset. In
Fig. 6(a), a false color image of one test tile (“5_prediction.tif”)
on the AB dataset is displayed. Fig. 6(b)–(d) shows the pre-
diction results obtained using a single modality (HSI, MSI, or
SAR data) on the C2Seg-AB dataset. Fig. 6(e) shows the results
obtained using multimodal input, and Fig. 6(f) illustrates the
results obtained by our proposed method, which integrates three
modalities within the UDA framework. Similarly, Fig. 6(g)–(l)
present the corresponding images for a test tile (“4_predic-
tion.tif”) on the C2Seg-BW dataset.

As seen in Table I, the proposed method achieves the OA
of 0.5068, mIoU of 0.1851, and mF1 of 0.2631 during the test
phase, which ranks second among all methods. These results
demonstrate the effectiveness and robustness of our method.
Moreover, as seen from Fig. 6, our proposed method generates
segmentation maps that exhibit more consistent agreement with
the RGB image, both for large-scale objects such as “Water,”
and small-scale objects such as “Street.” Furthermore, different
modalities display significant variations in their ability to distin-
guish land covers [35]. For example, MSI data are more effective
for road extraction due to its high resolution [36]. In addition,
the prediction result using solely HSI data on the C2Seg-BW
dataset shows poor performance, primarily because it lacks
convergence with numerous bands for training. Similarly, the
prediction result using multimodal data also yields unsatisfac-
tory performance. Our method can leverage the strengths and
overcome the weaknesses of multimodal data to achieve better
segmentation performance.

V. TOP3: MULTIMODAL REMOTE SENSING NETWORK

Inspired by Siamese networks, a multimodal remote sensing
network (MRSN) is proposed. This section presents the MRSN
consisting of three main parts. We first introduce the overall
architecture and then provide detailed illustrations of each com-
ponent of the model, respectively.

A. Architecture

The overall structure of MRSN is shown in Fig. 7, which con-
sists of three components: 1) data preprocessing, 2) backbone,
and 3) decoder module. MRSN is designed with three branches,
where each branch corresponds to a single modality.

1) Data Processing: To maximize the utilization of the pre-
trained parameters of the backbone models, MRSN extracts two
types of three-band images from MSI. Red (R), green (G), and
blue (B) channels form RGB images that reflect the original
visual colors of objects. In addition, near-infrared (Nir), green
(G), and blue (B) channels form the GBNir images, which
are beneficial for the identification of vegetation, water, and
some other objects. To preserve the rich features, SAR images,
and HSI images are directly input into the network. Moreover,
all bands are normalized using statistical mean and standard
deviation to ensure consistent distributions.

2) Backbone: In this challenge, a convolutional neural net-
work (ConvNet) is taken as the backbone. Considering the
diverse information in multimodal data, we design three indi-
vidual backbones that do not share parameters and are trained
separately.

Due to the lower spatial resolution and smaller size of images
compared to typical computer vision tasks, the fourth stage
features of backbones are abandoned. Consequently, only three
features of different sizes are reserved for the decoder.

Considering limited computing resources, we ultimately
choose ConvNet-small as the most suitable option for this chal-
lenge.

3) Decoder: The decoder module (i.e., Uper Net I&II and
Fusion I&II in Fig. 7) operates on features from the backbones
and the segmentation heads. Considering the rich information
contained in HSI, it is designed with a single head and no interac-
tion with other data. The other branches, the RGB branch, GBNir
branch, and SAR branch, are decoded with another head. The
corresponding features from the backbones are concatenated to
produce the logit of this branch.
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Fig. 7. Overall network architecture of the MRSN proposed for the Top3 solution, which consists of three components: data preprocessing, backbone, and decoder
module (i.e., Uper Net I&II and Fusion I&II). MRSN is designed with three branches and each branch corresponds to a single modality.

Therefore, two logits are predicted from HSI and other data.
These results are further elementwise added to produce the final
interpretation result.

B. Experiment

This section begins by introducing the experiment settings.
Next, it presents the results of the experiments. Finally, it illus-
trates the comparison experiments.

1) Experiment Setting: Since the size of the C2Seg-AB and
C2Seg-BW datasets is different, two different experimental set-
tings are adopted for each of these datasets.

C2Seg-AB: We take pretrained ConvNet parameters on Ima-
geNet. To create the validation set, we take 10% of the samples,
resulting in 245 training samples. The batch size is set as 24,
and training iterations are 8200. The learning rate is initiated
as 0.0002 by reducing the learning rate by a factor of 0.5 every
1000 steps.

C2Seg-BW: We take pretrained ConvNet parameters on Im-
ageNet. 6426 samples are selected as the training part and the
remaining samples are used for validation. Due to the larger
image size and dataset size of C2Seg-BW, batch size is reduced
to 6, and training iterations are increased to 40 000 during the
training of C2Seg-BW. The decay cycle of the learning rate is
also increased to 5000.

We use the AdamW optimizer and a smoothed cross-entropy
loss combined with a dice loss for these two datasets. It is worth
noting that apart from normalization, no other data enhancement
techniques are used.

2) Experiment Result: The validation results of C2Seg-AB
and C2Seg-BW are shown in Table II. The term “C2Seg-
AB(offline)” refers to the evaluation results from our local
training on the C2Seg-AB dataset, while “C2Seg-BW(offline)”
denotes the results from our local training on the C2Seg-BW
dataset. “C2Seg(online)” represents the final results of our sub-
mitted files.

The experimental results reveal that our model exhibits high
accuracy across various indicators on the local validation set.

TABLE II
VALIDATION RESULTS OF MRSN

TABLE III
VALIDATION RESULTS OF MRSN

However, a strong change is observed when the model makes
predictions on submitted data. This disparity could potentially be
attributed to overfitting, a consequence of an excessive number
of training iterations.

3) Comparison Experiments: Due to computational limita-
tions, we first test the model’s performance on the C2Seg-AB
dataset, using a Batch Size of 12 and 2000 iterations. The
comparative results of our models are summarized in Table III,
where the mIoU metric is recorded for comparison. Notably,
the accuracy of MRSN in Table III is slightly lower due to
insufficient training, compared to the final results on C2Seg-AB
in Table II.

In our comparative experiments, UperNet was used as the
baseline for training the dataset. Initially, segmentation was
performed using only RGB images. Later, the NIR band and
SAR image were incorporated into the model, resulting in a
new branch and the creation of the MRSN-2B model. This
addition led to an increase in the mIoU metric from 0.7609
to 0.7920. With the subsequent inclusion of HSI, the mIoU
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further increased to 0.8090. Following the training of MRSN, a
four-branch architecture, the mIoU ultimately peaked at 0.8198.
These results underscore the superior performance of our model.

VI. DISCUSSION OF THE CHALLENGE: THE WINNERS

The Top3 winning teams of the C2Seg challenge have pre-
sented their solutions in the C2Seg special session during the
WHISPERS 2023 conference. They employed different strate-
gies to tackle the challenge, however, they all focused on the
feature mining of different modalities and the fusion of multi-
modal features.

1) The winning team (see Section III) proposed an MM-
GLOTS to extract the multimodal semantic features and
fuse them with the global–local transformer. The MM-
GLOTS used the cutting edge MIM pretrained model [37]
as the main transformer encoder to extract the spatial and
semantic information of the MSI, and two weight-shared
CNN encoders to encode the features of HSI and SAR,
respectively. It produced the insights that the multimodal
data have different characteristics, and it is essential and
effective to fully utilize the high spatial resolution modal-
ity and regard the other modalities as auxiliary informa-
tion. Furthermore, the features from different modalities
should be fused adaptively so that the model can fully
exploit the characteristics of multimodal data. The MM-
GLOTS achieved the best performance in terms of mIoU
and mF1 by averaging the results on the two datasets,
with a slight decrease in OA compared to the second-place
team.

2) The runner-up team (see Section IV) proposed a multi-
modal unsupervised domain adaptation method to lever-
age the strengths and overcome the weaknesses of mul-
timodal data. It has two main components: 1) the mul-
timodal generator network and 2) the discriminator and
adversarial strategy. The key idea is to use the entropy map
of the generator’s prediction as input to the discriminator,
and the discriminator can classify the prediction into either
the source or target domain by comparing the entropy
values. The method achieved the best performance in
terms of OA by averaging the results on the two datasets,
with a slight decrease in mIoU and mF1 compared to the
first-place team.

3) The third-place team (see Section V) proposed an MRSN
to fully exploit the characteristics of multimodal data.
It used three individual backbones that do not share pa-
rameters and are trained separately to extract the features
of different modalities. The main focus of the MRSN is
to fully extract the features of different modalities and
reasonably fuse them. Instead of fusing all features of
different modalities in the early stage, the MRSN first
fused the features of MSI and SAR and then fused the
features of HSI after decoding and upsampling.

VII. CONCLUSION

In this article, the outcome of the C2Seg challenge is
presented, which is organized in conjunction with the 13th

WHISPERS and with the support of IEEE GRSS IADF Tech-
nical Committee. The methods of the Top3 winning teams in
the C2Seg challenge are introduced in detail, and the results of
the challenge are presented. Considering the significance of the
multimodal remote sensing data in the context of the big EO
data era, the C2Seg challenge produces a valuable multimodal
RS benchmark dataset for cross-city land cover segmentation. It
offers the unique opportunity to help the RS community develop
novel models and methods (e.g., RS Foundation models and
self-supervised learning) for comprehensive generalization in
wide-area RS data analysis.
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