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Hyperspectral Anomaly Detection Based on
Spatial-Spectral Cross-Guided Mask Autoencoder

Qing Guo", Yi Cen"”, Lifu Zhang

Abstract—Autoencoders (AEs) have gained widespread applica-
tion in the field of hyperspectral anomaly detection, largely due
to their notable effectiveness in efficiently reconstructing back-
grounds within hyperspectral images (HSIs). However, the absence
of prior knowledge and constraints imposed by spectral informa-
tion capacity hinder the accuracy of anomaly detection by allow-
ing AEs to reconstruct both anomalous targets and backgrounds
simultaneously. To address this limitation, a spatial-spectral cross-
guided masked autoencoder (SSCMAE) has been proposed. The
guided mask is generated based on the spectral difference between
the anomaly and the background. This mask effectively suppresses
the reconstruction of anomalous targets while enhancing the ac-
curacy of background reconstruction. Moreover, a dual-branch
structure operates, encompassing spatial and spectral dimensions,
effectively capturing the inherent three-dimensional characteris-
tics present in HSIs. Ingeniously designed cross-connection layers
within the architecture enhance the spatial and spectral branches’
capability of extracting internal spatial and spectral features of
images. In order to capture a more comprehensive range of back-
ground features, a lightweight three-dimensional convolutional au-
toencoder is introduced. This addresses the issue of local feature loss
during background reconstruction and overcomes the limitations
that visual transformers face when learning local image structures.
The proposed method has been systematically compared against
several advanced methods on six real-world datasets. The results
explicitly demonstrate the efficacy and superior performance of the
presented SSCMAE approach.

Index Terms—Anomaly detection, autoencoder (AE), cross
connect, guided mask, hyperspectral image (HSI).

I. INTRODUCTION

YPERSPECTRAL images (HSIs), which consist of mul-
H tiple contiguous bands and provide detailed spectral in-
formation, offer distinct advantages for hyperspectral target
detection [1], [2]. Hyperspectral anomaly detection is a method
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used for target detection without prior knowledge [3]. An
anomaly refers to an object that significantly deviates from the
background in spatial or spectral terms. It is characterized by
low probability and small size [4], [5]. Presently, hyperspectral
anomaly detection is of great importance in a wide range of
applications, including vegetation and agricultural monitoring,
atmospheric research, geological exploration, marine studies,
and military reconnaissance [6], [7], [8].

According to the basic methods employed, there are three
main categories of hyperspectral anomaly detection methods:
statistical feature-based, feature expression-based, and deep
learning-based [9]. Statistical feature-based methods assume
that the target or background follows specific mathematical
statistical distributions. Among these methods, Reed—Xiaoli
(RX) [10] stands out as the current benchmark approach to
hyperspectral anomaly detection. The RX algorithm operates
under the assumption that the background model conforms to a
multivariate Gaussian distribution. The algorithm evaluates the
anomaly status of each pixel by comparing the disparity between
the hyperspectral data of the pixel in question and that of its
surrounding pixels. To reduce the impact of anomalous pixels
and enhance detection accuracy, various advanced variants have
been developed. This has led to the creation of a set of advanced
variants, such as localized RX [11] and clustering kernel RX
[12], among others. Nevertheless, the intricate distribution of
real HIS poses a challenge for simple models to effectively
characterize the background distribution, thereby constraining
the overall performance of anomaly detection.

To address the limitations of basic statistical distribution as-
sumptions, representation-based methods have been introduced
for hyperspectral anomaly detection. In these methods, a dic-
tionary is used to reconstruct pixels within a specific model,
and the residuals are then used to indicate the level of anomaly
[9]. Typical algorithms include the collaborative representation-
based detector (CRD) [13], the anomaly detection method based
on low-rank and sparse representation [14] method, and the
low-rank and sparse matrix decomposition-based Mahalanobis
distance method [15]. However, these methods overlook the
global structural information of HSI. Furthermore, creating
a thorough background dictionary without interference from
anomalous pixels is difficult without prior information. More-
over, when data dimensions are very high, the computational cost
of expression-based methods becomes a significant limitation.

In contrast to the previously mentioned approaches, deep
learning possesses the capability of extracting latent features
from HSI, thus offering a comprehensive representation of the
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intricacies in both spatial and spectral dimensions, as well
as multidimensional features [16], [17], [18]. This capability
enhances the distinction between background and anomalies.
Unsupervised deep learning methods have gained significant
attention in anomaly detection due to the lack of spectral
information for both background and anomalous targets. An
autoencoder (AE) is a classic unsupervised deep learning model
that excels at revealing intrinsic data structures and patterns by
capturing abstract and intricate feature representations from HSI
[19], [20]. Its successful application in anomaly detection has
produced outstanding results.

For example, He et al. [21] proposed a module initially
based on clustering to detect pseudobackground and anomalous
samples. This was followed by an integration of convolutional
and transformer operations to extract both local and global
discriminative features. Wang et al. [22] proposed the residual
self-attention module to extract important features, reducing
the ability of the subsequent network to reconstruct anomalies.
Furthermore, it is assumed that the background in the orig-
inal space possesses low-rank properties, which leads to the
development of a low-rank loss function designed to suppress
the reconstruction of anomalies. Wang et al. [23] introduced
a new hyperspectral anomaly detection method called the dy-
namic negative sampling-based AE. This approach an adaptive-
adjusted loss function to suppress the reconstruction error of
original pixels while amplifying the error of negative samples.
The incorporation of skip connections ensures that features from
both shallow and deep layers are utilized in the reconstruction
process.

Itis not difficult to find that although AE effectively improves
anomaly detection performance, it primarily focuses on the
inherent spectral information of HSI, overlooking their spatial
characteristics. This is evident in the oversight of crucial seman-
tic details, such as intricate textures, and the failure to account
for the correlation between pixel spatial features and HSI. In
addition, most methods inevitably reconstruct the anomalies
simultaneously, especially in situations where the background
closely resembles the visual characteristics of the anomalies.
Consequently, inhibiting the manifestation of the anomalies
presents a significant challenge.

While AEs effectively improve anomaly detection perfor-
mance, HSIs are three-dimensional, and anomalous objects
typically manifest as small areas and distinct spectral features.
Therefore, spatial features, in addition to spectral behavior,
naturally become another valuable source of information. For
instance, Zhao et al. [19] combined deep belief networks with
spatial filtering to extract spectral and spatial features. Xie
et al. [24] utilized structural tensor focusing on edges and
corners, guiding filters to obtain initial detection maps. Tu
et al. [25] employed graph Laplacian anomaly and differen-
tial fusion methods for global and local anomaly detection
based on spectral adjacency matrices and spatial adjacency
matrices. Recent studies have shown that utilizing both spa-
tial and spectral information simultaneously is more effective
than relying solely on spectral information. Acquiring spatial
information is crucial for capturing semantic details, such as
complex textures, and understanding the correlation between
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pixel spatial features and HSI. Most anomaly detection methods
based on AE primarily focus on the intrinsic spectral information
of HSI while overlooking its spatial feature anomalies. This
approach leads to the simultaneous reconstruction of anoma-
lies, especially in situations where background and anomaly
visual characteristics closely resemble each other. Hence, in-
hibiting the reconstruction of anomalies presents a significant
challenge.

To address the aforementioned issues, a method for hy-
perspectral anomaly detection called spectral-spatial cross-
guided mask autoencoder (SSCMAE) has been proposed. In
this method, the network reconstructs the background, and
anomalies are identified as reconstruction errors. Specifically,
first, considering the capability of masked image modeling to
integrate global contextual information into local features, it
captures a significant amount of latent image features as well
as the spectral differences between anomalies and background.
A guided mask has been meticulously designed to suppress the
reconstruction of anomalous targets while simultaneously im-
proving the accuracy of background reconstruction. SSCMAE
adopts a dual-branch mask AE structure in spatial and spectral
dimensions, effectively utilizing the inherent three-dimensional
information in HSI to reconstruct backgrounds. The spatial
branch uses guided and random masks to reconstruct the pixels
that have been masked. The spectral branch focuses on recon-
structing spectral channels using a random mask. Moreover, the
carefully designed cross-connected layers enhance the spatial
and spectral branches’ ability to represent spatial and spectral
features within the image. To further explore the capture of local
background features and address the challenge of losing these
features when queries are embedded in the attention layers of the
visual transformer (ViT), a lightweight three-dimensional con-
volutional autoencoder (3DCAE) is used to learn local features.
The primary contributions of this article can be outlined in the
following three ways.

1) A new approach for identifying anomalies in HSI is pre-
sented, utilizing a guided mask AE. This method involves
the use of a guided mask to protect the target, allowing
the attention mechanism in the reconstructed network to
focus solely on the background information.

2) A spectral-spatial cross-guided mask structure is used in
the SSCMAE model to fully exploit the local features of
the unmasked 3-D HSI and obtain global background in-
formation. The cross connection effectively compensates
for the lack of detailed information in both spatial and
spectral dimensions, thereby improving the accuracy of
background reconstruction.

3) Ahybrid network combining ViT and 3DCAE is proposed
to extract local spatial features of HSI. This addresses the
issue of missing local features in background reconstruc-
tion and overcomes the limitations of ViT in learning local
structures.

The rest of this article is organized as follows. Section II
provides an overview of related work. Section III delves into
the details of the proposed method. Section IV showcases and
analyzes the experimental results, and finally, Section V con-
cludes the article.
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II. RELATED WORK

In this section, we concisely present two pivotal studies to our
network: AEs and ViT.

A. Autoencoders

AE is a neural network consisting of an input layer (encoder),
a latent layer, and a reconstruction layer (decoder) [18], [26]. It
operates in an unsupervised manner, learning features from HIS
by minimizing the reconstruction error at the decoding layer.
The encoding layer captures deep features from the input data.
The input layer is transformed into the hidden layer Z through
the application of the weight matrix W and the summation bias
b

Z — o(WI+b). (1)

The decoding layer uses the deep features from the hidden
layer Z to reconstruct the image T’

I = o(W'Z+b) )

where o is the activation function, W' is the decoding layer
weight matrix, and b’ is the decoding layer bias.

B. Vision Transformer

The transformer architecture, originally introduced in the
domain of natural language processing, has outperformed previ-
ous intricate recursive and convolutional neural network (CNN)
models and has emerged as a seminal model in the field [16].
Dosovitski et al. [27] expanded the transformer model into the
field of computer vision by introducing the ViT. Expanding
on the original transformer encoder, ViT incorporates a CNN
with a transformer model that encompasses global self-attention.
This amalgamation allows the model to capture comprehensive
contextual information in images, addressing the limitations
of CNNs in modeling long-range dependencies and enhancing
feature representation [ 17]. ViT has demonstrated success in var-
ious visual domains, including image classification [28], object
detection [29], and semantic segmentation [30]. Over the past
few years, there has been an increasing focus on the application
of transformers in the field of hyperspectral anomaly detection.
Wang et al. [31] elected typical background pixels for training
a transformer-based AE, aiming to achieve the reconstruction
of background pixels. Xiao et al. [32] utilized a spatial-spectral
dual-window mask transformer to consolidate background in-
formation from a global perspective across the entire image.
This was done to reduce irregularities, enable thorough feature
extraction, and minimize abnormal reconstructions by using
neighboring pixels within the dual-window framework.

III. PROPOSED APPROACH

In this section, a concise overview of the proposed research
method is initially presented, followed by an in-depth discussion
of the specific implementation aspects related to its individual
components, culminating in a description outlining the general
structure of the method.
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A. Overview

Our proposed method comprises four primary elements: a
masking strategy, background reconstruction facilitated by a
spatial-spectral cross-masking AE, a module for local spatial
feature extraction using a 3-D convolutional autoencoding net-
work, and an anomalous target detection module. The architec-
tural overview of SSCMAE is shown in Fig. 1. Initially, two
strategic approaches, random masking and guided masking, are
utilized on spatial and spectral masks, resulting in distinct mask
maps. The unmasked maps are then input into the network to
reconstruct the background. Considering that the transformer
may lose local information during training, a spectral and spatial
cross-linking mechanism is designed to address the deficiency of
detailed information in the spatial and spectral dimensions. Sub-
sequently, a 3-D convolutional autoencoding network is used to
extract local information in both spatial and spectral dimensions
to reconstruct the background. Finally, anomaly resulting maps
are generated by applying the Mahalanobis distance.

B. Mask Strategy

HIS is distinguished by its multiband nature, large volume,
and high redundancy. In the context of HSI, anomalous targets
are irregularly embedded within the background, occurring at
frequencies lower than those of background pixels. The strong
learning capability of AEs enables them to effectively recon-
struct anomalous targets, thereby influencing detection accuracy.
Employing a masking strategy to reconstruct masked regions
from adjacent unmasked areas facilitates better capture of local
features and structures in the image. This process improves the
quality of background reconstruction and enhances anomaly
detection performance. However, current methods often use
random masking for basic data augmentation, without taking
into account the differences between anomalies and background.
However, existing methods often use random masking without
taking into account the distinctions between anomalies and
backgrounds.

To address this limitation, the masking strategy is divided
into two parts: random mask generation and guided mask gen-
eration. Masking is performed in two dimensions: spatial and
spectral dimensions, respectively. As shown in Fig. 2. This dual
approach aims to delve deeper into the correlation of HSI, extract
more comprehensive and effective potential features from the
background, and ultimately improve the quality of background
reconstruction.

1) Guided Mask: Anomaly targets exhibit distinct charac-
teristics: the background pixels show a strong resemblance to
the average vector, while the anomalous pixels show a low
resemblance to the average vector. Zhang et al. [33] proposed a
framework for anomaly target detection. This framework inte-
grates outlier removal through an iterative strategy. Expanding
on Zhang’s concept, the spectral angle between the mean vector
and individual pixels in HSI serves as a criterion for identifying
and removing suspected anomalous targets. The spectral angle
between vectors a and b is defined as the cosine of the angle
between them, which facilitates the comparison of spectral



GUO et al.: HYPERSPECTRAL ANOMALY DETECTION BASED ON SSCMAE 9879
Mask Strategy Spatial-Spectral Cross Masked Auto-Encoder
ii —— - r— J ‘ Rem::l:lﬂed
Guide mask .I ) ' | B
& ‘. A ! ,
15,_.2_. . _.5:_.§§_.€,
1 m | i
[ =
[
I'ra - I
= = =
§§_.§_. o —i S~ —_s
e o a
Reconstructed
et data
Y)ve € ]Ru -
Cross Connect Anomalies 3D Convolutional Autoencoding Network
I ‘Extraction Y eRMVE B
(b ?— Mahalanobis |
distance
Conv 1x1
Rp—— =3 B
Fig. 1.  Overall pipeline of the proposed SSCMAE method.
value Z;
Masking
= — T —
Ratio ¥ [} Z; = L1 threshold )
L o
- . - ) where x; represents the data value, p represents the mean of the
Spatial Masked HSI Original HSI Guide Mask L.
dataset, and o represents the standard deviation of the dataset.
= Anomalies, which are significantly distant from the mean, are
— »® Mask.mg identified through larger spectral angles. These outlier values,
| Ratio which are identified by their deviation, are flagged for removal.
W The threshold is set at three times the standard deviation, which
Spectral Masked HSI  Original HSI is easy to use and widely accepted to identify outliers.
2) Spatial Masking: Initially, guided masking is used to ob-
Fig.2.  Masking strategy involves spatial and spectral masking. scure certain pixels in the spatial dimension. However, due to
the significant redundancy of pixel information in the image, the
model can use simple interpolation to approximate the masked
signatures pixels. This makes it challenging for the model to understand
the higher level meaning of the image. Consequently, random
b 1 (<ab> 3 masks are applied to obscure certain pixels, facilitating the
s(a,b) = cos lal - ||| 3) extraction of meaningful global information. The HSI is divided

where <a,b> denotes the dot product of vectors a and b. ||al]
and ||b|| represent the magnitudes (Euclidean norms) of vectors a
and b, respectively. This formula calculates the angle (in radians)
between two vectors in a high-dimensional space. The cosine of
this angle is used as a measure to quantify spectral similarity.
To reduce the sensitivity of the Z-Score algorithm to outliers,
a method for outlier removal based on the Z-Score is proposed.
The Z-score value reflects how much a data point deviates from
the mean of the entire dataset. For each data point, the mean and
standard deviation of the dataset are calculated. Subsequently,
each data point is transformed into its corresponding Z-Score

into overlapping (H x W) /(M x M) patch blocks. For each of
these patch blocks, both a guided mask and a random mask are
applied z, = R™*M>MxC Here, r represents the mask ratio,
wherein the masked region is assigned a value of 0, while the
remaining pixels are configured to 1.

3) Spectral Masking: Owing to the high correlation between
neighboring bands in HSI, which results in increased redun-
dancy, extracting the appropriate spectral information becomes
challenging. Instead of solely focusing on reconstructing image
blocks, the emphasis is shifted toward extracting useful spec-
tral information from a subset of bands. To accomplish this,
band information is masked. The HIS T € R7*W*C is then
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reshaped into a series of equally-sized, nonoverlapping 2-D
images Ispeciral, totaling (H x W x C)/(M x M), where M
is the patch size. Each channel block can be treated as a 2-D
grayscale image. The encoder processes a series of these patches
Ty € R7*CxMxM ) representing the mask ratio.

The masking ratio is an important factor that influences the
results of reconstruction. Therefore, comprehensive experiments
were conducted in Section I'V-C to determine the optimal mask-
ing rate.

C. Spatial-Spectral Cross-Attention Transformer

1) Encoder—Decoder: The encoder follows a standard ViT
model but exclusively accepts unmasked image blocks as input.
These visible image blocks undergo a linear mapping to include
positional embeddings before being processed by the trans-
former block for feature extraction. The transformer module
consists of a multihead self-attention module (MHSA) and a
multilayer perceptron (MLP). The same MLP architecture as
suggested in ViT is used [27]. The MHSA can be seen as a
function that uses linear projection to transform inputs into
different spaces in order to obtain Query, Key, and Value. It
then calculates attention scores through scaled dot product,
and the final output is derived by a weighted sum and linear
transformation

X = Attention(Q, K, V) + X (5)

Attention(Q, K, V) = Softmax(QK” /\/d,)V  (6)

where X and X are the input and output feature maps. Q, K, and
V are reshaped tensors derived from the input. /d, learnable
scaling parameter is utilized to regulate the softmax. To execute
multihead attention, Q, K, and V are divided into 4 heads along
the feature channel dimension. This enables the efficient and
parallel learning of separate attention maps.

In spatial attention, the input features are augmented aug-
mentation through a 1 x 1 convolution. Following this, the
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False-color images and ground-truth images of the experimental datasets. (a) Texas coast. (b) Belcher bay. (c) Pavia. (d) Gulfport. (e) Cat Island.

Q. K, and V are derived. Spectral attention x,, = R7*MxMxC

is defined in a similar manner to spatial attention, with
the distinction that the spectral dimensions are transformed
after linear projection to a dimension denoted as zo =
[2p B, a2E - LW/ M) B - where Erepresents the
number of feature dimensions for each band after linear pro-
jection, and it signifies the similarity between the spectral bands
being focused on.

Corresponding to the encoder structure, the decoder also
includes a transformer module. The input to the decoder consists
of three elements: encoded visible patches, mask markers, and
cross connects. The mask marker indicates a learnable shared
vector, signifying that the image block at that location needs
to be reconstructed. Cross connections facilitate the exchange
of spectral and spatial feature information. Following this, the
resulting data are sent to the transformer module to undergo
the process of acquiring a comprehensive understanding of
the intricate feature mapping. Once the decoding process is
finalized, the dimensions of the feature mapping are aligned
with those of the initial image.

2) Cross Connect: The self-attention mechanism in ViT
tends to prioritize global information, which may limit its ability
to effectively capture local features and result in a loss of
detailed information in reconstruction tasks [34]. In contrast, the
designed cross-connected layers efficiently share information
between tasks. Configured as an assembly of fundamental units
(illustrated by the dashed rectangle in Fig. 1), each unit (n)
receives an input mapping and transmits the output mapping
to the subsequent unit (rn + 1). Each unit consists of a core layer
tailored for a specific task (depicted by blue and pink blocks)
and an auxiliary convolutional layer that connects two CNNs
(illustrated by green and orange blocks). The connected convo-
lutional layer has a kernel size that is the same as the number of
channels in the output mapping of the alternative stream. These
interconnections serve the purpose of transferring information
rather than extracting features. Effectively compensating for
the lack of detailed information in both spatial and spectral
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TABLE I
PARAMETER SETTINGS OF THE PROPOSED 3D-CAE WHEN APPLIED TO DATA
BY THE TEXAS COAST IMAGE

Kernel size Strides
Convl+ Bnl 2x3x3x32 Ix1x1x1
Conv2+ Bn2 2x3x3x64 IxIx1x1
Deconvi+ Bn3 2x3x3x%32 Ix1x1x1
Deconv2+ Bn4 2x3%x3x%32 Ix1x1x1

dimensions, these connections play a crucial role in incorporat-
ing additional discriminative information to distinguish diverse
features. Designating the input maps for the nth unit as «* and
x, and ¢ denoting the transformations learned by the original
convolutional layers as /4 and fZ, respectively. Assuming the
cross-connection layers learn transformations g7 and g2, then
x 1 and xl 1 are computed as follows:

zi o = [N @) + g (fP(xD))
xl = f2@D) + gl (fH(xh)). (7)

)
)
The transformations f2(z2) and f(x) are derived from
the encoder. Subsequently, = ,‘L‘ ; and m,’f 1 are used in the
decoder.

D. 3-D Convolutional Autoencoding Network

ViTs, relying on MHSA, excel in establishing long-distance
models for comprehensive global sensory field coverage [31].
However, they may lack the capability of capturing local details
similar to CNNs, potentially resulting in the loss of localized
information such as edges and textures. To address this, a
lightweight 3DCAE is proposed based on a 3-D convolutional
neural network (3DCNN). The 3DCNN treats the HSI cube as
a unified entity, allowing for accurate and efficient extraction of
features from the combined deep null-spectrum of HSIs. This
process directly yields 3-D feature cubes, which represent a
significant improvement over previous models that were based
on 1-D, 2-D, or 2-D + 1-D. The approach not only utilizes
spatial and spectral information but also takes into account
spatial-spectral correlation. Importantly, it achieves this with
fewer parameters and layers, thereby enhancing efficiency in
feature extraction.

3DCAE is an advanced neural network model based on the
conventional AE. In our model, a relatively shallow neural
network is developed specifically to exploit the characteristics of
anomalous data. This network consists of two 3-D convolutional
layers serving as the encoder and two 3-D deconvolutional layers
serving as the decoder, without any pooling or fully connected
layers included. A 3 x3x2 convolutional kernel with a stride of
1 is chosen to maximize the extraction of spatial and spectral
features, as well as enhance noise suppression capabilities.
In addition, 3-D batch normalization (BN) is employed as a
regularization technique to normalize the features generated by
each 3-D convolutional layer. This ensures consistency in feature
weight ranges and helps mitigate the risk of overfitting. The
architecture of the 3DCAE used in this experiment is described
in Table I.
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Algorithm 1: SSCMAE.

Input: hyperspectral image H
Initialization: window size ¢, masking ratio r,
multiattention mechanism heads A, and feature dimension
size d
1: Calculate the guided mask M according and create
spatial mask and spectral mask according to Mask
Strategy;
2:  Reconstruct the HSI background H
3: Extracting localized information about the
reconstructed background
4: Extract the anomaly targets
Output: Extract the anomaly targets AH

E. Extraction of Anomaly Targets

The mask integrates the reconstructed background in both
spectral and spatial dimensions, linearly combining the two-
dimensional reconstructed backgrounds

D =uw DSpectral + W2DSpatial (3)

where w; and wy serve as balancing parameters. Without any
prior knowledge, itis challenging to ascertain whether anomalies
in the dataset manifest at the pixel level or within regions con-
taining structural information. Drawing inspiration from [35],
setting wy = wo = 0.5 indicates that spectral and spatial features
contribute equally to anomaly detection in the absence of a priori
information.

To train the proposed SSCMAE network, a conventional back-
propagation algorithm is employed. The chosen loss function for
training is the mean squared error, defined as follows:

L=|x-x|? ©9)

where x is the original image, and X is the reconstructed image.

Upon the completion of training in the SSCMAE network, the
reconstructed background of the HIS is obtained. Mahalanobis
distance serves as an effective metric for assessing the similarity
between sample groups. By utilizing the covariance matrix to
represent distance, the Mahalanobis distance can adapt to the
correlations between variables. This property enables the Ma-
halanobis distance to amplify the influence of small changes in
variables and effectively identify anomalies [36]. The detection
result can be expressed as follows:

(x =l (x—p)'

where x = [xg, X1, ..., X,] is an n-dimensional HSI pixel vec-
tor; o and I' are the mean and the covariance matrix of the input
background data.

D(x) = (10)

IV. EXPERIMENTAL RESULTS AND ANALYSIS

The proposed methodology undergoes testing on six authentic
datasets shown in Fig. 3 and is systematically compared against
cutting edge approaches. The experimental results are subjected
to acomprehensive examination using both qualitative and quan-
titative methodologies. Furthermore, a comprehensive analysis
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of the method is conducted to investigate the impact of param-
eters, such as input patch size and shielding rate. In addition, a
comprehensive ablation study is conducted to demonstrate the
effectiveness of the proposed method.

A. Experimental Datasets

1) Texas Coast Image: This dataset captures and depicts
the Texas coast in the United States using the airborne visi-
ble/infrared imaging spectrometer (AVIRIS) [37]. The image is
100 x 100 pixels with 207 spectral bands and a spatial resolution
of 17.2 m. The primary anomaly is a building, which contrasts
against the predominantly vegetated background.

2) Belcher Bay Image: This dataset captures the hyperspec-
tral imager aboard the GF-5 satellite, providing a detailed view
of Belcher Bay in Hong Kong, China. The image is 150 x 150
pixels with 150 spectral bands, and it boasts a spatial resolution
of 30 m. Notable anomalies within the image include ships and
ship tracks, set against a background of water bodies, structures,
and vegetation. The presence of finely fragmented rocks in the
water adds a layer of complexity, which could potentially result
in false alarms during analysis.

3) PaviaC Image: This dataset captures the city center of
Pavia in northern Italy, obtained through a Reflective Optical
System Imaging Spectrometer (ROSIS-03) sensor [38]. The
imagery is presented in a 100 x 100-pixel format, featuring
102 spectral bands with a spatial resolution of 1.3 m. Anomaly
objects within this urban context are represented by cars on the
bridge, set against the background of the bridge and river.

4) Gulfport Image: This dataset captures Gulfport in Amer-
ica, acquired by AVIRIS with a 3.4 m spatial resolution [39].
This 100 x 100-pixel image consists of 191 spectral bands. The
anomalies in this HSI dataset are uniquely portrayed by three
airplanes positioned at the bottom of the image, which are almost
unrecognizable to the naked eye in the false-color image.

5) Cat Island Image: This dataset captures Cat Island in
Japan, acquired by AVIRIS with a 17.2 m spatial resolution
[40]. The image, sized at 150 x 150 pixels with 188 spectral
bands, depicts a background of the sea and an island. Notably, a
ship on the sea is identified as an anomaly, creating a captivating
contrast within the maritime setting.

6) HYDICE Urban Image: This dataset depicts a suburban
residential area in Michigan, USA, captured by the Hyperspec-
tral Digital Imagery Collection Experiment (HYDICE) sensor
with a 3 m spatial resolution [9]. The image, sized at 80 x
100 pixels with 175 spectral bands, depicts a background of
vegetation, soil, water, and road. Ten man-made vehicles are
identified as anomalies. Notably, to make detection more diffi-
cult, we retained the bands of the water absorption regions with
low signal-to-noise ratio and poor quality (1-4, 76, 87, 101-111,
136-153, and 198-210).

B. Parameter Analysis

The impact of parameter configurations on anomaly detection
performance is explored for the task of reconstructing the back-
ground in the mask. Two types of parameters were fine-tuned
for the network structure (including the transformer feature
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dimension size and the number of multiattention mechanism
heads) and the input data (comprising the input patch size, spatial
masking ratio, and channel masking ratio). To scrutinize a spe-
cific hyperparameter, all other hyperparameters were maintained
at a constant value. The default values were set as window size ¢
=5, masking ratio r = 0.3, multiattention mechanism heads i =
4, and feature dimension size d = 512. The model is optimized
using AdamW with a learning rate set to 0.001 and a weight
decay set to 1.

1) Token Dimension: The Token Dimension in the Trans-
former model refers to the dimensionality of hidden states
at each position, which influences the model’s expressiveness
and comes with associated computational and memory costs.
The optimal selection of the hidden layer dimension requires a
thorough evaluation of both model performance and resource
constraints.

Across all datasets, parameters ¢, r, and i were consistently
configured to 5, 0.3, and 4, respectively. The parameter d was
systematically varied within the range of 32 to 512. The impact
of the variable d on the performance of the proposed method is
illustrated in Fig. 4(a). The optimal feature size for Cat Island and
HYDICE is 256, while all other datasets are 512. This shows that
the appropriate feature dimension for each data can effectively
extract the best semantic information.

2) Heads Number: The number of multiattention mechanism
heads allows for simultaneous focus on various input aspects,
thereby enhancing the model’s ability to capture intricate details.
While satisfactory performance can often be achieved with a
modest number of variables, increasing the number of variables
may lead to superior results when dealing with complex datasets.

Across all datasets, the parameters c, r, and d were consis-
tently set to 5, 0.3, and 512, respectively. The parameter & was
systematically varied within the range of 1 to 16. The influence
of the variable 4 on the performance of the proposed method is
depicted in Fig. 4(b). The optimal feature size for all datasets
is 4. Elevating the number of heads, denoted as /, does not
yield a substantial improvement in performance and, in certain
instances, may even result in a decline in accuracy.

3) Patch Size: Adjusting the patch size has implications for
the balance between global information and details. Enlarging
the patch size enables the capture of more global information
at the cost of fine details, while reducing the patch size aids in
preserving finer details but may compromise the inclusion of
comprehensive global features.

The window size was observed to influence the quality of
image reconstruction. Across all datasets, the parameters A, 7,
and d were fixed at 4, 0.3, and 512, respectively. The parameter
¢ was systematically adjusted within the range of 5-13, and its
impact on the performance of the proposed method is depicted
in Fig. 4(c). The Belcher Bay, Texas Coast, PaviaC, Gulfport,
Cat Island, and HYDICE datasets require optimal patch Size of
5,13, 13,7, 5, and 9, respectively.

The proposed method involves reconstructing the masked
portion using the unmasked portion. Therefore, the choice of
patch size significantly impacts the context information of the
mask. The six datasets can be categorized into two groups: the
Texas Coast, PaviaC, and HYDICE. These datasets consist of
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small targets with high density. In this instance, the larger patches
are adequate to cover the entire target without sacrificing impor-
tant information. In the other three datasets, which comprise
sparse, large targets, the smaller patches are useful for capturing
localized features.

4) Spatial/Channel Masking Ratio: An appropriate masking
ratio contributes to meaningful feature learning, robustness, and
prevention of overfitting. However, an excessively high masking
rate may restrict the model’s ability to learn crucial features.
Conversely, a too low masking rate might result in memorizing
training data excessively, neglecting noise, and subsequently
impacting the model’s generalization on new data. In practice,
choosing an appropriate masking rate involves finding a bal-
ance between model complexity, data diversity, and training
convergence speed. This requires experimentation and tuning
to determine the optimal value.

The window size was identified as a factor influencing the
quality of image reconstruction. Across all datasets, parameters
h, c, and d were fixed at 4, 5, and 512, respectively. The
parameter r was systematically adjusted within the range of
0.1-0.9, and its impact on the performance of the proposed
method is illustrated in Fig. 4(d). Notably, the proposed method
exhibited relative stability across various values of r. Ultimately,
except for the HYDICE dataset where r is set to 0.5, for other
datasets, r is set to 0.3. This is attributed to the presence of
numerous low signal-to-noise ratios and poor-quality bands in
the HYDICE dataset, necessitating a higher masking ratio to
effectively extract meaningful information. The results indicate
that high ratios may pose challenges for the model in restoring
the full range of information, potentially impacting detection
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performance. Therefore, it is essential to carefully choose the
parameter r to ensure optimal image reconstruction and detec-
tion capabilities.

In conclusion, the backgrounds of the PaviaC, Texas Coast,
and Cat Island datasets are simpler and cleaner, while the back-
grounds of the Belcher Bay, Gulfport, and HYDICE datasets
are more challenging to distinguish from the spectra of the
anomalies. The anomalies consist of dozens of pixels and are
larger in size, making the effects of the different hyperparameters
more pronounced on them.

C. Experimental Setup

1) Evaluation Metrics: Inthe experiments, the detection per-
formance of the proposed method was evaluated and compared
with other methodologies using metrics, such as the three-
dimensional receiver operating characteristic (3D-ROC) curve,
the area under the curve (AUC) [41], and statistical separability
maps [19]. The experiment utilizes 3D-ROC with two types
of two-dimensional ROC curves: ROC (PD, PF) and ROC (r,
PF). ROC (PD, PF) describes the relationship between the false
positive rate (PF) and the true positive rate (PD) at different
thresholds 7. The PF—7 curve is used to evaluate the false
alarm probability. The AUC value corresponds to a quantitative
measure used to assess the accuracy of detection. In an ideal
scenario, a detector would produce an ROC curve that is closely
positioned to the upper-left corner, resulting in an AUC value
approaching 1. Furthermore, separability maps are used to eval-
uate the discernibility between anomalies and the background.
The boxes shown on the plot represent the distribution range
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TABLE II
PARAMETER SETTINGS OF VARIOUS ALGORITHMS

Detector Parameter Texas Coast Belcher Bay PaviaC Gulfport Cat Island HYDICE
LRX (Win, Wout) (19,21) (5,7) (7,9) (11, 25) (5,7 (5,3)
CRD (Win, Wout) (19, 21) 5,7 (7,9) (17,21) (7,9) (5,3)

GTVLRR Beta 1000 0.01 1000 0.01 0.01 0.01

Lambda 0.01 0.01 0.01 0.1 0.1 0.01
Gamma 0.01 0.001 0.001 0.01 0.01 0.01

LEBSR p-norm: 0.5
NJCR Lambda:1000, sigma: [0.25,0.5]

GAED learning rate: 0.1, penalty coefficient: 1, number of iterations: 300

Auto-AD learning rate: 0.01, number of iterations: 1001

of detection values for both anomalies and the background.
Consequently, the observed separation between these two boxes
indicates the degree of distinguishability between anomalies and
the background.

2) Comparison Methods: To evaluate the effectiveness of
the proposed methodology, experimental comparisons are con-
ducted with both conventional and deep learning-based ap-
proaches. The traditional methods include statistics-based meth-
ods (RX [10] and LRX [11]) and representation-based methods
(CRD [13], GTVLRR [42], LEBSR [43], and NJCR [44]).
The deep learning-based methods include autoencoder-based
methods (GAED [45] and Auto-AD [20]). The experiment
determines the uncertain parameters for cutting edge methods
based on either the recommendations of the original authors or
the AUC value. RX is omitted from the table since they do not
require parameter settings. The parameters are set as given in
Table II. Given the inherent uncertainty in detection outcomes,
particularly in deep learning-based methodologies, the optimal
result obtained from 20 consecutive runs for each method across
the six experimental datasets is presented. Furthermore, all
experiments are conducted on a machine equipped with an Intel
Core i7-10700 central processing unit and 64 GB of random
access memory. The learning and inference processes, using the
network model, are performed within a Python 3.8 and PyTorch
2.0.1 environment, while other operations are conducted in the
MATLAB R2018b environment.

D. Experimental Results

Fig. 5 illustrates the visual detection maps for all experimental
datasets, Fig. 6 displays the corresponding 3D-ROC curves, and
Fig. 7 displays separability maps obtained by different detectors
on each dataset. In Table IV, the AUC values for the compared
methods are calculated, and the second results are highlighted
and underlined. Notably, the best results are presented in bold-
face.

Consistently, in Fig. 5, it is evident that the proposed SSC-
MAE achieves a commendable balance between anomaly de-
tectability and background suppressibility as its corresponding
detection maps closely align with the ground truth. Using the
Pavia dataset as an illustrative example, the CRD struggles
to discern the shape of the anomaly. In contrast, RX, LRX,

GTVLRR, NICR, and GAED demonstrate relatively effective
performance in highlighting anomalous targets. However, these
methods also tend to preserve certain background structural
information, which can result in a higher frequency of false
alarms. Compared to other algorithms, LEBSR and Auto-AD
exhibit a robust ability to suppress background information.
However, it also suppresses anomaly information, which fails
to adequately reflect the shapes of the anomalies. In contrast,
our proposed SSCMAE addresses these issues and accurately
identifies anomalies and their shapes, consequently leading to a
lower false alarm rate.

Table I1I presents the AUC values for the nine algorithms. It is
evident that the proposed method outperforms six conventional
and cutting-edge algorithms, consistently maintaining stable
detection performance across all six datasets. This outcome
highlights the significant advantage of SSCMAE over traditional
and cutting-edge algorithms in effectively characterizing HSI.

Fig. 6 illustrates the 2-D and 3-D ROC curves based on
nine methods across six datasets. As depicted in Fig. 6(al)-
(ab), it can be observed that the proposed SSMAE method
consistently outperforms other methods as the false alarm rate
P; increases, particularly evident in the Gulfport image where
SSMAE exhibits overwhelming superiority over other methods.
It is noteworthy that although the proposed method visually
outperforms other methods only within a limited range for the
Belcher Bay and HYDICE datasets, utilizing the logarithmic
scale of the x-axis demonstrates its superiority over a broader
range. This indicates that our SSMAE demonstrates excellent
overall detection performance compared to RX, LRX, CRD,
GTVLRR, NJCR, LEBSR, Auto-AD, and GAED methods. As
shown in Fig. 6(b1)—(b4), the two-dimensional ROC (PF, 7)
curves are presented. Although the false alarm rate of SSMAE
is higher than that of statistical methods (RX and LRX), its
ability to suppress false alarms exceeds that of expression-based
methods (such as CRD, GTVLRR, and NJCR) and is com-
parable to deep learning-based methods (such as GAED and
Auto-AD) on most datasets. In addition, the three-dimensional
ROC curves in Fig. 6(c1)—(c4) indicate that SSMAE exhibits
superior performance across different datasets.

To further illustrate the effectiveness of SSCMAE in
separating anomalous targets and suppressing background,
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TABLE III
AUC VALUES OF THE COMPARED METHODS ON EACH DATASET

RX LRX CRD GTVLRR NJCR LEBSR  Auto-AD GAED SSCMAE

Texas Coast 0.9946 0.9463 0.9394 0.9899 0.9935 0.9932 0.9947 0.9959 0.9975
Belcher Bay 0.9622 0.9192 0.8555 0.9385 0.9905 0.9854 0.9835 0.9770 0.9919
PaviaC 0.9984 0.9423 0.9633 0.9987 0.9804 0.9928 0.9925 0.9995 0.9997
Gulfport 0.9526 0.8494 0.8516 0.9889 0.9833 0.9821 0.9731 0.9683 0.9954
Cat Island 0.9807 0.9789 0.9018 0.9813 0.9474 0.9522 0.9871 0.9223 0.9980
HYDICE 0.9857 0.9890 0.9908 0.9817 0.9524 0.9905 0.9833 0.9643 0.9912

Fig. 7 illustrates the separability of all methods in terms
of anomalies and background. Across the six datasets, it is
observable that the red anomaly boxes of SSCMAE are not
consistently positioned at their highest level. However, the blue
background boxes appear narrow, especially noticeable in the
Gulfport dataset. This observation suggests the effectiveness of
the proposed method in successfully suppressing background
information. Furthermore, in comparison to other methods, the
proposed approach demonstrates a greater distance and less
overlap between the red and blue boxes, indicating its stronger
ability to differentiate between targets and background, as

well as its good generalization across the six datasets. In
conclusion, the SSCAE model, as proposed in this method,
demonstrates superior performance over both conventional and
state-of-the-art models in terms of anomalous target detection.

E. Ablation Study

1) Effectiveness of Essential Components: In order to assess
the effectiveness of each essential element in our proposed SS-
CMAE, an ablation study was conducted on six datasets. These
studies were specifically aimed at investigating the influence
of spatial attention, spectral attention, and 3DCAE. Table IV
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TABLE IV
AUC VALUES OF THE COMPARED METHODS ON EACH DATASET

Separability maps obtained by different detectors on each dataset. (a) Texas coast. (b) Belcher bay. (c) Pavia. (d) Gulfport. (e) Cat Island. (f) HYDICE.

Spectral

Spatial

Texas

Belcher

. . 3DCAE PaviaC Gulfport  CatIsland HYDICE
attention  attention Coast Bay
N X X 0.9947 0.9668 0.9973 0.8885 0.9812 0.9238
v X 0.9705 0.9541 0.9958 0.8293 0.9706 0.9261
\ v X 0.9952 0.9760 0.9983 0.9056 0.9924 0.9631
\ \ \ 0.9975 0.9901 0.9997 0.9954 0.9980 0.9912
TABLE V
AUC VALUES OF THE MASK STRATEGY ON EACH DATASETS
Guided Random Texas Coast  Belcher Bay PaviaC Gulfport Cat Island HYDICE
mask mask
X X 0.8007 0.9292 0.8740 0.8915 0.9558 0.9056
N, X 0.9924 0.9838 0.9966 0.9794 0.9887 0.9611
X N, 0.8238 0.9475 0.9070 0.9684 0.9738 0.9368
N N 0.9963 0.9901 0.9989 0.9917 0.9907 0.9912

provides a detailed analysis of the relationship between these
various components and their corresponding AUC values. When
using only spatial attention, the AUC values for the Texas Coast,
Belcher Bay, Pavia C, Gulfport, and Cat Island datasets were
0.9705, 0.9541, 0.9958, 0.8293, 0.9706, and 0.9261, respec-
tively. Except for the HYDICE dataset, the AUC values of all
six datasets are higher when using spatial information. This is
because the HYDICE data contain numerous water absorption
bands with low signal-to-noise ratios and poor quality, which
affects the extraction of spectral features. This further under-
scores the crucial role of spectral information and the importance

of spatial information in hyperspectral anomaly detection. The
incorporation of joint spatial and spectral detection further en-
hances anomaly detection performance, emphasizing the critical
role of the dual-branch structure in SSCMAE. SSCMAE demon-
strates its ability to capture intricate spatial and spectral features
simultaneously and effectively. In addition, in order to achieve
a balance between global and local features, local feature ex-
traction is performed using 3DCAE. The detection performance
of 3DCAE on the six datasets shows additional improvement,
validating the effectiveness of integrating a lightweight 3DCAE
to complement local features.
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The proposed algorithm has significantly improved detec-
tion accuracy across the Belcher Bay, Gulfport, Cat Island,
and HYDICE datasets, with notable enhancements observed,
particularly in the Gulfport dataset. This improvement can be
attributed to the unique characteristics of these three datasets,
which exhibit visual anomalies and more closely resemble their
surrounding backgrounds. For example, in the Gulfport dataset,
the aircraft is nearly imperceptible to the unaided eye in the
pseudocolor image. In contrast, the PaviaC and Texas Coast
datasets contain smaller targets, simpler backgrounds, and more
noticeable distinctions between visual anomalies and back-
grounds. Consequently, anomalies in these datasets are easier
to detect with minimal impact from the two extraction methods,
namely spectral and spatial. The experimental findings highlight
the algorithm’s strong and consistent performance in situations
where both targets and anomalies exhibit visual resemblance.

2) Effectiveness of Mask Strategy: To evaluate the effective-
ness of the mask strategy proposed in our SSCMAE, ablation
studies were conducted on six datasets. These studies were
specifically aimed at investigating the influence of guided masks
and random masks. Table V provides a detailed analysis of
the relationship between various masking methods and their
corresponding AUC values.

The findings presented in Table V demonstrate that the utiliza-
tion of the masking strategy consistently improves the detection
efficacy of the proposed SSCMAE.

V. CONCLUSION

This article proposes an SSCMAE for hyperspectral anomaly
detection. The SSCMAE consists of a spatial branch and a
spectral branch. During the reconstruction process, a specific
guided mask is designed to mitigate the emergence of anomalous
targets. The generation of this mask incorporates considera-
tion of spectral differences between these anomalies and the
background. The interaction between the spatial and spectral
branches is achieved through cross-connection convolutional
layers, which enhance the spatial and spectral feature represen-
tation of the HSI during background reconstruction. In addition,
a lightweight 3DCAE is integrated to extract local features, ad-
dressing the challenge of ViT’s limited effectiveness in learning
local structures. The final detection results are determined by cal-
culating the reconstruction error using the Mahalanobis distance.
Empirical findings using real-world data illustrate the efficacy of
the algorithm and the benefits of the hybrid architecture, which
integrates the transformer and 3DCAE for anomaly detection.
Our future endeavors will focus on refining ViT to minimize false
alarms and enhance the efficiency of the proposed SSCMAE
method.
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