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Dual-Dimension Feature Interaction for Semantic
Change Detection in Remote Sensing Images

Biao Wang Y, Member, IEEE, Zhenghao Jiang

Abstract—Remote sensing semantic change detection (SCD) in-
volves extracting information about changes in land cover/land use
(LCLU) within the same area at different times. This issue is of
crucial significance in many Earth observation tasks, such as pre-
cise urban planning and natural resource management. However,
the current methods primarily focus on spatial feature extraction,
lacking awareness of temporal features. Consequently, there are
challenges in extracting change features, making distinguishing
intraclass and interclass differences difficult. This also contributes
to pseudochange, posing challenges for SCD tasks. To overcome
the limitations of existing methods, we present a dual-dimension
feature interaction network (DFINet) for SCD. First, to enhance
the assessment and perceptual abilities related to intraclass and
interclass differences, we introduce a temporal difference feature
enhancement (TDFE) module. This module comprehensively cap-
tures features from the temporal dimension. Then, to address the
interrelation between multitemporal and multilevel features, we
investigate the feature selection interaction (FSIA) and interaction
attention modules (IAM), which enable multidimensional deep fu-
sion and interaction of change features. This enhances the capacity
for information transfer and integration among the features within
multitemporal remote sensing images (RSIs). The experimental
results demonstrate that, compared to existing methods, the pro-
posed architecture achieves a significant improvement in accuracy.
Additionally, the design enhancements added to DFINet boost the
practicality of remote sensing SCD, underscoring its substantial
research value.

Index Terms—Dual-dimension, interclass, intraclass, remote
sensing images (RSIs), semantic change detection (SCD).
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1. INTRODUCTION

EMOTE sensing change detection (CD) is an active re-
R search field with a wide range of applications in Earth
observation, aims to quantitatively and qualitatively detect an-
thropogenic and natural surface changes occurring at the same
geographic location over different periods [1], [49], [54]. Ex-
isting binary change detection (BCD) methods primarily can
show the locations and shapes of changes in land features,
but they often cannot provide detailed information about the
types of changes. Therefore, the pursuit of a novel change
detection method capable of identifying not only “where” the
changes occurred but also “what” the changes are has become
a focus of current research. This approach is referred to as mul-
ticlass change detection (MCD) or semantic change detection
(SCD) [2], [3]. Such methods play a critical role in various fields,
including urban management [4], environmental monitoring [5],
and damage assessment [6].

In recent years, deep learning techniques have been widely
applied in CD by utilizing remote sensing images (RSIs). These
techniques can identify and extract nonlinear features based on
the statistical consistency of multitemporal observation data.
Furthermore, deep learning methods demonstrate robust capa-
bilities in perceiving deep-level abstract feature information, en-
abling them to effectively handle changes in complex scenarios
or under various conditions. Examples of such techniques in-
clude generative adversarial networks [7], joint sparse represen-
tation [8], and spatial structure extraction based on convolutional
neural networks (CNNs) [9]. However, existing methods often
lack the necessary support for understanding the relationships
between change classes. To address such issues, SCD methods
have been proposed. Current research directions include using
the feature extraction results of the backbone network of the
encoding stage as inputs for CD decoding. Additionally, features
from different scales in the encoding stage are extracted and
integrated as inputs for CD decoding [2], [10], [11], [12], [13],
[14]. The introduction of these methods has greatly improved
the accuracy of remote sensing SCD results. The proposed SCD
frameworks and methods provide reliable technical support for
subsequent research work.

Existing SCD methods have shown dominant advantages in
various scenarios, but there remain two limitations that need to
be addressed. First, as illustrated in Fig. 1, for the SCD task fo-
cusing onregions with high intraclass variation but low interclass
variance [49], these approaches face challenges in decoupling,
refining, and effectively fusing spatial and temporal information.
Consequently, this limits their ability to precisely locate change
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Fig. 1. SCD proves to be a formidable task due to the pronounced intraclass
variability and subdued interclass differentiation inherent in RSIs.

areas and suppress false alarms [20]. Within the feature fusion
phase of dual-temporal RSIs, the existing works [15], [16],
[17], [18], [19] mostly emphasize the manipulation of spatial
feature dimensions, neglecting the critical temporal dimension
information [20]. Furthermore, shallow-level features encom-
pass rich detail information [44], [45], while deep-level fea-
tures distill more abstract contextual information [26]. Current
methods [37], [46], [47] struggle to bridge the semantic gap
efficiently [48] between shallow and deep-level features, poten-
tially subjecting valuable semantic information to interference
from redundant data, thereby directly impacting the precision of
SCD [26].

These issues persist, leading to the ongoing interference of
pseudochange from lighting, seasons, or intrinsic factors in SCD,
thereby affecting its accuracy. To remediate these deficiencies, in
this article, we introduce the dual-dimension feature interaction
network (DFINet) model. The primary contributions of this
research are outlined as follows.

1) Considering the problem of underutilized temporal di-
mension information in multilevel feature fusion between
two RSIs, we introduce the temporal difference feature
enhancement (TDFE) module. The dual-temporal feature
fusion phase transforms discrete feature information into
continuous change data.

2) In the multiscale feature fusion stage, we introduce the
feature selection interaction (FSIA) module, which is de-
signed to perform cross-fusion and selection of features
enhanced through TDFE processing. The objective is to
convey valuable change information to the decoder. The
interaction attention module (IAM) incorporates cross-
temporal interaction attention mechanisms and extends
the module’s local receptive field, thereby enhancing its
capability to extract complex terrain features.
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The rest of this article is organized as follows. Section II
discusses the literature work on SCD of RSIs. Section III intro-
duces the DFINet network architecture proposed in this study
and the relevant experimental datasets. Section IV describes
our experimental setup. Section V presents and analyzes the
experimental results. Finally, Section VI concludes this article.

II. RELATED WORK
A. Temporal Consistency in Change Detection

CD can be understood as an ongoing task of monitoring
temporal changes. Colloquially speaking, it involves identifying
continuous changes over time caused by internal and external
factors. RSIs exhibit higher intraclass variation, leading to re-
duced separability between different entities such as roads and
buildings. Consequently, when detecting changes and measuring
their magnitude between a pair of bitemporal images, various
salt-and-pepper noises often appear in the detection map. These
noises represent pseudochange [49]. By discovering and iden-
tifying slow-changing features among rapidly changing input
features, pseudochange can be perceived and distinguished [50].
Based on this, Ye et al. [20] and Lin et al. [51] designed
P2V-Net and AFCF3D-Net. By incorporating temporal features
to simulate multiple frames of signals in videos, they trans-
formed the task of rapid discontinuity learning into a continuity
detection task. Compared to 2-D convolution, 3-D convolution
can not only handle high-dimensional features but also provide
higher parallelism and address the issue of long-term dependen-
cies [52]. These model architectures achieved state-of-the-art
results on BCD datasets such as LEVIR and CDD. Because SCD
tasks encounter challenges such as significant intraclass variabil-
ity and small interclass differences, considering introducing the
temporal dimension from BCD into SCD for expansion could
be worthwhile.

B. Perception and Interaction of Features

Identifying objects of different sizes is a challenge in com-
puter vision, and a feature pyramid has always been a commonly
used structure [53]. By integrating deep abstract semantic infor-
mation with shallow rich detailed information, more accurate
recognition results can be obtained. In the domain of CD in
RSIs, high-resolution images encompass a diverse range of land
cover types, exhibiting considerable variations in scale. Directly
fusing features from different layers in the model might result
in information redundancy. Therefore, an essential aspect of CD
involves effectively filtering and connecting features to mitigate
semantic gaps. Lin et al. [51] used cross-fusion of adjacent
features to reduce discrepancies and confusion in the network.
However, the high computational complexity of this approach
remains a concern. We believe that enhancing feature selection
and lightweight modules could address this issue, and this forms
a motivation for our work.

C. Semantic Change Detection

SCD entails capturing alterations in land cover/land use
(LCLU) within a given area across various periods [11]. As
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illustrated in Fig. 2, SCD specifies what changes occurred.
This enables multiclass categorization of land cover changes. In
postprocessing, the BCD results are multiplied pixelwise with
the multiclass results from T1 and T2 temporal images, yielding
the final semantic segmentation results. Specifically, in the BCD
result, pixel values are either O or 1, whereas in the semantic
segmentation result, pixel values range from 0 to n, where n
represents the categories of land objects. When the BCD pixel
value at a specific point is 0, it indicates that no change has
occurred at that location. If the pixel value is 1, the specific
change type is determined based on the pixel value from the
semantic segmentation result.

Compared to earlier methods that involve preclassification
followed by comparison, utilizing CNNs for deep semantic
feature extraction enhances the recognition of change features,
reducing interference from classification results in change de-
tection. Peng et al. [11] employed an innovative framework
comprising two encoders and two decoders within a Siamese
U-Net architecture, aiming to refine coarse boundaries and
enhance the accuracy of SCD. Chen et al. [39] proposed a
feature-constrained change detection network, which imposes
constraints on features during bitemporal feature extraction
and effectively robustly integrates bitemporal features. Yang
etal. [13] designed an asymmetric Siamese network to locate and
identify semantic changes through feature pairs obtained from
modules of widely different structures. Ding et al. [3] introduced
the SSCD-1 CNN architecture for SCD and designed BiSRNet,
achieving good results on the SECOND dataset. However, this
method neglects the utilization of intermediate features in the en-
coding part, resulting in insufficient capability for pseudochange
identification.

III. METHODOLOGY

A. Overall Framework

As shown in Fig. 3, a Siamese residual network [22] is used as
the backbone to extract semantic information between the two

temporal phases, which serves as input for both multiclassifica-
tion and CD. The simplified calculations are

ai, o =g, (Th,T3) (D
S1, 82 =19 (a}, ab) )
C=0"(a1",03") 3)
SCy,8Cy = C - (51, 8,). @)

Specifically, 77 and T, represent the input dual-temporal
images, while ¢, represents the encoder part of the model. After
feature extraction by €4, a; and ap are obtained, where 0/1 and
ol represent the output features at the deepest layer, and o}/,
aM represent multiscale features. In the semantic segmentation
branch, I° represents processing through the IAM module and
the semantic segmentation head, resulting in .S; and S> as the
output dual-temporal semantic segmentation results. In the CD
branch, 67 represents multidimensional feature perception and
interactive integration operations on multiscale features, obtain-
ing the change result C. In (4), - denotes pixelwise multiplication,
and SC7 and SC5 are the final SCD results.

B. TDFE Module

In response to the pseudochange caused by factors such
as lighting, intrinsic factors, seasonal variations, and external
environments [23], [24], as well as the complexity of multiclass
tasks and diverse CD directions in SCD, we propose a feature en-
hancement module based on spatial-temporal feature extraction
at different scales denoted TDFE. This module decouples spatial
and temporal information at different scales, processes them
separately, and then integrates them effectively for classifying
complex land features [20].

As shown in Fig. 4, TF denotes the learned temporal feature
using 3-D convolution to capture the temporal information be-
tween the two-time phases. This additional time branch helps
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enhance the extraction of genuine difference features. The sim-
plified calculations are

Int:Cg (Fl,Fg). (®)]

It should be noted that Int represents the input of the T-branch,
C'7 denotes concatenation operations of features along the tem-
poral dimension. Between F} and F5, two temporal phases are
further extracted based on their pixel value differences to extend

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Semantic
Head

[ I U

Decoder-Head

Semantic
Head

———— e ———

DFINet model is based on a Siamese encoding—decoding structure, wherein the FSIA module, S, M, and D represent shallow, intermediate, and deep-level

the features. Since 3-D convolutions have higher computational
complexity than 2-D convolutions, we only added one 3 x 3 x
3 convolution in the CGR module to reduce the computational
load. In Fig. 4, Max and Avg in the head represent taking the
maximum and average values of the features in the temporal
dimension [20]. Then, 1 x 1 convolutions are utilized to unify
the channel dimensions [25], and they are cross-fused to enhance
the extracted features.

C. FSIA Module

As shown in Fig. 5, the module consists of a detail branch
and a context branch [26], [27]. F contains richer details and
edge information, while M and D contain more accurate con-
textual information. To fully integrate multiscale feature infor-
mation [28], [29] and select the enhanced semantic information
at the same location but at different stages, we first perform a
cross-multiplication between S, M, and D to obtain F1, F2, and
F3. Subsequently, the features derived from F1, F2, and F3 are
condensed in the channel dimension to obtain W1, W2, and W3,
transitioning their tensor structure from B x C x H x Wto B
x 1 x H x W. These three tensors are then concatenated along
the channel dimension and synthesized into a unified weight
vector fusing a 1 x 1 convolution operation. CW represents the
results obtained from the cross-scale fusion of features through
S, M, and D. To control this outcome, the sigmoid activation
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Fig. 5. Architecture of the proposed FSIA module. Here, b, ¢, h, and w,
respectively, represent the batch size, number of channels, height, and width
of the input feature maps, while Add represents the elementwise addition of
pixel values between feature maps.

function is applied, as illustrated by the following formula:

o = Sigmoid(CW) (6)
Fp=Sx(l-0) (7)
Fe = CS(M, D) x . (8)

Fp and F, respectively, represent the extracted detail fea-
tures and context features. Cj denotes concatenation opera-
tions of features along the channel dimension. When o > 0.5,
the model’s output results are more inclined to the contextual
branch. Otherwise, it tends to favor the detailed branch [26].
Finally, a 3 x 3 convolution operation and a direction-aware
attention module (CA) [30] are applied to explore further feature
relationships in both the spatial and channel dimensions. Unlike
the commonly used squeeze-and-excitation module (SE) and
convolutional block attention module (CBAM), the CA module
not only focuses on channel attention but also takes into consid-
eration its spatial relationships. It combines channelwise atten-
tion with spatial attention, generating a pair of direction-aware
and position-sensitive attention maps for the feature maps. These
attention maps are applied complementarily to the input feature
maps to enhance the representation of the objects of interest.

D. IAM Module

In SCD, it is essential not only to effectively detect regions
but also to identify the types of changes that have occurred. This
necessitates the model taking into account both the spatial cor-
relations between temporal images and the semantic relevance
and consistency across them. Self-attention has been to capture
spatial dependencies between any two positions in feature maps,
allowing it to obtain long-range contextual information [32].
This makes it widely applicable in CD. Considering the charac-
teristics of SCD tasks, this article introduces a cross-temporal
interactive global and local attention module called [AM.

As shown in Fig. 6, the first step involves adding cross-
temporal interaction connections to the existing self-attention
mechanism [3], [33], [34], [35]. This can be expressed by the
following formula:

Fo = Mg [(k1 x q2) , (k2 x q1)] )
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k;, v;, and ¢; represent three relationship vectors obtained
through a 1 x 1 convolution for F;, while Mg represents taking
the mean after applying the softmax activation function and
then obtaining the global features Fi;. By multiplying £ and
q from different time phases, the correlation features between
the two-time phases are enhanced. Then, they are multiplied by
v1 and vy to enhance the spatial feature information for each
respective time phase. To distinguish the differences between
the two temporal phases, we introduced learnable dynamic
parameters « and /3, which serve as weights for F} and F.
In the second step, we incorporate a Siamese local feature
learning branch to compensate for the limited local feature
learning in the self-attention module. The branch incorporates
the atrous spatial pyramid pooling (ASPP) module, which serves
two purposes [21]. First, it aggregates local features. Second, it
leverages the large receptive field of the ASPP module to obtain
local information at multiple scales. Finally, we concatenate the
features from both branches along the channel dimension to
obtain the final features f; and f5.

IV. EXPERIMENT
A. Datasets Environment

To demonstrate the effectiveness of the model for SCD, we
used the SECOND dataset as the basis for our experiments. To
ensure the effectiveness of our method and subsequent compara-
tive experiments, we randomly divided the dataset into training,
validation, and test sets at a 4:1:1 ratio. Example images from
the dataset are shown in Fig. 7.

The SECOND dataset [38] consists of 4662 image pairs, with
2968 pairs available for training. The geographical locations
associated with these image pairs are distributed across cities
such as Hangzhou, Chengdu, and Shanghai, with resolutions
ranging from 0.5 to 3 m and image sizes of 512 x 512 pixels.
The primary change types in this dataset involve transitions
between land cover categories, which include water bodies, bare
ground, low-lying vegetation, trees, buildings, and sports fields.
In each data pair, there are two images corresponding to different
periods, and each image is associated with an annotation map
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Fig. 7.

SECOND dataset is a SCD dataset that covers water bodies, ground, low vegetation, trees, buildings, and sports fields.

SECOND

EY ) 0
Epochs Epochs.

0 £ 0
Epochs Epochs

Fig. 8.

Performance of the DFINet on the train and validation sets. The red curve in the graph represents the learning rate, the grey curve represents the loss, the

orange curve represents mloU, and the blue curve represents OA. We highlight the best accuracy on the validation set with a black dot on the curves.

that indicates the areas of change and the land cover categories
within those changed regions over time. The experiments were
conducted on a Windows 10 operating system with an Intel
Core 17-9700F CPU and an NVIDIA GeForce GTX 1080 Ti
GPU with 11 GB of RAM. The model was implemented using
the PyTorch framework. All experiments were conducted using
the same experimental parameters, including a batch size of 4,
training for 50 epochs, an initial learning rate of 0.02, and a
weight decay of 0.0003. The optimization method used stochas-
tic gradient descent with Nesterov momentum [40]. The image
augmentation strategies include random flipping and rotation of
the image pairs during training.

In Fig. 8, we plot the performance of the DFINet on the
training and validation sets. We observe from Fig. 8 that the
DFINet can achieve satisfactory performance within 50 epochs.
To further validate our models on the test sets, we save the
weights corresponding to the highest validation accuracy as
checkpoints for testing.

B. Metrics

SECOND is an SCD dataset, so we use the mean intersection
over union (mloU), the separation kappa coefficient (SeK) [3],
and overall accuracy (OA) [41] to evaluate SCD results.

Let Q = {g;; } be the confusion matrix, where i, j represents
the count of pixels belonging to class ¢ and classified as class
j. OA measures the proportion of correctly classified samples
over all samples [3]. Since the change area in the SECOND
dataset only constitutes 19.87%, OA is easily influenced by the
unchanged areas. Therefore, further evaluation using mloU and
kappa is needed

N N N
OA=D ai/ Y Y ai (11)
=0 i=0j=0
mloU = (IoUy, + IoU,) /2 (12)
N N
ToUue = goo/ | D_ qio + Y _ qo; — qoo 13)
=0 =0
N N N N
IoU, = ZZ%‘/ ZZCM — qoo (14)
=1 j=1 i=0 j=0

where IoU,. represents the unchanged areas, and IoU,
represents the over for changed areas. SeK is a metric used
in combination with OA to provide a better evaluation of the
performance of multiclass classification tasks, and it can be
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expressed using the following formula:

POZZ/ZZQM

(15)
i=0 =0 j=0
2

N N N N N
pe:Z Zqij XZQij / qui]’ (16)

i=0 \ j=0 i=0 i=0 j=0
Kappa = (po — pe) / (1 — pe) (17)
SeK = e°V=~! x Kappa. (18)

Based on the calculation formula for SeK, it can be observed
that the more unbalanced the confusion matrix is, the higher the
SeK value will be, which, in turn, results in a lower kappa value.
This is a useful characteristic, as it helps penalize models with
a strong bias.

C. Loss Function

We use the binary cross-entropy loss function to compute
the loss for the BCD results of the CD branch and utilize the
categorical cross-entropy loss function to compute the loss for
the final SCD results, SCD1 and SCD2. Thereby optimizing the
model parameters

1
Liotal = LBCE + 5 (»CSeg1 + »CSegQ) (19)

Results obtained by DFINet on the SECOND dataset, where (a)—(d) represent diverse change types, changes to buildings, changes to vegetation, and

Locs = 3 3 = Iy X Tog () + (1= 2) x log (1~ )]
Z 20)
1 M
Lseg = =7z D D log (pic) @D
7 c=1

In Lgcg, N represents the number of samples, y; represents
the binary classification label for CD, where the change class is
represented as 1 and the unchanged class as 0, and p; represents
the predicted value. In Lsq, M represents the number of classes,
for example, in the SECOND dataset, there are a total of seven
classes including the unchanged class, y;. represents the label
for SCD, and p;. represents the predicted value for SCD.

D. DFINet Results

Fig. 9 illustrates the qualitative results of the DFINet model
based on the SECOND dataset. In a (2) of Fig. 9, even in
areas with low interclass differences, rich land cover types, and
complex terrain, the model is capable of recognizing changes in
low vegetation, trees, and bare soil. In a (4), it can be observed
that even when the road appears similar to bare soil due to
construction activities, the model did not incorrectly identify
this as a false change. Section b demonstrates the accurate iden-
tification of changes from other land cover types to buildings. In
Section c, the results show the recognition of changes from other
land cover types to low vegetation or trees. The identification of
trees is notably accurate; however, there are some limitations in
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detecting changes in low vegetation within highly intricate areas,
occasionally resulting in false positives. Overall, whether for
area a (rich in changes), b (changes to buildings), ¢ (changes to
vegetation), or other types, DFINet performed well in identifying
changes.

V. DISCUSSION AND ANALYSIS

A. Comparison

To comprehensively evaluate the performance of the proposed
DFINet model, we will compare it with several state-of-the-
art methods through SCD experiments. The compared methods
include the following.

1) FC-EFE, FC-EF-Cat, FC-EF-Diff [16]: FC-EF is a single-
branch encoder—decoder model based on the U-Net archi-
tecture proposed for CD. Cat and Diff are twin-branch CD
model architectures evolved from FC-EF.

2) SNUNet [42]: SNUNet integrates Siamese networks, U-
Net++, channel attention mechanisms, and dense skip
connections to reduce the uncertainty of edge pixels in
the changing area.

3) HRSCD4 [41]: This is a specific model architecture de-
signed for SCD. It utilizes a triple-encoding branch struc-
ture that incorporates residual modules and an encoder—
decoder architecture. This architecture is tailored to the
task of SCD, where the goal is to detect and understand
semantic changes in images over time. The use of residual
modules and encoder—decoder structures helps improve
the model’s performance in capturing and analyzing these
changes.

4) FCCDN [39]: An optimized feature constraint CD net-
work is proposed based on a dual encoder—decoder ar-
chitecture. It utilizes a nonlocal feature pyramid network
to extract and fuse multiscale features while introducing
a densely connected feature fusion module to enhance
robustness.

5) SCDNet [11]: SCDNetis based on a Siamese U-Net archi-
tecture, which consists of two encoders and two decoders
with shared weights, aiming to address the SCD task
of large-scale remote sensing datasets in an end-to-end
manner.

6) SSCDL and BiSRNet [3]: SSCDL and BiSRNet are two
models used for CD tasks. SSCDL employs a Siamese
CNN encoder to extract semantic information. These se-
mantic features are then utilized in the CD decoder to
capture differences between the images effectively. BiSR-
Net builds upon the SSCDL model by introducing global
self-attention (SR) and cross-temporal self-attention (Cot-
SR) modules. These modules enhance the exchange of
information between the temporal and CD branches, im-
proving the model’s performance in handling temporal and
change-related features.

7) SCanNet [55]: SCanNet is a semantic change trans-
former (SCanFormer) specifically engineered to model
the “from—to” semantic transitions between bitemporal
remote sensing images. It utilizes a variant of the cross-
shaped window transformer, optimizing its ability to
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TABLE I
QUANTITATIVE RESULTS ON THE SECOND DATASET

Method Accuracy Params(Mb)
mloU(%) OA(%)  SeK(%)

FC-EF-Cat 67.31 85.71 10.75 2.74
FC-EF-Diff 68.83 86.34 12.89 1.66
Snunet 66.29 85.44 9.31 10.20
HRSCD4 68.33 87.97 13.46 13.71
SCDNet 70.78 87.93 17.23 39.62
FCCDN 69.25 85.91 16.02 24.20
SSCDL 70.76 88.25 17.17 23.31
BiSRNet 71.67 88.61 18.67 23.38
SCanNet 72.26 88.58 20.07 27.90
DFINet(Ours) 72.61 89.11 20.12 23.85

capture the ‘“semantic change” dependencies within
bitemporal remote sensing images.

Among the compared methods mentioned above, 1) and 2)
were originally not designed for SCD tasks, so we added se-
mantic segmentation heads to these models at the network’s end
to meet the experimental requirements [3].

The quantitative results are presented in Table I. The highest
scores are highlighted in bold. Compared to the latest BiSRNet
and SCanNet networks, DFINet achieved a 1.45% and 0.05%
increase in SeK values, as well as a 0.94% and 0.35% improve-
ment in mloU. Specifically, FC-EF-Cat and Snunet concatenate
all feature information at the channel level, which can lead to
the extraction of valuable features being overwhelmed by re-
dundant information. This approach lacks effective information
selection during feature fusion. FC-EF-Diff, by using Sub for
feature extraction, effectively captures the differences between
dual-temporal features. This method has improved SeK scores
by 2.14% compared to FC-EF-Cat and 3.58% compared to
Snunet. However, solely using Sub is insufficient to capture
change information and suppress false changes. Compared to
FC-EF-Diff, DFINet has shown a 3.78% increase in mIoU and
a7.23% improvement in SeK.

As shown in Fig. 10, in T1 (1), dedicated SCD models all
achieve good results. They are capable of identifying change
areas well even in complex terrains with intertwined land cover
types such as forests and low vegetation. However, only DFINet
provides more complete and accurate results. In the more chal-
lenging central region, influenced by the uncertainty of land
cover change properties, all the compared models exhibit the
phenomenon of misclassifying trees as low vegetation. However,
DFINet, with the TDFE module, effectively suppresses this
issue. It makes better use of temporal information, reducing
pseudochange interference caused by seasonal factors. In T1
(2), DFINet was not affected by the vegetation near the water
body, successfully extracting the change areas. In T2, despite
the diverse types of changes, DFINet still effectively identified
the changes in the sports field.
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To demonstrate the effectiveness of TDFE, FSIA, and IAM,
we conducted ablation experiments on the SECOND dataset. As
shown in Table II, FSIA, TDFE, and IAM led to improvements
of 0.22%, 0.58%, and 0.67% in SeK, respectively. The visual
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Fig. 10. Comparative experiments provide result examples for different methods. The major differences are highlighted in orange rectangles.
TABLE II TDFE+FSIA TDFE+F§IA+IAM
ABLATION RESULTS ON THE SECOND DATASET ° ;
; Tl
Module mloU(%)  SeK(%) OA(%) u,
Base 71.75 18.65 88.08 i 1
Base+FSIA 71.81 18.87 88.50 8
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20
]
- 2
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comparison results are shown in Fig. 11, from left to right,
showing the results with the FSIA, TDFE, and IAM modules
added. From (1) of Fig. 11, it can be observed that with the
inclusion of the modules, the model becomes more accurate in
detecting changes in low vegetation and ensuring the integrity of
the results. For environments with high detection requirements,
where it may not be very easy to clearly distinguish between
buildings and bare soil, as seen in (3), the inclusion of TDFE
helps the model differentiate between different land cover types,
and FSIA and IAM reduce the interference of contextual noise
in the detection results [26].

To provide further evidence of the effectiveness of the TDFE
and FSIA modules we introduced, we conducted separate com-
parisons between TDFE, FSIA, and traditional feature extraction
and fusion methods. The respective quantitative results can

Fig. 11.  Qualitative results of the ablation experiments for FSIA, TDFE, and
IAM. The major differences are highlighted in orange rectangles.

be found in Table III. The utilization of the TDFE module
outperformed the sole use of Sub in feature extraction, yielding
improvements of 0.8% in mIoU and 1.25% in SeK, as demon-
strated in the qualitative results in Fig. 12. From Table IV, it can
be observed that compared to traditional feature fusion methods,
the FSIA module exhibits advantages in both feature extraction
results and computational speed. Utilizing the FSTA module for
multiscale feature fusion is not only faster but also yields better
results than using traditional channel concatenation.
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TABLE III
COMPARATIVE RESULTS OF DIFFERENT FEATURE FUSION METHODS ON THE
SECOND DATASET
Accuracy
Method
mloU(%)  SeK(%) OA(%)
Sub 71.81 18.87 88.50
TDFE 72.61 20.12 89.11

Image

Fig. 12.  Results of ablation experiments for the TDFE module.
TABLE IV
COMPARATIVE RESULTS OF DIFFERENT FEATURE FUSION METHODS ON THE
SECOND DATASET
Fuse Method Accuracy Speed

mloU(%)  SeK(%) Params(M) FLOPs(G)  Per-Epoch/min

Cat 72.27 19.78 29.59 232.55 16.67

FSIA 72.61 20.12 24.24 208.96 10.22

Fig. 13.  Visualization results of heatmaps under different fusion methods.

Using gradient-weighted class activation mapping (Grad-
Cam) [43], we also generated heatmaps for the model under dif-
ferent feature fusion methods, as shown in Fig. 13. This study’s
approach exhibits a relatively stable performance when handling
features of the same type. The FSIA module, through feature
selection and enhancement, can mitigate temporal differences
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arising from external environmental conditions and inherent
imaging features, thus reducing false detections.

VI. CONCLUSION

In this article, we have analyzed the challenges in SCD,
including the difficulty in evaluating interclass differences, the
challenge of comprehensively perceiving multilevel image fea-
tures and the complexity of interacting with multitemporal fea-
tures. Based on these challenges, we have proposed an SCD
framework called DFINet.

In this framework, we first introduce temporal information
into multiple hierarchical feature layers using the TDFE module
to enhance the extraction of multitemporal and multilevel se-
mantic features, thereby improving the evaluation of interclass
differences and perceptual capabilities. Second, we proposed
the FSIA and IAM modules to interact, filter, and redistribute
features from multiple temporal phases and hierarchical levels,
thereby strengthening the transfer and integration capabilities
among features from different time sequences. Finally, we
showed that the experiments conducted on three public datasets
yielded promising results, validating the effectiveness of our
proposed framework.

This advances the practicality of remote sensing SCD and pro-
vides valuable insights for feature perception and fusion in deep
learning methods. In future work, a significant improvement
direction is to further reduce the computational complexity of
DFINet and explore the utilization of unlabeled data to enhance
the model’s detection performance.
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