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Abstract—The task of background suppression in infrared small-
target scenarios aims to eliminate irregular noisy backgrounds
while preserving targets with high-frequency features. In infrared
small-target scenes at long distances, the backgrounds become com-
plex and the target features are degraded, highlighting a significant
disparity between the detailed and realistic background and the
limited features of the targets. To address these challenges, we
propose a patch-based semantically enhanced generative adversar-
ial network (GAN) named PSEnet for background suppression in
infrared small-target scenarios. First, we introduce a patch-scale
GAN that allows the model to concentrate on local background
suppression. This shift from a global to local perspective simplifies
the complexity of background suppression. Second, we employ the
PSE module consisting multiscale dilated convolution and adaptive
weight fusion to extract local semantic information. Third, by
segmenting the infrared image into smaller patches and resampling
them, we create a more balanced dataset for adversarial training.
Experimental results demonstrate that the proposed algorithm
significantly improves the signal-to-noise ratio of dim and small
targets, reduces the missing detection rate, and achieves a precision
of almost 91%. In conclusion, this approach effectively uses GANs
for background suppression in complex environments.

Index Terms—Background suppression, data imbalance, gene-
rative adversarial networks (GANs), multiscale feature fusion, low
Signal-to-Noise Ratio (SNR) infrared (IR) scenes.

I. INTRODUCTION

INFRARED (IR) imagery relies on variations in object ra-
diation to capture detailed images, enabling it to penetrate

through smoke, fog, dust, and snow, and identify camouflage,
making it suitable for target detection in specialized environ-
ments. The objective of IR image background suppression is
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Fig. 1. Visualization of the dim and small IR images in three different scenes.
(a) Original dim and small IR images. (b) 3-D gray-scale distribution map of
the whole IR images. (c) 3-D gray-scale distribution map of the target area.

to eliminate extraneous sources of radiation in the background
while preserving the high-frequency radiation of the target. This
technique finds wide-ranging applications in military operations,
biological observation, and other fields. However, in scenarios
where early target detection is crucial, the increased distance
between the scene and the camera results in more complex
backgrounds and compromised target features. Specifically, the
targets are often small in size and exhibit a low Signal-to-Noise
Ratio (SNR) [1]. According to the Society of Photo-Optical
Instrumentation Engineers (SPIE) [2], a target occupying less
than 0.12% of the entire IR image and with an SNR below
5 dB is considered a dim and small target. Hence, detecting
such targets with limited size and SNR presents significant
challenges, typically encounters two ahead. First, the IR targets
are generally small in size and with limited features. Second,
the dim targets are often obscured by background clutter and
significant noise, as shown in Fig. 1(b). Therefore, background
suppression plays a vital role in enhancing dim and small targets
in IR images, thus being essential for accurate target detection.

In the realm of IR dim and small-target background sup-
pression, existing techniques can be classified into two distinct
groups: 1) patch-based methods and 2) CNN-based methods [1].
These two categories encompass diverse approaches in address-
ing the aforementioned problem. Among patch-based methods,
LCM [3], [4], [5] is the predominant approach, leveraging the
human visual system (HVS) to examine local contrast informa-
tion and mitigate clutter by manually defining target features and
filtering conditions. But for complicated scenes, single-frame
patch-based methods tend to fuse the targets with noise because
of the low SNR. Other patch-based methods [6], [7], [8] utilize
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both spatial and temporal information to highlight dim targets
and suppress background noise. Apart from patch-based meth-
ods, several CNN-based techniques [9], [10], [11], [12], [13]
have been utilized for background suppression. For example,
ACM [10], DNANet [11], and AGPCNet [12] employ the U-Net
framework to generate background suppression images while
MDFAcGAN [13] leverages an adversarial generative network
to learn the distinctions between the targets and background.
With the rise of deep learning, data-driven training methods
have gained popularity. Prior research findings demonstrate that
CNN-based methods exhibit superior performance in terms of
both positive detection and false alarm rates. However, the
performance of data-driven approaches largely depends on the
quality of the training data. IR small-target imagery typically
features complex backgrounds with limited target character-
istics, creating a significant imbalance [14]. To address this,
some methods utilize data augmentation or introduce weighted
loss functions. For balanced sampling, oversampling [15] is a
straightforward yet efficacious approach that is well-established
in handling unbalanced classification problems. Building on
this, DS-GAN [16] offers a comprehensive data augmentation
pipeline for enhancing small-target detection. It generates a
diverse set of small-target samples through generative adver-
sarial networks (GANs), which require high-resolution target
images. However, such high-resolution data are scarce for IR
small-target detection scenarios. On another hand, weighted
classification losses, such as focal loss [17], may help im-
prove performance, but their effectiveness can be compro-
mised by parameter sensitivity and may not be fully effective
in extremely unbalanced situations with sparse small targets.
Therefore, accurately distinguishing targets with fewer pixels
and limited features from global images remains a challenging
task.

Although the aforementioned methods have brought some
improvements to the image enhancement of dim and small
IR targets, they also have two problems. First, the unbalanced
distribution of positive and negative samples arises due to the
small size of the target area. Second, the dim and small targets
often lack distinctive texture features and exhibit similar char-
acteristics to the background noise.

In order to address the issue of data imbalance, the select
patch (SP) module is designed for data preprocessing. This
module enables random sampling from the IR images to achieve
a balanced representation of target area patches and background
area patches. Without the SP strategy, the image pixels are
predominantly of the background class, resulting in a scarcity of
positive samples. Consequently, the data imbalance problem is
effectively resolved. In addition, the SP model augments the
number of samples available for the network to learn from,
thereby serving the purpose of expanding the dataset.

To solve the problem of noise interference through the process
of background suppression, we designed a Patch-based Seman-
tically Enhanced Network (PSEnet). As depicted in Fig. 1,
target patches exhibit consistent distributions across different
scenes while IR images from distinct scenes tend to differ
primarily due to the dominant background. The target is typically
closely associated with the local background and shows minimal

correlation with the distant background within the image. Rather
than focusing on determining the presence of a target within
an entire image, it is more advantageous to learn the distribu-
tional disparities between the target patches and the background
patches at a finer granularity. Based on that, we use the spatial
and semantic information of patches to obtain the local cor-
relation of features. Due to patch-based learning, the network
can better learn the local information of the whole image.
Specifically, the overall network adopts a GAN structure. The
generator is designed to better obtain the feature representation
of dim and small targets, possessing the following three charac-
teristics: using a shallow CNN network, fusing shallow spatial
feature maps with deep semantic feature maps and increasing
the target receptive field by dilated convolution. Moreover, as
the network focuses on the subtasks of segmenting dim and
small objects from local IR images, the overall difficulty of
background suppression is decreased. At last, the local-to-global
(LTG) module is designed to get the overall suppression result
from the patch to the whole image.

In general, the entire dim and small targets enhancement
procedure can be described in three steps. First, put the orig-
inal images and labels into the SP module to select the local
patch. Then, suppress background by the PSEnet. Finally, use
the LTG module to transfer the local background suppression
result to the overall. In summary, we propose a patch-based
adversarial learning paradigm to solve the difficulties of data
imbalance and noise interference caused by dim and small
targets. The contributions of this article can be summarized as
follows.

1) The SP module is proposed to address the challenge of
imbalanced data in small-object image enhancement. The
SP module plays a pivotal role in this task, serving two
main purposes. First, it alleviates the issue of data imbal-
ance by ensuring an equal number of positive and negative
samples. Second, it enhances the model’s focus on local
spatial information, leading to improved performance in
enhancing small objects.

2) To achieve superior enhancement of IR small-target im-
ages, we propose the GAN-based PSEnet framework.
This framework is designed to suppress the background,
enhance the SNR, and amplify the intensity of the tar-
get. Specifically, we introduce the PSE module, which
enables progressive multilayer feature fusion and texture
enhancement. Furthermore, the integration of the LTG
module facilitates the efficient propagation of local results
throughout the entire image context.

3) PSEnet achieves the best segmentation results on nine
sequences. The results prove that the background suppres-
sion method can not only improve the SNR of the dim and
small targets but also decrease the missing detection rate
in the complex scenes.

II. RELATED WORK

In this section, we briefly review the major works in patch-
based learning and CNN-based learning for IR dim and small
targets enhancement and background suppression.
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A. Patch-Based Learning for IR Dim and Small Targets
Enhancement

Based on the HVS, Chen et al. [3] proposed the LCM,
which calculates the local contrast of the image and uses the
contrast feature to enhance the target area and suppress the back-
ground. Following LCM, WLDM [18] proposes a weighted-
local-difference-measure-based scheme to simultaneously en-
hance targets and suppress background clutters and noise.
AMWLCM [4] simultaneously exploits the local contrast of the
target, the consistency of the image background, and the imaging
characteristics of the background edges. HBMLCM [5] trans-
formed the background suppression task into an optimization
problem. Different from local-contrast-based methods, some
patch-tensor-based methods [19], [20], [21], [22], [23], [24]
enhance and detect an IR dim and small object by different
strategies. For example, Top-Hat [19] and Max-Mean [20] re-
duce background clutter, and Qin et al. [21] applies the facet
kernel. MPCM [23] utilizes the mean difference of different
directions in multiscale patches to improve the stability and noise
immunity of the algorithm. LogTFNN [22] designs a new IR
patch-tensor model to have a better representation of background
rank and robustness against noise interference. However, the
aforementioned methods perform poorly when the targets are
submerged in intricate clutter. To address this, the local energy
factor (LEF) [25] conceives a local dissimilarity descriptor to
enhance targets. Other methods [26], [27], [28], [29], [30], [31]
enhance the target and suppress the background by optimizing
the sum minimization of patch singular values.

B. CNN-Based Learning for IR Dim and Small Targets
Enhancement

Traditional patch-based methods are always based on strong
prior assumptions about the IR small targets and only use gray-
scale values as features regarding the difference of semantic
context between the targets and the background. Generative
networks possess the ability to transform images or random noise
into various image styles by employing an encoding and decod-
ing structure. When combined with pixel-level loss constraints,
segmentation networks often leverage generative architectures
to generate binarizationlike probability maps. DNANet [11]
achieved progressive interactions between high-level and low-
level features by designing a dense nested interaction module.
Semantic supplementary network [32] used the dependency
relationship between labels to improve recognition accuracy.
IAANet [1] applied a region proposal network to obtain rough
object regions and filter out the background. AGPCNet [12]
proposed an attention-guided context block, a context pyramid
module, and an asymmetric fusion module to enhance the uti-
lization of features. GAN, as a subtype of generative networks,
incorporates a discriminator that employs an adversarial training
model to produce images that are more realistic or aligned with
the target style. The advantage of GANs lies in the emphasis
on generating realistic edges and capturing fine details in the
synthesized images. Moreover, it exhibits improved generaliza-
tion by learning the distribution of IR images more effectively.
To enhance target images, IE-CGAN [33] generated images

with enhanced contrast and details using a fully convolutional
network. MoCoPnet [34] integrated the domain knowledge of
IR small objects into the deep network to alleviate the inherent
feature scarcity of IR small objects. EESRGAN [35] applied
superresolution networks to small-object edge enhancement,
improved the quality of small objects, and used different detector
networks for end-to-end operations. MDvsFAcGAN [13] uses
two generators to get a balanced high precision rate and miss-
ing alarm rate. However, the adversarial structure’s drawback
could be the potential training challenges in achieving a balance
between the generator and the discriminator.

III. METHOD

A. Method Overview

IR small-target scene images exhibit distinct distributions, as
illustrated in Fig. 1(b). However, across different scenes, the
local patches surrounding the target region may display similar
distributions, as depicted in Fig. 1(c). Notably, compared to the
entire IR image with or without small targets, the differences
between the image patches with and without targets are more
significant. Considering that GANs are generative models de-
signed to learn data distributions, it is advantageous to focus
on learning patch-scale data distributions. Thus, in this article,
we propose novel background suppression methods that empha-
size acquiring localized patch information instead of analyzing
the entire IR image. By adopting this approach, we aim to
achieve a high detection rate and a low false alarm rate.

The overflow of our method for IR dim and small-target
enhancement is shown in Fig. 2. It can be summarized as three
steps. First, the whole IR images and labels are divided into the
target-area part containing the target and the background part
without the target area through the SP module to obtain balanced
positive and negative samples of the image patch and label patch.
Second, the image patch and label patch are put in the PSEnet
to get the gen-patch (the local background suppression results).
The PSEnet is committed to learning the mapping relationship
between the image patch and label patch. Third, the gen-patch
is put into the LTG module to get the segmentation results of the
entire IR dim and small-target images.

B. SP Module

One difficulty of the IR image in dim and small-target de-
tection is that target pixels only occupy an extremely small
proportion of the image, which means that most parts of the
image are redundant. As a result, the network does not have
enough positive samples during training for the network to
learn how to distinguish these with noise points. So, the article
proposes the SP model before segmenting. The main procedure
of the SP module is shown in Fig. 3.

The SP module takes as input an original IR image rawIR,
its corresponding binary annotation image with the same size
rawbinary, and the target center (tx, ty). The size of the sampling
block sz and the number of positive and negative sample pairs
st per image need to be specified. To obtain matching IR image
patches and binary label patches for each sample, the same
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Fig. 2. Overall flow of our method. In the initial stage, image patches are randomly cropped from the training set, maintaining a 1:1 ratio between background and
target samples. Subsequently, adhering to the adversarial generation paradigm, the generator within PSEnet produces suppression results, which are subsequently
assessed by the discriminator to ensure alignment with the labeled image. During the inference phase, the original image is partitioned into patches, and the
corresponding suppression results are acquired. Finally, these results are synthesized into a unified image using the LTG module.

Fig. 3. Overflow of our proposed SP module.

operations are performed on both inputs. First, the target region
is defined as an image patch with a center at (tx, ty) and a side
length of sz. The remaining area in the image is referred to
as the background region. Second, the center positions (bx, by)
for the background patch are randomly determined within the
image. Third, image patches of size sz × sz are cropped around
the centers (tx, ty) and (bx, by) from both the input image
and the annotation image. This yields one positive and one
negative sample patch. This process is repeated n times on the
same image, resulting in st positive and st negative samples.
By performing this operation on every image in the dataset, a
balanced training dataset is achieved, with st positive and st
negative samples per image. The sample size and sample times
were determined through experimental analysis. In Section IV,
this article investigates the impact of patch size (sz) using values
of 16, 32, and 64. The experimental results reveal that setting sz
to 32 yields the best performance. In addition, the sample times

were determined based on precision and resource consumption
considerations. To achieve superior outcomes with reduced re-
source usage, we set the sample times (st) to 50. Subsequently,
the SP module randomly selects 100 image patches and 100
label patches from both the background and target areas. Each
set comprises 50 positive samples and 50 negative samples. This
careful selection process ensures a balanced representation of
samples for comprehensive analysis and evaluation.

C. Patch-Based Small Object Segmentation Network

The second step of the proposed method involves patch-based
semantic enhancement (PSE) of IR images using PSEnet af-
ter obtaining a balanced set of target patches and background
patches through the SP module. The PSEnet network structure,
depicted in Fig. 4, is based on generative adversarial architecture.
However, the low input image resolution and sparse feature
representation of small targets make it challenging to use tra-
ditional object segmentation methods directly, as they tend to
obscure the features of small targets and result in high rates of
missed detections and false positives. To address this issue, the
proposed method employs a relatively shallow feature extraction
network structure designed to enable the model to focus on low-
level spatial structural information, guiding downstream target
detection tasks and improving small-target detection. PSEnet
utilizes the PSE module and local residual structure to propagate
information on small targets.

The purpose of using dilated convolutional layers in the
PSE module is to expand the network’s receptive field without
increasing the number of parameters, thereby reducing the loss
of internal structure and position of targets caused by subsequent
pooling layers. Specifically, the PSE module employs dilated
convolutions with different dilation rates to obtain contextual
information with varying receptive fields, thereby enhancing
the local semantic context of the image. The structure of the
module, as shown in Fig. 5, first processes the input feature
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Fig. 4. Architecture of our proposed PSEnet network. PSEnet adheres to the adversarial generative network paradigm and comprises a generator and a discriminator.
Specifically, our designed generator focuses on small targets and employs a shallow CNN network. It increases the receptive field through dilation convolution and
combines the shallow spatial feature map with the deep semantic feature map.

Fig. 5. Architecture of the PSE module in the PSEnet network.

maps using dilated convolutions with dilation rates of 1, 3,
and 5, respectively, and then adapts to different target scales
through adaptive feature fusion. The input feature maps F
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being compressed to 3 channels using a 1×1 convolution. The
softmax operation is then applied to assign feature weights to the
three channels. Overall, the computational process of the PSE
module can be represented as follows:
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F(i)∗ = α(i) ∗ F(i)
d1 + β(i) ∗ F(i)

d2 + γ(i) ∗ F(i)
d3.

(6)

Here, dilated1×1, dilated3×3, and dilated5×5 represent dilated
convolutional layers with dilation rates of 1, 3, and 5, respec-
tively.

To extract more informative features during the upsampling
process, PSEnet combines the feature of the second convolution
block and the first upsampling convolution block through splic-
ing. Furthermore, the unique diagnostic information from the
first convolution block is fused into the second upsampling layer.
The generated positive and negative sample images, along with
positive and negative labels, are then input into the discriminator
to enable it to learn to distinguish between real and fake images.
The discriminator plays a crucial role in distinguishing between
real segmentation labels and fake suppression results produced
by the generator. For the discriminator, we employ four fully
connected layers for fitting, and the final output is obtained
through the sigmoid function.

To better optimize the block-based IR small-target image
enhancement network PSEnet, the loss function consists of three
components.

Adversarial loss: The discriminator is trained to become
better at making this distinction, thus forcing the generator to
improve its output to create more convincing results. This com-
petitive dynamic between the discriminator and the generator
drives the improvement of the quality of the generated images
over time. The two loss functions are described as follows:

D_Lossa = EXreal
(−log(D(Xreal))) (7)

+ EXfake
(−log(1−D(Xfake))) (8)

G_Lossa = −(1× log(D(Xfake)))+0× log(1−D(Xfake))

= − log(D(Xfake)) (9)
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where E refers to the expectation of a set, Xreal denotes the true
segmentation label, andXfake denotes the generated result.D(·)
refers to the discriminator.

Data loss: If only relying on the discriminator to constrain the
generation of the generator is not enough, so we add a data loss
to calculate the structural similarity between the generated map
and the labeled map and hope that the image generated by the
generator can be better than the labeled map. Close structural
similarity, we use L1 Loss to calculate the structural similarity
between the generated image and the labeled image. The specific
formula is described as follows:

G_Lossdata = |Xfake −Xreal|. (10)

Object loss: To accurately suppress the background and en-
sure semantic consistency between the generated background
suppression result and the original input IR image, we introduce
an object loss that enforces pixel-level constraints on the gener-
ated map. As our objective is to differentiate the target from
the background using the target loss, we employ the binary
cross-entropy loss, represented as (11). By incorporating the
object loss, we encourage the network to accurately identify
and preserve the target region while suppressing irrelevant back-
ground information.

G_Lossobj = −Xreallog(Xfake)

− (1−Xreal)log(1−Xfake). (11)

Total loss: Finally, the previous losses are combined with
different coefficients, where λa represents the coefficient of
adversarial loss, λdata represents the coefficient of data loss, λobj

represents the coefficient of obj loss. Take the values 1, 100, and
1, respectively, to update the discriminator and generator

LG = λaG_Lossa + λdataG_Lossdata + λobjG_Lossobj (12)

LD = λaD_Lossa. (13)

D. LTG Module

The LTG module plays a crucial role in the proposed method
as it facilitates the mapping from local image patches to the
whole image, enabling seamless integration. During the training
phase, positive and negative samples are randomly selected
using the SP model. These samples are then processed by the
PSEnet to generate enhanced local patches. Subsequently, these
enhanced patches are fed into the LTG module, where they are
seamlessly integrated to form a complete and enhanced image,
as depicted in Fig. 6. In the LTG module, the input consists of
probability maps generated by the pretrained PSEnet network.
First, the mean (μ) and variance (σ) of the background and target
patches within each local region are computed by (17) and (18),
respectively,

μ =

∑sz
m

∑sz
n xm,n

sz × sz
(14)

σ =

√
1

sz × sz

∑sz

m

∑sz

n
(xm,n − μ). (15)

Fig. 6. Overflow of our proposed LTG module.

Second, the adaptive threshold (τ ) is calculated based on (19)

τ = μ+ kσ. (16)

If the image confidence exceeds the threshold, the corresponding
positions of the output are filled with 1, indicating the target
output. On the other hand, if the patch output falls below
the threshold, it is set to 0. This approach helps to improve
the robustness of the target segmentation results and ensure
that the output is accurate and reliable. Finally, the integrated
image is output after applying Gaussian filtering, which further
enhances the overall image quality.

IV. EXPERIMENTS

A. Datasets

The dataset used in our experiment is from the work in [36],
which covers the sky, the ground, and other scenes and contains
a total of 22 segments of data, 30 tracks, 16 177 frames of
images, and 16 944 targets. Each target size is different because
of the distance. According to the SPIE [2], the two attributes
of the targets, we selected the following nine sequences from
the original dataset according to the difficulty of the target SNR
and divided these nine sequences into simple scenes, medium
scenes, and complex scenes.

We described the nine sequences in detail (see Table I).
Among them, “data2,” “data16,” and “data19,” are easy scenes,
and we select “data19” as the testing sequence. As we can see in
Fig. 7, “data2” has two targets flying across in the background.
“data16” has a single target flying from near to far in the
background. “data19” has a single target flying maneuverable in
the background. Moreover, “data6,” “data8,” and “data18” are
middle scenes, and we choose “data8” to be the testing sequence.
Looking at Fig. 7, “data6” and “data8” have a single target flying
from near to far in the ground background. “data19” has a single
target flying in the background. Finally, “data11,” “data12,” and
“data14” are difficult scenes, and “data11” is selected for testing.
About Fig. 7, “data11” and “data14” have a single target flying
from near to far in the ground background. “data12” has a single
target flying from far to near in the background.
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TABLE I
DESCRIPTION OF OUR DATASETS

Fig. 7. Example images of three scenarios. The first row is a simple scene,
the second row is a medium scene, and the third row is a complex scene. At the
same time, the first two columns are used as the training set, and the last column
is the testing set.

We randomly select 80% of the pictures (about 400 frames)
from the training sequence to be the training data for the small
object enhancement network. The rest of the pictures are used
for testing. Finally, we used the pictures in the testing sequence
to test the effect of the background suppression.

B. Experimental Settings

The experiment was conducted on a computer with a 2.50 GHz
CPU, 8 GB of RAM, and an NVIDIA GeForce RTX 3090 GPU.
Our model is implemented in Python and Pytorch. We use
the Adam algorithm for optimization. The key parameters are
empirically determined to be α1 = 0.5 and α2 = 0.999, and
they are applied uniformly to all experiments. The minibatch
size is set to 128. The learning rate is set to be 2e-4 for the
generators and the discriminator. The weights of the generator
will be updated after the discriminator updates five times, and
the whole training process terminates in 50 epochs.

To evaluate the background suppression and target enhance-
ment effects of the IR images, the SNR is usually used as
evaluation indicators. The higher the SNR of a small target, the
easier it is to detect.

SNR = (Er − EB)/δB . (17)

Among them, Er is the mean value of the target area, EB is
the mean value of the background area, and δB is the standard

deviation of the background area. Generally, the size of the
background area is three times the size of the target area. SNRin

represents the SNR of the input images, and SNRout represents
the SNR of the output images. Cin and Cout are the standard
deviations of the input image and enhanced image.

Besides, to illustrate that our method can effectively improve
the local SNR of IR dim and small targets, we also add the image
LSNR to verify the effectiveness of our experiments.

LSNR = 10× log10SNR. (18)

For comparison, we use precision and recall as evaluation of
object segmentation and compare each pixel of the enhanced
binarized image result with the real value. If they are the same
value, then regarded as a positive example, otherwise regarded
as a negative example, and its calculation method is as follows:

precision =
Number of positive samples

Number of true targets
(19)

recall =
Number of positive samples

images
. (20)

In order to better evaluate the results of image enhancement, we
use F1 to balance the relationship between accuracy and recall.
The specific calculation formula is as follows:

F1 =
2× recall × precision

recall + precision
. (21)

Mean average precision (mAP) is a popular evaluation metric
for object detection tasks. It combines precision and recall to
provide a single performance score. In the case of a single-class
scenario, the formula for calculating mAP is as follows:

mAP =
1

n

n∑
k=1

APk. (22)

Here, n represents the number of thresholds used, and APk

denotes the average precision computed at the kth threshold.
The experiment mainly compares two kinds of methods, one

is the patch-based IR small-target background segmentation
method, and the other is the CNN-based IR small-target seg-
mentation method. The article uses the pioneering LCM [3],
Tophat [19], MPCM [23], AMWLCM [4], and LEF [25] to
compare with the proposed methods. In CNN-based schemes,
the article uses ALCnet [9], MDvsFAcGAN [13], AGPCnet [12],
and IAAnet [1] as comparison methods. The parameter settings
involved in these methods are given in Table II.
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TABLE II
PARAMETERS OF METHODS FOR COMPARISON

TABLE III
ABLATION STUDY ON PSENET AND LTG MODULE

C. Ablation Study

In the ablation study, we investigated several crucial aspects to
comprehend the contributions of our model components. First,
we examined whether the proposed PSEnet and LTG models
can independently enhance background suppression from local
and global perspectives. Second, to validate the effectiveness of
the PSE block for small object detection, we compared it with
existing feature extraction blocks and conducted experiments.
Third, we explored the optimal values for the sample times and
sample size of the SP module. Finally, we investigated the impact
of integrating our method before detection on the accuracy
rate of the detection results. By addressing these questions, we
gained valuable insights into the effectiveness and potential of
our model in improving background suppression and detection
accuracy.

To ascertain the efficacy of the proposed PSEnet and LTG
models in enhancing background suppression, we conducted
experiments with different settings on PSEnet and LTG. To show
the improvement by dilated convolution layers, we compare
the PSEnet with the convolution layers and with the dilated
convolution. The results in Table III show the dilated convolution
can improve the accuracy of detection because it can increase the
reception field of the target feature. To show the improvement by
using of adaptive threshold in the LTG module, the article sets
the parameters of solid and adaptive. The dilated convolution
results are presented with “*,” and the adaptive threshold results
are presented with “†,”

To validate the effectiveness of the PSE block for small
object detection, we compared it with existing feature extraction
blocks and conducted experiments. According to Table IV, the
utilization of the proposed PSE module demonstrates higher
accuracy rates compared to other modules. This can be attributed
to several factors, which are as follows:

1) the adoption of a shallow feature encoding structure to
minimize the loss of target feature representation during
feature pooling;

TABLE IV
OBJECT DETECTION RESULTS UNDER DIFFERENT FEATURE ENHANCEMENT

MODULES

Fig. 8. In the experiment, in three scenarios, changing the size of the sampling
frame (a) 16× 16, (b) 32× 32, and (c) 64× 64, the results obtained, respectively.

2) the enhancement of target context information through
dilation convolution, enabling the model to access higher-
level semantic information at an early stage;

3) the incorporation of multiscale feature fusion with adap-
tive weighting to accommodate weak targets of varying
sizes.

Consequently, the PSE module proves to be better suited for
the shallow structure background suppression network outlined
in this section when compared to the residual structure and
attention mechanism. Notably, when compared to the Res block
and Attention block, the PSE block yields improvements of 0.05,
0.07, and 0.14 in the F1 metrics for data8, data11, and data19,
respectively, thus validating the effectiveness of the proposed
module.

To strike a balance between the model’s processing efficiency
and its generation effect, ablation experiments are conducted by
altering the size of the sampling frame and the number of sam-
pling iterations. When the sampling frame is larger, the small-
sized targets occupy a relatively smaller proportion of pixels
within it, causing the enhanced network to struggle in effectively
segmenting the targets from the background. Conversely, if the
sampling frame is too small, although the proportion of target
pixels within the sampled image increases, the reduced coverage
of background information leads to the misclassification of noise
points as target points, thereby diminishing the accuracy of target
segmentation. Consequently, our experimental findings indicate
that optimal results can be achieved when employing a sampling
frame size of 32 × 32. In Fig. 8, the segmentation outcomes
of our dataset are presented, featuring three distinct box sizes:
64 × 64, 32 × 32, and 16 × 16.
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TABLE V
TESTING RESULTS OF DETECTION ON THE YOLO NETWORK

Fig. 9. F1 on sample times with three patch sizes.

We further analyze the test sets data8, data11, and data19.
The figures provide a more intuitive understanding of the seg-
mentation results. In the case of a simple scene (data19), when
employing a sampling window size of 16× 16, the segmentation
result contains some noise. However, by increasing the sampling
window to 32 × 32 or larger, the segmentation result improves.
Moving on to the medium scene (data8), a sampling window
size of 16× 16 yields numerous noise points in the segmentation
result while a window size of 64× 64 fails to effectively separate
the target points. Nonetheless, when the sampling window is set
to 32 × 32, the segmentation results are accurate and nearly
devoid of other noise. In the case of complex scenes (data11),
setting the sampling window to 16×16 also leads to the presence
of many noise points in the segmentation result. Although accu-
rate segmentation of the targets can be achieved with a window
size of 64 × 64, the brightness of the target points is weaker.
Consequently, the segmentation result is not as satisfactory as
when using a 32 × 32 sampling frame. The F1 score variations
with respect to the number of samples are depicted in Fig. 9. It
can be observed that after 50 sample times, the F1 scores for
all sample sizes exhibit minimal changes. Hence, we choose 50
sample times as the optimal value.

To demonstrate that our method is not only effective in accom-
plishing background suppression, but also aids in downstream
detection tasks, we investigated the impact of integrating our
method prior to detection on the accuracy of detection results.
The article uses the proposed enhancement algorithm to fuse the
enhanced image with the original image to get a new input image
and then put it into the detection network. We use YOLO [37]
as the base model to test the detection accuracy of our enhanced
algorithm because it can use a larger receptive field through the
fusion of multiscale feature maps. It expresses the characteristics
of small targets and is a very suitable base model for small-target

detection. At the same time, we replace the measurement of the
intersection ratio (IOU) of the predicted value and the real value
with the 2-D Gaussian distribution distance [38]. This is because
when the target size is very small and the predicted value has a
slight deviation, it will lead to a sharp drop in the IOU, and the
2-D Gaussian distribution distance can well balance the error
caused by the offset and enhance the robustness of the model.

The experimental findings presented in Table V demonstrate
that the mAP is 85.89% for the simple scene, whereas it drops
to 32.99% for the medium scene and 22.30% for the complex
scene. These outcomes indicate a correlation between LSNR and
the detection performance. Specifically, a higher LSNR leads to
improved target detection results while a lower LSNR yields
diminished performance. Further analysis of Table V reveals
that our enhanced algorithm exhibits enhanced accuracy rates for
simple scenarios, with recall and mAP both surpassing 97%. In
the case of medium scenes, our algorithm significantly improves
the recall, precision, and mAP, achieving 57.40% for medium
scenes and 48.82% for complex scenes. These findings highlight
the effectiveness of our enhanced algorithm in improving target
detection performance across different scenes.

D. Compared With State-of-the-Art Methods

1) Numerical Evaluation: In order to accurately illustrate the
effectiveness of the proposed method, we quantitatively evaluate
it in comparison to the SOTA methods. Table VI presents the
quantitative metrics for the compared methods on the “data8,”
“data11,” and “data19.” The traditional patch-based methods
exhibit high precision and low recall. This is due to the fact
that classical IR small-target detection methods focus more on
detecting the location of the target and ignore the importance of
complete segmentation of the target. These methods fail to detect
the entire region of the target and can only detect a few pixels in
the target region, which results in low recall for the comparison
methods. In contrast, CNN-based methods seem to have more
balanced precision and recall compared to patch-based methods.
It can be seen that the proposed method is the best in terms of
precision and F1 with relatively high improvement.

In “data8,” our proposed method has the highest results on all
measurements. All CNN-based approaches have very high pre-
cision and recall. Thanks to the PSEnet can fully utilize the local
patch information and give a more detailed spatial information
representation of the dim and small IR targets. While the other
patch-based methods are sensitive to noise, which leads to low
recall and precision in “data8.” In “data11,” the target has so
weak energy that is submerged in the complicated background.
The local contrast measurement is so easy that cannot calculate
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TABLE VI
COMPARISON RESULTS OF IR DIM AND SMALL-TARGET BACKGROUND SUPPRESSION WITH SOTA METHODS

Fig. 10. Comparison between the origin LSNR and the enhanced LSNR.

the target area correctly. As a result, the F1 is lower than other
data. But for the PSEnet can learn the spatial and structure
information rather than the contrast information, the dim and
small target can be found more easily than other CNN-based
methods. In “data19,” the bottom of the image has many noises
such as houses and cars, which is similar to the target. Thus,
the precision of “data19” is decreased. But, the PSEnet uses the
multilayer features from the shallow layers and hollow layers,
the targets can be easily segmented from the background noises.
For all data in the dataset, the proposed methods achieve the best
results in precision, recall, and F1. It can be concluded that the
proposed method can increase the SNR of the target area and
suppress the background.

2) Visual Evaluation: In comparison with CNN-based meth-
ods, because the PSEnet can utilize the local information of dim
and small IR targets and improve the feature texture representa-
tion of the dim and small targets. The missing detection rates and
false alarm rates in all sequences are decreased. According to
the formula of the LSNR of the image, it can be seen that when
the difference between the mean brightness of the target area
and the background area is larger, the LSNR of the image will
also be larger. From the discount graph analysis, the proposed
method improves the LSNR for each image as shown in Fig. 10,
especially for sequences with a low LSNR. From the analysis
of the visualization results, the proposed method can get a
background suppression map, which estimates the position of

the target very accurately and suppresses the noise caused by
the background.

As shown in Figs. 11–13, we selected three typical IR
small-target scenes and compared the detection results of nine
methods. In the figures, we use red boxes to mark the target
position, blue boxes to mark the missing target area, and yellow
boxes to highlight the imperceptible false alarms area. The
detection results of our proposed method are shown in the right
bottom corner.

As can be seen from the figure, the Tophat method exhibits
sensitivity to noise, leading to a strong response to both noise
and edge clutter in the background during detection. Similarly,
the detection results of the LCM are unsatisfactory in low SNR
scenes. Furthermore, although MPCM is capable of detecting
targets, a significant amount of clutter remains in the back-
ground. This can be attributed to the simplistic background
assumption of the HVS, making it challenging to distinguish
between background and targets using global information alone
when their characteristics are similar. Conventional patch-based
methods often experience high rates of missed detections. In
addition, when compared with the ground truth, it is evident that
these methods only provide an approximate estimation of the
target’s location. By incorporating various constraints guided by
prior knowledge, these methods impose strict limitations on the
targets, resulting in small segmented target areas in the output.
Moreover, the figures illustrate that these methods that heavily
rely on models, assumptions, and parameters are not robust.

In summary, patch-based approaches usually have higher
precision, but recall is very low. This is because there are many
false alarms in the results of such methods. At the same time,
they put more emphasis on detecting targets instead of accurately
segmenting targets.

V. DISCUSSION

Our PSEnet pioneers a shift from the conventional global
perspective to a detailed, localized focus, making the process
of background suppression more straightforward and efficient.
It implements a unique patch-based mechanism, focusing on
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Fig. 11. Detection results of PSEnet and baseline methods on “data8.”

Fig. 12. Detection results of PSEnet and baseline methods on “data11.”

Fig. 13. Detection results of PSEnet and baseline methods on “data19.”
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individual patches within a comprehensive image, which sim-
plifies computations while enhancing target attribute isolation.
Furthermore, we incorporate multiscale dilated convolution and
adaptive weight fusion within the PSE module to extract en-
riching local semantic information. In addition, our research
presents an innovative sampling strategy within the SP module,
introducing balance at the patch level and leading to an improved
dataset distribution. The novel generator-discriminator dynamic
in adversarial network training continually improves the quality
of generated images.

Although the proposed method has retained and highlighted
the features of dim and small targets, there are still some
constraints in this article. The proposed method cannot use the
global information and time information of the frames to train,
so it cannot accurately segment the target completely obscured
by clouds. In future research, the time sequence information
between frames will be integrated into the background suppres-
sion network to help the model segment targets more accurately.
Meanwhile, it will be an important task to study the global and
local fusion methods to get a more robust feature representation
of dim and small targets.

VI. CONCLUSION

In conclusion, we propose an innovative background sup-
pression method in the realm of long-distance dim and small-
target detection within IR imagery. This holistic approach is
uniquely characterized by its framework, which consists of
three critical constituents—1)the SP module, 2) the patch-based
semantically enhanced GAN (PSEnet), and 3) the LTG mod-
ule. The SP module enriches our training sample universe via
localized sampling, thereby augmenting the representation of
small-target features. This technique has proven instrumental in
navigating the complexities of intricate background suppression.
Build on this, PSEnet simplifies computations and facilitates
the extraction of local semantic information, thus accelerating
target identification and isolation processes. The LTG module
coherently maps the local patches to the global image, thereby
adhering to the algorithm’s pursuit of background suppression
and clear target distinction. Finally, through rigorous testing and
experimentation, our novel approach has proven its mettle by
delivering superior detection accuracy, particularly in low-SNR
scenarios, and shall continue to redefine the boundaries of IR
target detection innovation.
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