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Abstract—Multistatic phaseless synthetic aperture radar (SAR)
is a novel imaging modality that offers advantages in reduced
hardware complexity, operability at high frequencies, robustness,
jamming resistance, and improved accuracy and resolution. Illu-
mination diversity is a key facilitator in designing novel phase-
less imaging systems for applications in optics, and with growing
interest in radio-frequency sensing. In this article, we present a
novel multistatic phaseless SAR imaging method using stochastic
waveforms and the nonconvex Wirtinger flow (WF) framework
that provides performance guarantees under sufficient conditions
known to hold for certain random forward models. We present
multiple variations of the WF algorithm including different initial-
ization and regularization methods and study the tradeoffs between
the performance of our algorithms with respect to the resources
needed for phaseless multistatic imaging. Our extensive numerical
simulations show that the waveform-diverse random illumination
approach coupled with optimization-based reconstruction provides
near-exact imaging with a limited number of transmitters and a
single receiver, promoting our method for practical realization of
phaseless multistatic SAR.

Index Terms—Multi-static synthetic aperture radar, phaseless
radar, phase retrieval, Wirtinger flow.

I. INTRODUCTION

HASELESS synthetic aperture radar (SAR) is a novel,

waveform-diverse imaging approach, which may have pro-
found implications in system design, cost, and robustness for
remote sensing applications. In this article, we present a novel
multistatic phaseless SAR imaging method using stochastic
waveforms and nonconvex phase retrieval algorithms with per-
formance guarantees.

A. Motivations for Phaseless SAR

Phaseless SAR is not only a novel modality but also offers
several advantages over conventional coherent SAR. The quality
of conventional SAR imagery depends on the accurate phase
information, which is often susceptible to errors arising from
nonidealized acquisition conditions such as random motion of
antennas [1] or perturbations in the propagation medium [2].
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Such phase errors lead to significant degradation in image
reconstruction [3], [4]. The sources of these errors, on the
other hand, do not affect the amplitude of backscattered sig-
nals [5], promoting phaseless imaging as a desirable approach
in dealing with the uncertainties in antenna location or signal
trajectory [6]. In coherent sensing at high frequencies, the phase
of the received signals is often too corrupted to meet the ac-
curacy requirements of imaging [7], [8]. Difficulties directly
arise due to the interaction between the probes, the noise in
the phase demodulator in the receiver, and temperature drifts in
the circuitry [8]. Accurate recording of phases can, therefore,
be challenging above 10 GHz [4], [9], [10]. Phaseless SAR
offers the capabilities to operate at high frequencies. Thus,
synthetic aperture imaging at high-frequency bands calls for the
development of novel computational methods that are capable of
recovering targets from phaseless measurements. Furthermore,
recording intensity-only measurements requires less expensive
hardware with lower complexity on the RF back-end of an-
tenna systems compared to coherent sensing [9], [11], [12].
Additionally, stochastic waveforms have the advantage of a low
probability of intercept due to the agility of their parameters [13],
[14]. Consequently, phaseless SAR imaging contributes toward
the practical realization of multistatic SAR systems that can be
deployed on a large number of small, unmanned aerial vehicles
(UAVs) with benefits in robustness, cost, jamming resistance,
improved accuracy and resolution [15], [16], and the ability to
operate in contested environments [17], [18], [19].

B. Related Work

The aforementioned motivations have propelled the continued
interest and research on phaseless wave-based imaging and
remote sensing. To this end, the uniqueness of the inverse
scattering problem from phaseless far-field patterns with known
support and smooth boundary conditions has been studied and
established in [20], [21], [22], [23], and [24]. Xu et al. [25] have
shown that the scattered field intensities obtained in the far-field
due to superposed pairs of plane wave incident fields uniquely
determine the unknown reflectivity when there is full spatial
diversity in receive and transmit. In imaging applications with
antenna arrays, image reconstruction methods using intensity-
only data have been developed using illumination protocols,
which are designed to invoke the polarization identity [10],
[26]. These techniques use pairwise simultaneous illuminations
emitted from the array elements and are capable of recovering
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the phase of M distinct measurements, if 3)/ — 2 illuminations
are used [6]. After phase recovery, the image reconstruction is
performed using classical time-reversal methods [10], [26] or
the MUSIC algorithm for recovering pointlike scatterers [27],
[28]. In [6], the illumination protocol is extended to the setting
of synthetic aperture imaging. However, the protocol requires
sequential illumination for each fast-time frequency per loca-
tion in the synthetic aperture, thus lengthening the acquisition
process and limiting the applicability of the method to airborne
SAR.

More recently, optimization-based phase retrieval theory has
been studied and established for random forward models that
are realized from Gaussian distribution [29], [30], or coded
diffraction patterns for optical imaging using random modu-
lating masks [31], [32], [33]. While theoretically important,
these methods have been limited in their applicability to inverse
problems in radar and wave-based imaging [9], [34], [35], [36],
[37], [38] due to the mismatch between their assumptions and the
deterministic nature of forward models in conventional imaging
configurations [39], [40].

In [41], [42], [43], and [44], radar coincidence imaging (RCI)
has been developed as an alternative imaging technique for
RF sensing applications. These methods utilize multitransmitter
configurations that emit stochastic waveforms to enable illumi-
nations that approximate Gaussian statistics as the number of
transmitters increases. The foundations of RCI are based on the
computational ghost imaging modality [45], [46], [47], where
an optical image is reconstructed using a bucket detector and a
single continuous-wave laser pulse that is spatially incoherent.
While the applicability of the principles of ghost imaging is
well studied for radar with phase information, its phaseless
counterpart necessitates a spatial averaging step at the receive
end for remote sensing [48]. This requires a prohibitively large
number of receivers to obtain an analogously effective linear
reconstruction procedure in the multistatic geometry [49]. When
the number of transmitters and receivers is limited, the perfor-
mance of the linear procedure degrades in imaging extended
targets or dense point-target environments [50].

C. Our Approach and Its Advantages

In this article, we use stochastic waveforms in a multistatic
SAR configuration to generate a random forward model. Our
motivation for this is to utilize the state-of-the-art theory, meth-
ods, and algorithms of phase retrieval based on nonconvex
optimization for phaseless SAR. In particular, we use the WF
framework to solve the quadratic system of equations obtained
from the phaseless SAR data model. WF has readily established
performance guarantees for Gaussian forward models and cer-
tain coded diffraction patterns [51]. However, Gaussianity of
the forward map is not a necessary but a sufficient condition for
the exact recovery theory of WF. In [40], we have extended the
theoretical guarantees of the WF algorithm to arbitrary models.
Although our initial motivation in using stochastic waveforms
and multistatic configuration is rooted in achieving a Gaussian
forward model, our study shows that even with large deviation
from Gaussianity, i.e., using a small number of transmitters, the
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WF method has the capability of near-exact recovery. Toward
maximizing the impact of our work for applicability to different
imaging scenarios and conditions, we consider multiple algo-
rithmic modifications to the standard WF method. Namely, we
consider different initialization methods for the WF algorithm,
using standard spectral initialization and an initialization based
on Itakura—Saito divergence minimization [52]. Additionally,
we consider the impact of using ¢; regularization in the problem
formulation with limited number of measurements and in the
presence of noise. The advantages of our approach as compared
to the existing methods can be summarized as follows.

1) Unlike the linear reconstruction technique of phaseless
RCI [49], our method does not necessitate the idealized
assumptions of spatial incoherence or Gaussianity and can
reliably reconstruct images of extended targets and dense
target environments using a single receiver and a much
smaller number of transmitters than that of phaseless RCIL.

2) Our method does not require a priori support information
to overcome the limitations of the Fourier phase retrieval
problem, which arises with monostatic or bistatic SAR
configurations with conventional illumination. Further-
more, unlike the work in [25], we do not require full
spatial diversity in receive and transmit. In our method,
the limitations of Fourier phase retrieval are alleviated us-
ing illumination diversity across slow-time and fast-time
frequency samples arising through the randomness of the
transmitted waveforms.

3) Unlike the work in [6] where sequential pulsing is needed
to recover the missing phase, our method solves the
quadratic system of equations for phaseless SAR image re-
construction. Therefore, our approach alleviates the need
for increased acquisition time per antenna location and
provides improved applicability to airborne SAR.

Ultimately, our advantages stem from leveraging the funda-

mental quadratic nature of the phaseless data model and uti-
lizing the optimization-based approach for phaseless SAR. We
demonstrate that even with a very small number of transmitters,
WF-based reconstruction is capable of producing near-exact
phaseless SAR imaging using a single receiver. Furthermore,
we consider the number of transmitters and receivers within the
tradeoffs of performance and system costs for phaseless SAR
in quantifying the advantages of our method and evaluate the
performance of our algorithms with respect to the number of
transmitters, receivers, measurement noise, and pulse repetition
frequency (PRF). While we are primarily interested in radar
imaging applications, our method and algorithms are also ap-
plicable to phaseless synthetic aperture imaging using acoustic,
ultrasonic, optical, and seismic waves.

D. Organization of This Article

The rest of this article is organized as follows. Section II
presents the problem statement for phaseless SAR and the
multistatic signal model with stochastic waveforms. Section III
presents the WF framework for phaseless SAR and the algo-
rithmic variations for different imaging scenarios. Section IV
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Fig. 1.

Geometry of multistatic SAR.

presents our numerical simulations. Finally, Section V concludes
this article.

II. PROBLEM STATEMENT
A. Multistatic SAR Model

Let p : R2 — R denote the ground reflectivity function, and
U :R? — R be the ground topography function. We let the
spatial variable be x = (x, U(x)) € R3 representing the surface
of the Earth, where @ = (z1,22) € D C R2. We assume an
imaging configuration with L number of transmitters simul-
taneously illuminating a scene of interest, and K number of
receivers measuring the magnitude of the back-scattered field,
as depicted in Fig. 1. To simplify our description, without loss
of generality, we assume a side looking omnidirectional antenna
and ignore the geometric spreading factors. Let w denote the fast-
time frequency variable, and s € [Sp, S;] denote the slow-time
variable. Assuming that the receivers and transmitters traverse
the trajectories 7%, v : R — R?, under the start-stop and Born
approximations, the backscattered signal at the receiver location
can be modeled as follows [53], [54]:

fF(w, s) = FFpl(w, s) ::/ plx)F*(w, s, x)dx (1)
D

where f*(w,s) is the backscattered signal at the location of
the kth receiver, k = 1,..., K at each slow-time s € [Sp, S1].
In (1), w € [w. — B/2,w. + B/2] where w, is the carrier fre-
quency, and B is the bandwidth of the transmitted waveforms.
The kernel F*(w, s, x) is obtained from the superposition of the
L transmissions as follows:

Fk(UJ’s’:B) = E(%s,w)e’i“’”x*“/ﬁ(S)H/CO (2)

where E(w, s, ) is the incident field at «
L
i L
E<wvsaw) = Z-PZ(CU,S)eilw”x”YT(s)”/Co 3)
1=1

with P;(w, s) denoting the transmitted waveform from the Ith
transmitter at each slow-time, in the fast-time frequency domain.
Hence, F*(w, s, ) is equivalent to the scattered field due to a
point target at position x, and merely the multiplication of the
incident field E at location @, with Green’s function propagator
from « to the receiver location at slow-time s. We note that the
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geometric spreading factors were ignored in (2) and (3) in line
with the far-field and small-scene assumptions.

In phaseless SAR, our objective is to recover the scene re-
flectivity, p, from the intensity-only measurements d*, for s €
[So, S1] and w € [w. — B/2,w. + B/2], defined as follows:

d*(w,s) = |fF(w,s)]?, fork=1,...,K 4)

where | - |? denotes the modulus squared.

In conventional SAR, letting ¢ denote the fast-time variable,
the transmitted pulse is typically a linear frequency-modulated
waveform that is identical for all s as

p(b S) = exp(_iﬂatz)rect(t/T)e*iwut )

where « is the chirp-rate, 7' denotes the pulse duration, and
rect(t/T') is a windowing function of length 7', and w, is the
carrier frequency. Notably, the chirp signal has an effective
bandwidth of oT" with | P(w, s)| = 1. However, in conventional
monostatic or bistatic SAR with a single transmitter illuminat-
ing a chirp signal, the phaseless SAR problem in the far-field
reduces to the 2-D Fourier phase retrieval problem. Conse-
quently, the phaseless SAR problem in conventional geometry
and waveforms contains certain fundamental ambiguities that
are observed in the Fourier phase retrieval problem, in the form
of shift-invariance, and reflection-invariance, i.e., the inability
to recover the location of a point target from the magnitude of
its Fourier transform.

B. Stochastic Waveforms for Phaseless SAR

We assume that each transmitter is emitting the following
waveform [49]:

pi(t;s) = Ci(t, s)exp(i(wilt, s)t + ¢i(t,s)))  (6)

where w;(t, s), d1(t, s), Ci(t, s) are sampled from the uniform
distributions as follows:

wi(t,s) ~ Ulwe — B/2,w. + B/2], ¢i(t,s) ~Ul—m, 7] (T)
and
Ci(t,s) ~U[0,1], foreach t,sandl =1,...,L. (8)

The resulting incident field from the superposition of illumi-
nations from L-transmitters approaches to a Gaussian field as
L — oo via the central limit theorem [41], [49]. The increas-
ing randomness in the spatial patterns of the kernel F* with
increasing L is depicted over a small area in Fig. 2.

Our motivation in adopting these waveforms is the random-
ness of the kernel F*, arising due to the stochastic nature of
their modulation, and the superposition of the incident fields.
While phase retrieval methods were classically studied in the
context of optics and Fourier phase retrieval by leveraging prior
information and optimization-based methods [55], [56], [57],
[58], [59], the past decade has witnessed aresurgence in the theo-
retical study of the problem using statistical forward models [9],
[30], [51],[60], [61], [62], [63], [64], [65]. Existing performance
guarantees for state-of-the-art optimization methods in the phase
retrieval literature predominantly consider a forward model real-
ized from the i.i.d. Gaussian distribution for establishing exact
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Fig. 2. Sample spatial patterns of the incident field for the superposition of
stochastically sampled waveforms as (3) for L = 2, 3,4, 5 transmitters con-
tained with 2000 x 2000 m? area centered at the origin. The incident field
intensities are depicted in the temporal-frequency domain, over a 20 x 20 m?
area centered at the origin of the coordinate system. The scene is discretized into
32 x 32 pixels at 0.6-m pixel spacing at the carrier wavelength with w. = 9.6
GHz, and B = 300 MHz. (a) 2-transmitter illumination. (b) 3-transmitter illu-
mination. (¢) 4-transmitter illumination. (d) 5-transmitter illumination.

recovery of the unknown despite the nonconvex nature of the
problem [29], [51]. On the other hand, despite their theoretical
basis, these works have limited applicability to inverse problems
with conventional imaging configurations stemming from the
arising deterministic inverse scattering models.

Using the waveforms in (6) ultimately facilitates the realiza-
tion of random forward models in realistic imaging configura-
tions, thereby addressing the existing gap between the theory and
practice of phaseless imaging for remote sensing applications.

C. Motivation for Optimization-Based Phaseless SAR

In using (6), we are inspired by the RCI method in [49],
where the following linear reconstruction formula is adopted
for phaseless SAR image reconstruction:

ppr(z) = / |F*(w, s, 2)|? | /p(x)Fk(w, s, :c)d:c|2dwds.
(€))
If F* is a spatially incoherent, Gaussian field and ergodic, then
(9) recovers the following estimate of p:

pre(2) = |p(2)]* + [lplI3 E[IF" (2)[]

which is the intensity of the reflectivity function up to a bias
term.

However, for the phaseless RCI method, spatial incoherence,
Gaussianity, and ergodicity are necessary conditions for the
linear reconstruction formula in (9) to produce (10). Due to these
requirements, the treatment of phaseless SAR problem within
the coincidence imaging framework has certain limitations;
including a prohibitively large number of receivers to invoke
spatial incoherence, prohibitively large number of transmitters

(10)
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to invoke Gaussianity, and large number of measurements to
invoke ergodicity. On the other hand, our method can recover
the scene reflectivity with a limited number of measurements,
and a much smaller number of transmitters and receivers by
alleviating the necessary conditions and replacing them with
sufficient conditions for exact recovery using the established
phase retrieval framework of WF [40], [51].

III. PHASELESS SAR VIA NONCONVEX OPTIMIZATION

Optimization-based phase retrieval aims to solve the original
quadratic inverse problem defined in (1)—(4), using convex or
nonconvex methods. To formulate the optimization problem, we
start with the discretization of the model in (1).

We discretize the frequency and slow-time variables into a
total of M samples (w,s)M_; and the ground plane into N
grid points {x,}N_,. We define the entries of the discrete
measurement map as follows:

[LE]n=F*(w,8)m,@n) n=1,--N, k=1,....K.
(11)
We organize the data at the kth receiver into a vector of size M,
defined as d* = || fx((w, 8)m)|?]¥_,, such that

m=1>
dy, = |fr((w, 8)m)[* = Ly, p°)

where p* € C» models the ground truth scene reflectivity func-
tion defined as [p'],, = p(x,,).

We then address the phaseless SAR imaging problem by
solving the following optimization problem:

12)

K M
R . 1 2
b= argmin T(p) = —— 3" 3 |dk, — (L, o) 2.
peCN KM k:1m21| m m ’
(13)

Despite the ill-posed nature of the problem in (13), there has
been a significant progress in the development of provably
good algorithms in the last decade. The lifting-based convex
optimization methods provide a profound perspective in the
study of performance guarantees using low-rank matrix recovery
theory [66], [67], [68], [69], [70], [71]. However, the practical
drawbacks such as increased computational complexity and
memory requirements of these algorithms lead to the study of
nonconvex methods that operate on the original signal domain.
WF and its variants, thus, provide significant reductions in com-
putational complexity, and memory requirements per iteration,
by directly approaching the nonconvex optimization with the
factored form of a rank-1, positive semidefinite (PSD) unknown
in the equivalent lifted domain [39].

A. WF Algorithm

Using an initial estimate p”, the WF algorithm uses gradient
descent updates on p, leading to the following iterations:

Pt = pl — H‘jjJ”lz VI (o) (14)
where
_ 11 & _ _
VIP) =D 37 | 22 @ NmLi L) o7 (5)
k=1 m=1
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Algorithm 1: ¢ 1—Regularized WE.

Input. p {Lm m= lk 1’{dk}k 1
Set. 1. >0, >0, > 0,5 =0.

while [V(p7)|| > ¢ do
Step 1. Compute V.7 (p’) by (15).
Step 2. p’*! = p? — VT (p7)
Step 3. p/*1 = max(|p’ ™| — ap, 0) © /[P
Stepd.j =7+1
end while

and (e¥9),, = ((LE)H pi (p!)HLE, — d*)). Beyond the stan-
dard setting, WF has also been featured in solving regularized
phase retrieval problems. Sparse phase retrieval considers aug-
menting the loss function in (13) with the ¢; regularization as
follows:

p;. = argmin 7 (p) + A[|pll1 (16)

peCN
where A > 0 is the regularization hyperparameter that is tuned
to the desired level of sparsity in the solution. The algorithm
iterations in (14) are accordingly augmented with the proximity
operator associated with the ¢; regularizer as follows:

Palp) : = argmin fllq plls + ellallx (17)
qeCnN
=max (|p| — @, 0) ® p/|p| (18)

where o« = p, and max, ©, -/, | - | denote elementwise max-
imum, multiplication, division, and absolute value operations,
respectively. The algorithm steps for the general, ¢, regularized
WF procedure is summarized in Algorithm 1. Note that setting
A = 0 reduces Algorithm 1 to the standard WF algorithm.

Algorithm 1 consists of O(MN) multiplications for each
iteration. Solving for data collected over K receivers then results
in O(K M N) computational complexity per iteration. Note that
the sparsity-promoting step does not increase the complexity
since it is an elementwise operation. Furthermore, the ¢; reg-
ularization provides improved performance with reduced PRF
and in the presence of additive noise.

B. Initialization of WF Algorithm

The initial estimate in the WF framework is classically ob-
tained by setting p° as the leading eigenvector of the following
matrix estimate of the Kronecker scene, p'(p?)":

X, = MZdeLk (LEHH

k=1m=1

19)

which yields 1op°(p°)# from its rank-1, PSD approximation.
This is known in the literature as the spectral initialization [72],
which has a rich history in data analysis for low-rank reconstruc-
tions in matrix completion and graph clustering.

The advantage of the optimization-based nonlinear approach
over the linear reconstruction is readily observed from (19),
since linear reconstruction is equivalent to preserving only the
diagonal elements of the spectral matrix estimate X,. Hence, the
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reconstruction under the spatial incoherence assumption on the
kernel F* is equivalent to replacing the rank-1 constraint on
the underlying lifted unknown pp with that of a diagonal
matrix unknown with entries |p,,|?. For general scenes that
contain extended targets, the ergodicity assumption breaks down
with a single receiver, and ignoring the cross-terms in ppf
causes significant degradation in the reconstructed images. The
nonconvex optimization approach of WF remedies this limita-
tion and directly leverages the rank-1 and PSD structure of the
lifted unknown in solving the /NV-dimensional inverse problem.

C. Exact Recovery Guarantees via WF

Motivations for the classical spectral method are rooted in a
probabilistic perspective. By the strong law of large numbers,
under the assumption that LY, ~ A(0, 2I) 4 iN/(0, 11) for all
k=1,...,K,m=1,..., M, the spectral matrix estimate X
of the Kronecker scene tends to

E [XO} = [lp"I”I+ p*(p")"

as KM — oo, which has the true solution p? as its leading
eigenvector. Intuitively, if the empirically formed data matrix
X is concentrated around its expectation, it implies an accurate
alignment of its leading eigenvector v to the underlying ground
truth as follows:

(20)

s - Ml

where § is a small constant that describes the tightness of the
concentration, and by definition

1Xo = (lo*1PT+ o' (p >e (21)

p° = argmax v X, v.
[vi=1

(22)

Ultimately, the goal for using a spectral method is to achieve
a sufficiently large € > 0 to land within a basin of attraction
by the initial estimate, such that the algorithm converges to the
true solution, up to a global phase factor, i.e., any ptel?, with § €
[0, 27). Fori.i.d. Gaussian forward models, it is known that exact
recovery is achieved with high probability with O(N log N)
measurements [51]. For arbitrary measurement models, exact
phase retrieval via WF is established in [40] using the standard
spectral initialization if § < 0.184 in (21) for all p* € C. To
this end, Yonel and Yazici [40] present a geometric framework
that generalizes the analysis of nonconvex optimization methods
to handle arbitrary measurement models in the equivalent lifted
domain, thereby replacing assumptions based on Gaussianity
with sufficient conditions for exact recovery.

D. Design of Spectral Methods for Initialization

The sufficient condition for exact recovery with WF is tied to
the spectral initialization quality obtained from (22). Namely, the
condition in (21) requires that matching the synthesized phase-
less data with the measured phaseless data in the Euclidean-sense
yields a high correlation between the spectral estimate and the
unknown. However, even with the Gaussian forward model, this
condition is not satisfied when the number of measurements
becomes limited to O(N) [40], [64].
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Algorithm 2: Spectral Method for Initialization.

Input. {L;, }m Lk=1> {d" 1,
Set. h =T or h = h;g in (23).
Step 1. Compute the matrix estimate as:

R 1 K M
= 30 (@)L, (L)

k=1m=1

(24)

Step 2. v¥ = argmax v/ Xv
[vi=1

Step 3. p° = < (vO)HXv()) vY

In order to address this limitation and improve the initial
estimates using spectral methods, in [52], we developed a frame-
work to design spectral estimators that maximally encode the
mismatch information of the phase retrieval problem into a
correlation metric with the phaseless data using the Bregman
representation property. The framework is then used to derive
nonlinear filters on the phaseless data, denoted by h(-), which
are optimal in minimizing the choice of a Bregman divergence
function on the manifold of positive measures. One such spectral
method that has demonstrated strong empirical performance on
real-data sets for optical diffraction imaging is the Itakura—Saito
divergence minimizing nonlinear filter [52]:

1+4* _ 11d¥lh
L& N2/ (e 1L [12) i

where 4* is an estimate computed from the phaseless data d*
per each £k =1,..., K and the Bregman representative [73].
The algorithms for spectral methods are provided in Algorithm
2, where setting h to be the identity matrix I delivers the classical
spectral method in (19), and setting h as (23) delivers the
Itakura—Saito divergence minimizing spectral method.

We refer to our algorithms using the Itakura—Saito
minimization-based initialization as WF-IS, and WF-IS-¢; when
used without and with the ¢, regularization term, respectively.
Notably, using the filter in (23) adds computational complexity
to the overall procedure because the positive-definiteness of
the resulting spectral matrix estimate in (24) is broken when
h = his. Hence, the power iteration does not yield the spectral
estimate directly. However, at the cost of this computation, the
Itakura—Saito minimizing method is supported by an optimality
result for Gaussian measurement models asymptotically [52].
For imaging scenarios involving a large number of transmitters
with relatively short apertures, such as the small UAV-based SAR
described in [74], WF-IS provides an alternative to the standard
WF method to leverage the increased similarity to a Gaussian
forward map.

[hrs(A")]m = (23)

IV. NUMERICAL SIMULATIONS

In this section, we present numerical simulations to demon-
strate the performance of the WF algorithms: nonregularized
and ¢, regularized WF with classical spectral initialization, and
nonregularized and ¢, regularized WF with Itakura—Saito-based
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Fig. 3. 2-D schematic of the simulation setup (dimensions not to scale). The
transmitters traverse linear trajectories traversing along the 1 and x2 axes at
different heights. A single receiver traverses along the 25-axis. The 20 x 20 m?
target scene is located at the center of a 2 x 2 km? area.

initialization, henceforth, referred to as WF, WF-/, WEF-IS, and
WEF-IS-/4, respectively. We perform experiments to demonstrate
the following:
1) the capabilities of the WF algorithms in reconstructing
extended targets;
2) the performance of the WF algorithms with respect to the
limited number of transmitters;
3) the advantages of ¢; regularization and IS initialization in
different imaging scenarios;
4) the comparison of WF algorithms with the linear algorithm
presented in [49];
5) the robustness of the WF algorithms with respect to addi-
tive noise.
We use the normalized root-mean-squared error (NRMSE)
as a figure of merit to quantitatively evaluate the reconstruction
performance. We define the NRMSE as follows:

e =l

NRMSE := 5 —
1o*l2

(25)

where p' and p denote the ground truth and the reconstructed
images, respectively, and || - || denotes the ¢ norm.

A. Simulation Setup

Fig. 3 shows the 2-D schematic of the scene with the transmit-
ter and receiver trajectories and the target. We consider a scene
of size 20 x 20 m? with flat topography centered at (0,0) m.
The scene contains extended objects of different sizes, shapes,
and reflectivities. We discretize the scene into 32 x 32 pixels,
which results in a cell size of 0.625 x 0.625 m?. Each transmitter
emits a total of S pulses, with a pulse duration of 1 us, and
instantaneous frequencies w;(¢). The frequencies are sampled
from a discrete uniform distribution over [9.5,9.8] GHz where
the uniform distribution is discretized at 15-MHz intervals. The
amplitude C;(¢, s) and the phase ¢(¢, s) are samples from the
distributions U0, 1] and U [r, —7], respectively.
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Fig. 4.
Visual inspection of the reconstructed image in (e) shows near-exact recovery.

We assume that the transmitting and receiving antennas are
distributed over a 2 x 2 km? area and traverse linear trajecto-
ries. Some transmitters traverse along the x1-axis, and the rest
traverse along the ws-axis at altitudes of 2 km and 1.8 km,
respectively. A single receiver travels along the xs-axis at a
height of 1.8 km, as shown in Fig. 3. We choose a speed of
travel in the range of 40-60 m/s, suitable for UAV-based SAR
systems [75], [76].

B. Performance of the WF Algorithms Using Extended Targets

1) With Respect to Number of Transmitters: In this experi-
ment, we present the reconstructed images of extended targets
using a variable number of transmitters (L = 1,2, 3,4, 5). Each
transmitter emits S = 500 pulses over a trajectory length of
1600 m. Fig. 4 shows the images reconstructed by the WF
algorithm. In each case, all four WF algorithms ran for 1000
iterations. We see that with a single transmitter [see Fig. 4(a)], as
expected, WF fails to generate a successful reconstruction, since
asingle transmitter cannot provide multiple illumination needed.
As we increase the number of transmitters, the distribution
of F* approaches to Gaussianity due to the superposition of
multiple stochastic waveforms. Although Gaussianity is a suffi-
cient condition for the exact recovery theory of WF, our results
show that the WF framework can accommodate large deviations
from Gaussianity. We see that the quality of reconstructions
improves as the number of transmitters increases [as shown in
Fig. 4(b)—(d)] and a near-exact reconstruction is obtained [as
shown in Fig. 4(e)] using five transmitters. This observation is
further illustrated in Fig. 5, which shows the performance of all
four WF algorithms, in terms of NRMSE values, with respect

Reconstruction by WF using L=2

10 1 10
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0.8 0.8
5 5
0.7
0.6 0.6
0.5 0 E 0
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0.3 s s
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-10 0 -10
-10 -5 0 5 10 -
z1(m)
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Reconstruction by WF using L=3
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Reconstructed images by WF using (a) 1, (b) 2, (c) 3, (d) 4, and (e) 5 transmitters. Each transmitter emits 500 pulses over a 1600-m aperture length.

Performance w.r.t. the Number of Transmitters
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Fig. 5. Average NRMSE with respect to the number of transmitters using a
single receiver. Zero NRMSE value at five transmitters shows that WF achieves
near-exact reconstructions.

to the number of transmitters. Note that each NRMSE value is
obtained by averaging over 10 realizations of the kernel F'*.

2) With Respect to PRF: To demonstrate the effect of /;
regularization, we consider a scenario where the slow time is
sparsely sampled. We consider five transmitters traversing the
same trajectory as before (1600 m) and reduce the PRF by a fac-
tor of 1/2, i.e., S = 250. Fig. 6(a)-(d) shows the reconstructed
images using the WF algorithms. We see that the regularized
WEF algorithms [see Fig. 6(b) and (d)] reconstruct better quality
images than those of their nonregularized counterparts [see
Fig. 6(a) and (c)]. In addition, we evaluate the impact of the
regularized algorithms in terms of NRMSE values as shown
in Fig. 7, for slow-time samples, S = 50, 100,250 (PRF re-
duced by factors of 1/10, 1/5, and 1/2, respectively). Again, the
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Fig. 7. Average NRMSE w.r.t. the number of slow time samples, S =

50, 100, 250 using five transmitters. We see that the regularized WF algorithms
provide superior performance for sparsely sampled apertures.

NRMSE values are obtained by averaging over 10 realizations of
F* Tt can be clearly seen that for PRF reduction factors of 1/10
and 1/5, the regularized WF algorithms perform significantly
better than the nonregularized algorithms. We also observe that
the WF and WF-/¢; perform better than WF-IS and WF-IS-/;.
This performance can be attributed to the fact that the IS-based
initialization is optimal for Gaussian maps, which may require
the superposition of pulses from more than five transmitters.
Hence, we observe that IS loses its effectiveness compared to
the spectral initialization.

C. Reconstruction Performance of WF-1S Compared to WF

We next consider an imaging scenario in which IS-based
initialization may provide superior reconstruction performance.
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Reconstructed images by (a) WF, (b) WE-£1, (¢c) WF-IS, and (d) WF-IS-£; using 250 pulses transmitted from five transmitters.

In line with the optimality and measurement efficiency of IS ini-
tialization in [52], we consider 10 transmitters with an aperture
length of 1600 m uniformly sampled using 50 pulses. Note that
in this scenario, the number of slow-time samples is 1/10 of the
ones used to reconstruct images shown in Fig. 4, but the number
of superpositions (transmitters) is increased by a factor of 2
as compared to the one used in Fig. 4(e). With the increasing
number of transmitters, we expect I'* to have a distribution
closer to a Gaussian.

Fig. 8 shows the initial images created by the classical spectral
initialization and the IS-based initialization. Visual inspection
of these images shows that the IS-based initialization provides
recognizable structures and a smoother background, producing
an image close to the ground truth. Using this initial estimate
by IS, we further iterate up to 5000 iterations. Fig. 9(a) and
(b) shows the reconstructed images using 5 and 10 transmitters,
respectively. Clearly, in this scenario, WF-IS achieves superior
performance.

D. Performance of the WF Algorithms for Point Target
Reconstructions

In [49], it is shown that with a single receiver, the linear al-
gorithm is not effective in reconstructing extended target scenes
even with a prohibitively large number of transmitters. Hence,
we compare the performance of the WF algorithms to the linear
algorithm using point targets in an imaging configuration close
to the one used in [49]. We use L = 10 transmitters and a single
receiver where each transmitter emits 50 pulses across a 40-m
trajectory similar to the setup in [49]. For numerical evaluation,
we use the 3-dB main lobe width along the z; and =5 axes of
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the Itakura—Saito-based initialization.
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TABLE I
3-DB MAIN LOBE WIDTH OF THE POINT TARGET RECONSTRUCTIONS

3-dB Linear
main lobe aleorithm WF WEF-IS WF-¢1 | WEF- IS-{1
width (m) &
af(}s 0.7093 0.5653 | 0.42432 | 0.1995 0.1479
afjs 0.7421 0.4629 0.3384 0.0640 0.0581

the reconstructed point spread functions (PSFs) as a measure of
resolution and the foreground-to-background ratio (FBR) as a
measure of contrast. We define the contrast metric as follows:

Mean of foreground reflectivity

FBR =
St dev. of background reflectivity

(26)

where the foreground refers to the true locations of the point
targets and the background refers to the rest of the scene. The
resolution and contrast values, tabulated in Tables I and II,
respectively, are obtained by averaging over 10 realizations of
the kernel F*.

1) Resolution Analysis: In this experiment, we consider a
scene with a point target of size 0.625 x 0.625 m?, with unit
reflectivity, and placed at the (16,16)th pixel. Figs. 10 and 11
show the reconstructed PSFs, along with their profiles along the
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Initial estimated images using 10 transmitters transmitting 50 pulses across a 1600-m aperture length, by (a) the classical spectral initialization, and (b)

Reconstruction by WF-IS using 10 transmitters
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Reconstructed images by WF-IS using (a) 5 and (b) 10 transmitters traversing 1600-m trajectory and transmitting 50 pulses.

TABLE I
CONTRAST [SEE (26)] OF THE LINEAR AND WF ALGORITHMS

Figure of | Linear WF | WE-IS | WF-t; | WFIS-4;
merit algorithm

Mean

FBR 17.71 7349 | 8191 | 78321.54 | 89404.47

x1 and x4 axes, by the linear and regularized WF algorithms.
We see that the quality of the PSFs improves for the WF
algorithms, which is also demonstrated by the lower 3-dB main
lobe widths listed in Table I. It can be observed from the table
that the regularized WF algorithms (as indicated by the bold
values) outperform the nonregularized ones by denoising the
backgrounds and suppressing the sidelobes.

2) Contrast Analysis: We place four point targets, with unit
reflectivity, of size 0.625 x 0.625 m 2 at the (15,15), (15,17),
(17,15), and (17, 17) th pixels, respectively. Fig. 12(a) and (b)
shows the images reconstructed by the linear method and WF-
IS-¢1, respectively.

Fig. 12 shows that both the linear and WF algorithms re-
construct the point targets at the correct locations. However,
the image reconstructed by the linear algorithm has a noisy
background and nonuniformity in the foreground. As a result,



YONEL et al.: PHASELESS MULTISTATIC SAR IMAGING

Reconstruction with Linear Algorithm x10*
-10
14
-5 12
= 10
= 0
=
8 8
5 6
4
10
-10 -5 0 5 10
21 (m)
(@)

Fig. 10.
Reconstructed image by the linear algorithm.
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Fig. 11. Reconstructed PSFs along (a) 1 and (b) z2 axes of the images shown in Fig. 10.
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Fig. 12. Reconstructed images of point targets using 10 transmitters and a single receiver. (a) Reconstructed image using the linear algorithm. (b) Reconstructed

image using the WF algorithm with Itakura—Saito-based initialization and ¢; regularization.

images reconstructed by the linear algorithm yield low contrast,
quantified by FBR tabulated in Table II. Conversely, contrast val-
ues improve for the WF algorithms where WF-/; and WF-IS-/;
yield the highest contrast because the WF algorithms produce a
relatively uniform foreground and a denoised background due
to regularization.

E. Robustness of WF With Respect to Additive Noise

We conduct numerical simulations to evaluate the perfor-
mance of the WF algorithms (with and without regularization),
when the data are contaminated by additive noise. Here, we
consider two different noisy data models depending on the origin

of the noise. First, considering the ambient noise, we add zero-
mean complex Gaussian noise to the complex back-scattered
signal, f*(w, s), and generate the noisy phaseless measurements
as follows:

&5 = | fF(w,s) + €| 27)
where ¢ denotes the noise vector. We define the signal-to-noise
ratio (SNR) as follows:

0.2
2
O¢

SNR. = 10log;, (28)

where a?,k and o2 denote the variances of the back-scattered data
and the noise, respectively. Second, to demonstrate the impact
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Fig. 13.  Reconstructions using the WF-IS algorithm for 0-dB SNR and the data model, | f*(w, s) + €|? using (a) no regularization and (b) the ¢; regularization.
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Fig. 15.  Performance of the WF algorithms w.r.t. SNR levels using noise models. (a) | f*(w, s) + €[2. (b) d*(w, s) + €pl-

of electronic noise, we generate the phaseless measurements
contaminated with additive real Gaussian noise as follows:
k
Ypl (w7 S) =d (wv S) + €pl (29)
where €,,; denotes the real-valued Gaussian noise. In this case,
we define the SNR as

Ok

2
€pl

SNRpl =10 loglo (30)

where agk and O’Zp , denote the variances of the phaseless received
signal d and the noise, respectively.

We use the same imaging configuration described in
Section IV-A where the scene is illuminated by L = 5 trans-
mitters, transmitting S = 500 pulses, and a single receiver
traversing a 1600-m linear aperture. Using 10 noise realizations
for each SNR level, we perform reconstructions using all four
WEF algorithms. Since the performances of WF and WF-IS are
similar, we only show the images reconstructed by WF-IS and
WEF-IS-/; algorithms. Fig. 13 shows the reconstructed images
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for the noise model in (27) for 0-dB SNR and Fig. 14 shows the
images for the noise model in (29) for —10 dB SNR. In both
cases, the ¢; regularization provides improved reconstruction
quality by denoising the background.

Finally, we assess the performance of the WF algorithms by
demonstrating the NRMSE for different SNR levels. We vary the
SNR over the range, [—20, 20] dB, with a step size of 5 dB. For
each choice of SNR, we record the average NRMSEs over the 10
realizations of noise. Fig. 15(a) and (b) show the NRMSE versus
SNR plots for the noise models in (27) and (29), respectively.
For both models, the results demonstrate that whether we use
regularization or not, the reconstruction errors monotonically
decrease with increasing SNR. The graceful degradation of the
image quality with respect to increasing levels of noise shows
the robustness of the WF algorithms to additive noise.

V. CONCLUSION

Phaseless SAR is a novel imaging modality offering many
advantages including robustness, jamming resistance, reduced
hardware complexity, operability in high frequencies, and im-
proved accuracy, and resolution. In this article, we present a
novel multistatic phaseless SAR imaging method using stochas-
tic waveforms and nonconvex optimization. Our method gener-
ates a random forward map for the multistatic SAR configu-
ration, via the superposition of stochastic waveforms and the
spatial diversity of multiple transmitters. The randomness of
the forward map is motivated by the state-of-the-art theory,
methods, and algorithms in phase retrieval. Specifically, we use
the WF framework where the theory shows that under sufficient
conditions of the Gaussianity of the forward map, the WF
algorithm is guaranteed to recover the true solution. However,
our results and the deterministic theory, we developed in [77],
show that WF provides superior reconstruction results even if the
forward map deviates from Gaussianity significantly, i.e., with
a small number of transmitters. We present multiple algorithmic
variations on the WF algorithm for different imaging conditions,
including ¢, regularization for improved performance with low
PRFs and in the presence of additive noise and IS-based initial-
ization for an increased number of transmitters. Our extensive
numerical simulations demonstrate significant advantages of
our waveform diverse, stochastic transmission scheme coupled
with nonconvex-optimization-based reconstruction. We show
near-exact recovery with a small number of transmitters and
a single receiver under different imaging scenarios for extended
targets.

In the future, we will consider optimization of our imag-
ing configuration with respect to different types of transmitted
waveforms, and antenna trajectories, and analyze the exact
recovery theory for our method under non-Gaussianity assump-
tion. In this work, we employed the standard WF algorithm
using /o-based cost function. However, cost functions, such
as reverse Kullback—Leibler divergence [78] can be studied to
achieve robustness against outliers and noise. While we are
primarily interested in radar imaging applications, our method
and algorithms are also applicable to phaseless synthetic aper-
ture imaging using acoustic, ultrasonic, optical, and seismic
waves.
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