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A Two-Stage Strategy for Retrieving 2-D Ocean
Wave Spectra From Chinese Gaofen-3 SAR

Wave Mode Products
Yuxin Fang , Chenqing Fan , Rui Cao , Junmin Meng , Jie Zhang, and Qiushuang Yan

Abstract—Synthetic aperture radar (SAR) is widely used for
observing sea surfaces and retrieving 2-D wave spectra. However,
existing methods for retrieving directional wave spectra from SAR
imagettes face challenges due to the complex nonlinear SAR-wave
imaging relationship and the limitation of first-guess spectra. This
study proposes a novel two-stage machine learning strategy for
retrieving 2-D directional wave spectra from Chinese Gaofen-3
SAR wave mode products. We achieve the generation of complete
2-D wave spectra and several wave parameters solely from GF-3
SAR data without necessitating any additional inputs. In the first
stage, we employ the Energy Attention Conditional Generative
Adversarial Network (EA-CGAN) to retrieve the normalized wave
spectrum. The generator of the EA-CGAN establishes a nonlinear
transformation from normalized SAR cross spectra to normalized
wave spectra to enhance the capabilities. In the second stage, the
XGBoost model retrieves the intensity of the wave spectrum. The
EA-CGAN and XGBoost models were trained on an extensive
dataset that consists of about 11 000 Gaofen-3 SAR wave mode
imagettes and 2-D wave spectra from the fifth-generation reanalysis
(ERA-5) of the European Centre for Medium-Range Weather Fore-
casts. The results of the evaluation using test samples reveal high
consistency between the retrieved wave spectra and ERA-5 wave
spectra in terms of spectral similarity, peak period, peak direction,
significant wave height, and mean wave periods. Compared to the
traditional methods, our approach offers enhanced effectiveness,
demonstrating the potential of advanced deep learning in high-
precision SAR wave spectrum inversion.
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I. INTRODUCTION

THE 2-D wave spectrum serves as a powerful tool for
statistically characterizing the entirety of ocean waves,

providing a comprehensive description of the distribution of
wave energy. From the 2-D wave spectrum, one can extract
various statistical features that encapsulate the nature of the
waves, including significant wave height, average wave period,
and the characteristic wavelength. This analytical approach
holds significant importance in the realm of marine meteorology,
navigation, and offshore, and coastal activities [1]. The precision
with which we observe and interpret 2-D wave spectra is pivotal
for advancing our understanding and enhancing the reliability
of predictions in these crucial domains.

The precise global measurement of 2-D wave spectra, how-
ever, still poses a significant challenge. Currently, information on
wave spectra is primarily obtained through two main methods:
1) wave buoys; and 2) satellite remote sensing. Wave buoys
stand out as one of the most authoritative means to acquire
wave spectra and corresponding integrated wave variables. Nev-
ertheless, their effectiveness is constrained by the limited spatial
distribution of these buoys because they only provide point
measurements. In contrast, spaceborne synthetic aperture radar
(SAR) has become as a powerful tool for detecting the sea
state evolution over expansive areas with high spatial resolution,
operating effectively under different weather conditions [2], [3],
[4]. However, the retrieval of wave spectra from SAR data is
intricate due to the nonauthentic nature of SAR imagettes of
the sea surface. Numerous attempts have been made to develop
theoretical algorithms for wave spectrum retrieval from SAR
imagettes [5], [6], [7], [8], [9].

Recent advancements in satellite technology and the release
of massive datasets have motivated research focusing on the
extraction of individual ocean wave parameters from SAR fea-
tures using empirical algorithms. The subsequent sections (i.e.,
Sections I-A and I-B) aim to provide a comprehensive review of
both theoretical and empirical research in this field.

A. Review of Theoretical Wave Spectrum Retrieval Methods

1) Motivation: A nonlinear imaging mechanism exists be-
tween the SAR imagettes and ocean waves, which forms the
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foundation for theoretical wave spectrum retrieval methods by
establishing a nonlinear integral transformation between wave
spectra and SAR spectra. In essence, the total nonlinear trans-
formation includes tilt and hydrodynamic modulation functions,
along with nonlinear velocity bunching [10]. The goal is there-
fore to retrieve the anticipated wave spectra by minimizing the
cost function associated with the nonlinear transformation.

2) Literature Review: One of the pioneering nonlinear wave
spectral retrieval methods is the Max Planck Institute (MPI)
approach proposed by Hasselmann and Hasselmann [2]. This
method establishes a nonlinear mapping relationship, necessi-
tating a first-guess wave spectrum to reconstruct the complete
retrieval spectrum. Building upon the MPI method, Krogstad [3]
provided a simplified derivation of the nonlinear transformation.
Hasselmann et al. [4] further enhanced the MPI method by
refining the cost function and introducing an additional iteration.
These MPI-based retrieval techniques have been instrumental
in generating global ERS-1 SAR wave mode data, utilizing
numerical wave models and demonstrating promising results [5],
[11]. In addition, Mastenbroek et al. [12] introduced a semipara-
metric algorithm (SPRA) that incorporates wind scatterometer
data as supplementary inputs. In a distinct approach, Sun and
Guan [13] developed the Parameterized First-guess Spectrum
Method (PFSM) to separately retrieve the wind-sea component
and the linear-mapping swell. Unlike MPI-based methods, En-
gen and Johnsen [14] utilized SAR cross spectra for wave spec-
trum inversion. The SAR cross spectra, derived from individual
look SAR imagettes, not only provide information on wave
propagation direction, but also effectively reduce speckle noise.
These cross-spectrum-based methods have been successfully
applied in ENVISAT ASAR wave mode Level-2 products [15].
Further advancements include the Partition Rescaling and Shift
Algorithm (PARSA) [16], which combines numerical WAM in-
formation with SAR cross spectra to achieve promising retrieval
results. Although this method can reduce the cutoff effects,
it requires prior information so it is inconvenient in practical
applications.

3) Limitations: Despite their significant contributions, there
are some limitations on the wave spectrum retrieval methods of
MPI, SPRA, PFSM, and PARSA. These approaches need prior
information, such as a first-guess wave spectrum or wind vectors,
posing challenges in practical applications where obtaining such
information may be inconvenient. Moreover, the presence of
conflicting propagating wave factors within the first-guess wave
spectrum can result in errors in standard wave retrieval. The
performance of cross-spectrum-based wave spectrum retrieval
methods is in large part constrained by the cutoff wavenumber,
as they lack additional input information about ocean waves.
Specifically, the distortion in SAR imaging mechanisms caused
by the Doppler frequency shift erases information about waves
propagating in the azimuth direction of SAR. Besides, while the
retrieved swell information is generally acceptable, the represen-
tation of wind wave information remains incomplete. At present,
the modulation transfer functions governing the nonlinear rela-
tionship are not well understood [9], which decreases the effec-
tiveness of establishing this nonlinear relationship. The hydro-
dynamic contribution, linked to weak polarization dependence

according to theoretical studies and tower measurements [17],
adds to the complexity of the nonlinear transformation. In ad-
dition, the iterative updating process required for retrieval wave
spectra is time-consuming, hindering the feasibility of these
methods for commercial applications.

B. Review of Empirical Wave Parameter Retrieval

1) Motivation: Empirical algorithms offer an alternative ap-
proach to wave parameter retrieval, bypassing the complexities
associated with establishing nonlinear mappings. Instead, these
algorithms directly invert multiple wave parameters from SAR
features. Over the past decade, numerous empirical models have
been proposed, leveraging the wealth of available SAR ocean
scenes.

2) Literature Review: The classical empirical algorithms are
a series of CWAVE models [18], [19], [20]. These models
retrieve significant wave height by utilizing two SAR imagettes-
based variables (i.e., the normalized radar cross section (NRCS)
and the normalized imagettes variance (cvar)) and 20 spectral
parameters calculated from the normalized SAR imagettes spec-
trum. A variety of semiempirical and empirical models [21],
[22], [23], [24], [25], [26], [27] have been proposed to retrieve
significant wave height from variables such as azimuth cutoff
wavelength (λc), peak wavelength (λp), peak wave direction (φ),
NRCS, cvar, NRCS skewness (skew), NRCS kurtosis (kurt), and
incidence angle (θ). Collins et al. [28] explored the effects of
different SAR polarizations, while Pramudya et al. [25] focused
on enhancing empirical SAR significant wave height estima-
tion by combining multiple polarizations. In terms of machine
learning, various approaches [29], [30] have been proposed to
predict significant wave height using single- or multipolarization
SAR features. With the evolution of deep learning in image
processing, models based on deep learning have emerged as
effective tools for retrieving wave parameters from SAR fea-
tures. It should be noted recent advancements consider 2-D
image-level features containing energy distribution information
for significant wave height retrieval [31], [32].

3) Limitations: The primary limitation of the empirical
methods is that they focus only on retrieving one specific ocean
wave parameter, lacking the capability to invert the complete
2-D ocean wave spectrum. The 2-D frequency direction wave
spectrum, which is capable of providing a more accurate and
thorough depiction of waves, remains beyond the reach of these
empirical approaches. Consequently, there is an urgent need
to develop intelligent retrieval technologies that can effectively
retrieve 2-D ocean wave spectra from SAR products.

C. Our Two-Stage Retrieval Strategy for Retrieving 2-D Wave
Spectra From SAR Products

The objective in this study is to retrieve complete 2-D wave
spectra only from the provided SAR products, without the need
for prior information inputs. This then enables the simultaneous
extraction of various sea state elements, including significant
wave height, average wave period, and peak wave direction.
To achieve this, we introduce a two-stage retrieval strategy,
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consisting of the retrieval of wave spectrum energy distribution
and wave spectrum energy intensity.

Based on a Gaofen-3 SAR wave mode product, the first stage
(termed wave spectrum energy distribution retrieval) is to output
the normalized wave spectrum S0−1(kx, ky), which effectively
captures the distribution of wave energy. This strategy employs
a direct transform model that establishes a relationship between
normalized SAR cross-spectra and normalized wave spectra
through data-driven approaches. By doing so, we circumvent
the challenges associated with a highly complex and constrained
nonlinear transformation, especially considering the limited un-
derstanding of hydrodynamic modulation. The transform model
takes a normalized SAR cross-spectrum as input and outputs a
normalized wave spectrum with the same wavenumber coordi-
nates as the input.

The second stage (known as wave spectrum energy intensity
retrieval), is dedicated to retrieving the specific wave spectrum
intensity SPmax by combining the retrieved normalized wave
spectrum S0−1(kx, ky). The ultimate 2-D wave spectrum is
then obtained by directly multiplying the energy distribution
S0−1(kx, ky) with the intensity SPmax of the wave spectrum.

The first stage is crucial as it facilitates the acquisition of
features in the 2-D wave spectrum. To address the challenge
of wave spectrum energy distribution retrieval, we consider
employing the Generative Adversarial Nets (GANs) [33]. Unlike
convolutional neural networks (CNNs), the GANs offer three
distinct advantages for wave spectrum energy distribution re-
trieval. First, GANs can generate detailed 2-D wave spectrum
features, going beyond the limitations of only extracting 1-D
wave parameters. The second benefit is in the GAN’s ability
not only to memorize information from SAR imagettes but also
to generate new, plausible information in line with the natu-
ral wave spectrum data distribution. Unlike the discriminative
models like CNNs, the state of the art mutual guide strategy
can automatically label the unlabeled data [34], [35]. GANs
possess the capacity for imagination, allowing them to extend
their understanding beyond the cutoff wavelength and retrieve
wave spectra more comprehensively. The third advantage is the
efficiency of training GANs without an absolute requirement for
a vast amount of training data. The training data is augmented by
the newly generated data during the training stage. In practical
scenarios, where only a small set of SAR products and cor-
responding wave spectra are available, these three advantages
highlight the capability of GANs as a promising algorithm for
wave spectrum retrieval.

To use the superior ability of GANs for wave spectrum re-
trieval, we introduce an Energy Attention Conditional Genera-
tive Adversarial Net (EA-CGAN). The generator of the proposed
EA-CGAN leverages extensive data to explore the intricate
relationship between SAR spectra and corresponding wave spec-
tra. In addition, an energy attention module is integrated to
guide the EA-CGAN towards focusing more on valuable wave
features. This enhancement allows the generator to establish a
more effective transformation from normalized SAR spectra to
normalized wave spectra.

In the second stage, we employ the XGBoost model to
accomplish wave spectrum energy intensity retrieval. We

validate our proposed two-stage retrieval strategy using a con-
structed dataset, consisting of Gaofen-3 wave mode products
and ERA-5 2-D wave spectra. Furthermore, we provide the
code for EA-CGAN and XGBoost, enabling the application
of our method with various satellites. The code is available at
https://github.com/YuxinFang21/WaveSpectrumRetrieval.

The rest of this article is organized as follows. Section II and
III introduce the dataset used in the present study. Section IV out-
lines the two-stage wave spectrum retrieval strategy. Section V
evaluates normalized wave spectra and ultimate wave spectra.
Finally, Section VI concludes this article.

II. DATA CATALOG

To train the two-stage retrieval strategy that we proposed, we
rely on two essential types of data: 1) SAR products; and 2)
global ocean wave spectra products, all obtained for the same
ocean regions within the same time windows. Our research data
consists of collocated Gaofen-3 SAR wave mode HH polarimet-
ric products and ERA-5 wave spectra data.

A. Gaofen-3 SAR Wave Mode Products

The Gaofen-3 satellite, equipped with a C-band (5.3 GHz)
SAR sensor, operates in 12 imaging modes since August 2016.
Specifically designed for ocean wave detection, the wave mode
of Gaofen-3 SAR captures small SAR images known as im-
agettes every 50 km along the flight direction. These imagettes
are configured with quad-polarimetric products, each covering
a 5 km × 5 km area. The resolution of the azimuth direction
is approximately 5.0 m and the range direction resolution is of
3.4 m. The preceding quality assessments have demonstrated a
crosstalk accuracy of −35 dB for Gaofen-3. For our study, we
compile Level-1 A HH polarimetric single-look complex (SLC)
Gaofen-3 wave mode data spanning from 2016 to 2020. The
retrieval dataset excludes SAR scenes without wave phenomena
through the following operations: 1) deletion of power-saturated
data based on “echoSaturation” values in annotation files; 2) ex-
clusion of imagettes with low homogeneity [36]; and 3) removal
of imagettes with ice, land, or islands.

B. ERA-5 2-D Wave Spectrum

Among the limited institutions capable of providing global
2-D wave spectra, the European Centre for Medium Range
Weather Forecasts (ECMWF) is a reliable source. ECMWF’s
fifth-generation reanalysis, known as ERA-5 [37], provides
precise estimations of 2-D wave spectra. These spectra result
from a combination of abundant wave observations, advanced
model estimation techniques, and proximity to data assimilation
systems.

ERA-5 provides global wave spectra with 24 directions and
30 frequencies every 3 h. Direction bins start at 7.5◦ and increase
by 15◦ until reaching 352.5, where 90◦ denotes the east direction.
Frequency bins are distributed nonlinearly, starting with the first
bin at 0.03453 Hz and finishing with the final bin at 0.6025 Hz.
The bins increase according to the formula f(n) = f(n− 1)×

https://github.com/YuxinFang21/WaveSpectrumRetrieval
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Fig. 1. Comparison ofHs calculated from ERA-5 wave spectra with Hs from
SARAL altimeter. The color indicates the density of the data. The matched data
number is 768.

1.1 forn = 2, 3, . . . , 30. The ERA-5 wave spectra are accessible
globally.

To validate the reliability of ERA-5 wave spectra, we compare
the significant wave height Hs computed from ERA-5 with
which obtained from the SARAL altimeter [38]. The Hs cal-
culation equation for ERA-5 is demonstrated as follows:

Hs = 4

√∫∫
S(kx, ky) dkx dky. (1)

Fig. 1 illustrates the comparison of Hs calculated from ERA-5
wave spectra with Hs from SARAL altimeter, with color indi-
cating the data density. The results demonstrate the high quality
and reliability of ERA-5 wave spectra.

C. Match-Up Datasets

Each SAR product is associated with a spatio-temporally
matched ERA-5 wave spectra. The geographic position of the
center pixel of the corresponding SAR imagette determines the
geographic position of the ERA-5 wave spectra. The latitude and
longitude grid is 0.1◦ × 0.1◦. An one-hour window (+/– 0.5 h) is
used between the matched SAR products and the ERA-5 wave
spectra. In total, 11 312 data pairs are collected. Fig. 2 shows the
global distribution of sample pairs. The histogram of significant
wave heights calculated from ERA-5 wave spectra is depicted in
Fig. 3, revealing that most samples have significant wave heights
between 1.5 m and 2.5 m. All sample pairs are divided into a
training set (65%) and a testing set (35%).

The implementation of our proposed two-stage strategy for
wave spectra involves both aerial and reanalysis measurements.
The ERA-5 wave spectra product supplements the energy infor-
mation beyond the cutoff wavenumber. Therefore, the proposed
wave spectrum inversion strategy develops an innovative data
fusion scheme that combines satellite and reanalysis data to
retrieve the complete wave spectra.

III. DATA PREPROCESSING FOR 2-D WAVE SPECTRA

RETRIEVAL

The data preprocessing stage involves several key steps, in-
cluding the calculation of Gaofen-3 SAR cross spectra, com-
putation of scalar features from Gaofen-3 SAR products, and
transformation of the original ERA-5 wave spectra.

A. SAR Cross Spectra Calculation

The SAR cross spectra can effectively eliminate the spot noise
and identity the wave propagation direction. According to the
relevant process in [39], three sublooks I(m)

f (k, t) are created in
the Fourier domain of SAR SLC imagettess using a Hamming
window. Subsequently, three intensity imagettes I(m)(x) can be
created from each separate sublook by computing the inverse
fast Fourier transform (FFT) of the azimuth imagettes.

I(m)(x) =

∣∣∣∣ 1

(2π)2

∫
dkI

(m)
f (k, t)e−ikx

∣∣∣∣
2

(2)

where m = [ 1,2,3 ]. I
(m)
f (k, t) is the Fourier domain of

the corresponding sublook intensity imagettes I(m)(x). The
cross-spectra are then calculated based on the individual look
imagettes as follows:

P (m,n)
s (k, τ) =

1〈
I(m)

〉 〈
I(n)

〉 〈
I
(m)
f (k, 0)I

∗(n)
f (k, τ)

〉
(3)

where
〈
I(m)

〉
is the mean imagettes intensity of themth sublook.

According to [25], the time separation between the pair of looks
can be defined as follows:

τ =
λR

2VpVf
ΔB (4)

where λ is the radar wavelength, R is the slant range to the
center of the scene of interest, Vp is platform velocity, and ΔB
represents the frequency difference between the centers of two
looks.

The SAR imagettes cross-spectra with long-time separation
are more discriminative than those with short time, as discussed
in [40]. To enhance the determination of the wave propagation
direction, P (1,3)

s (k, τ) is employed for discriminative detection
of the direction of wave propagation of SAR cross spectrum
P (k, τ) in the subsequent section. Fig. 5(a) illustrates the results
of cross-spectrum calculation, where a positive peak is observed
at the North-East direction, indicating that the waves are heading
in the North-East direction.

B. SAR Scalar Features

1) NRCS: The normalized radar cross section (NRCS) serves
as an indicator of wave energy information related to short
wave roughness [30]. In this work, NRCS is computed using
the following formulation:

σ0( dB) = 10× lg
(
DN

)−K. (5)

Here, σ0 represents the NRCS in dB, DN indicates the average
value of DN , and DN = Is(qv/32767)

2 represents the inten-
sity of imagettes. The SLC SAR imagettes Is are composed of
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Fig. 2. Data density of Gaofen-3 wave mode imagettes from 2016 to 2020 in 2◦ × 2◦ bins.

Fig. 3. Histogram of the ERA-5 Hs. The bin of the histogram is 0.5 m.

the real and imaginary channels, i.e., Is = I2 +Q2. qv is the
maximum qualified value, and K is the calibration constant,
both of which are retained in the product annotation file.

2) cvar: The normalized imagettes variance (cvar) captures
information about long waves and is commonly used in empir-
ical Hs retrieval algorithms. The computation of cvar for the
Gaofen-3 is computed as follows:

cvar = var

(
DN − 〈DN〉

〈DN〉
)
. (6)

3) Azimuth Cutoff Wavelength: The slight wave factors prop-
agating close to the azimuth direction are generally distorted due
to the velocity bunching of the SAR-ocean imaging mechanism.
SAR cannot resolve the waves of which wavelengths are below
the cutoff wavelengths λc. Theoretically, the azimuth cutoff
wavelength (λc) is determined by the orbital velocity of ocean
waves over the integration time along with the range-to-velocity
ratio (β) of the SAR platform. Therefore, the value of λc

normalized by β is a vital input feature for our models. The
azimuth cutoffλc is calculated by fitting a Gaussian functionC to
the intercorrelation of SAR cross-spectrum [41]. The Gaussian
function C is expressed as follows:

C(x) ∼ exp

(
−π2x

2

λ2
c

)
(7)

in which x is the spatial distance at the azimuth direction.
4) Incidence Angle: The incidence angle is also a crucial

variable for significant wave height retrieval algorithms. In the
Gaofen-3 wave mode, the incidence angle variable changes from
20◦ to 50◦.

5) CWAVE Spectral Variables: 20 CWAVE spectral variables
are calculated based on the SAR imagettes variance spectrum us-
ing an orthogonal basis set of 20 nondimensional variables [18].

C. ERA-5 Wave Spectrum Transformation

The ERA-5 wave spectra S(f, θ) are provided in frequency
bins in polar coordinates, while the SAR cross spectraP (kx, ky)
are in Cartesian coordinates. Therefore, the ERA-5 wave spectra
require to be transformed from frequency-direction to wavenum-
ber domain [42]. The transformation fromS(f, θ) toS(kx, ky) is
achieved in two steps [9]. First, we transform S(f, θ) to S(k, θ)
using the formulation [9] as follows:

S(k, θ) =
S(f, θ)g

8π2f

[
tanh(kh) +

kh

cosh2(kh)

]
(8)

where k is the wavenumber and h is the finite water
depth. According to the deep water gravity wave theory, k =
4π2f2/g, with g = 9.8m/s2 the gravitational acceleration.
Then, S(kx, ky) can be derived by using the Jacobian of (k, θ)
with respect to (kx, ky) as follows:

S (kx, ky) = S(k, θ)
∂(k, θ)

∂ (kx, ky)
=

S(k, θ)

k
. (9)
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Fig. 4. (a) Normalized backscatter intensity of Gaofen-3 SAR wave mode sample. (b) The imaginary part of the crossspectrum. (c) The real part of the
cross-spectrum.

Fig. 5. Sample ERA-5 wave spectrum is matched with the Gaofen-3 SAR wave mode sample of Fig. 4. (a) The original wave spectrum provided by ERA-5. (b)
The wave spectrum in Cartesian coordinate. (c) The wave spectrum with 180-degree ambiguity.

Linear interpolation is employed to convert the spatial resolution
of both the SAR cross spectra P (kx, ky) and ERA-5 wave
spectraS(kx, ky) to the same Cartesian coordinate (kx, ky). The
SAR cross spectra have a 180◦ ambiguity, so the wave spectra
also require the characteristic of 180◦ ambiguity. S(kx, ky) with
180◦ ambiguity can be obtained as follows:

S(kx, ky) = S(kx, ky) + S(−kx,−ky). (10)

Fig. 5 shows the relevant wave spectrum transformation re-
sults. Although this transformation strategy raises the question
that two spectral energies differing by 180◦ may be superim-
posed, the peak wave direction is not influenced. In the subsec-
tion, we denote the S(kx, ky) as the transformed wave spectra
with 180◦ ambiguity. It is important to note that maintaining
consistency by ensuring both input and output samples exhibit
a 180◦ ambiguity significantly enhances the performance of the
model presented.

D. Application of Features

To facilitate the wave spectrum energy distribution retrieval,
the SAR cross-spectra and the transformed ERA-5 wave spectra
are normalized to the [0–255] interval. Simultaneously, the 24
SAR features, including NRCS, normalized imagettes variance,
azimuth cutoff wavelength, incident angle, and 20 CWAVE
spectral parameters, are used for the wave spectrum intensity
retrieval.

IV. TWO STAGE RETRIEVAL STRATEGY FOR RETRIEVING 2-D
WAVE SPECTRA

The two-stage retrieval strategy is comprised of the wave spec-
trum energy distribution retrieval and the wave spectrum energy
intensity retrieval. The overall process is illustrated in Fig. 6. In
the first stage, known as the wave spectrum energy distribution
retrieval, the objective is to produce the normalized wave spectra
S0−1(kx, ky), reflecting the distribution of wave energy. The
second stage (wave spectrum energy intensity retrieval) focuses
on obtaining the specific wave spectrum intensity SPmax by
combining the retrieved normalized wave spectra. The final
wave spectra are therefore computed by directly multiplying
the energy distribution and the intensity of the wave spectrum.

Section IV-A introduces the wave spectrum energy distri-
bution retrieval using the proposed EA-CGAN. Section IV-B
outlines the wave spectrum energy intensity retrieval using the
XGBoost, and Section IV-C explains the calculation of the
ultimate wave spectrum.

A. Wave Spectrum Energy Distribution Retrieval

To retrieve the normalized wave spectra S(kx, ky) corre-
sponding to the given normalized SAR cross spectra P (k, τ),
we employ a generative adversarial networks (GANs)-based
model. This is because GANs [43], consisting of a generator
and a discriminator, have demonstrated superior capabilities in
generating new data.
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Fig. 6. Two-stage retrieval strategy for wave spectrum inversion.

Fig. 7. Structure of proposed EA-CGAN.

In this study, the generator is designed to produce wave spectra
that closely resemble ground truth wave spectra, i.e., ERA-5
wave spectra. Simultaneously, the role of the discriminator is to
distinguish between the generated wave spectra and the ERA-5
wave spectra. Our emphasis is on training the generator of a
GAN to create the normalized 2-D wave spectra. Initially, the
GAN utilizes random noise as input to the generator, which is
different from our task. To address this, we explore a potential
method for wave spectrum energy distribution retrieval using a
conditional generative adversarial net (CGAN).

In contrast to the initial model, the generator of the CGAN is
trained with SAR spectrum data as inputs. These conditioning
inputs serve as latent codes, addressing the uncontrollability
observed in the initial GAN. To further leverage the superior
capabilities of the CGAN and apply it to the wave spectrum
retrieval task, we introduce an energy attention CGAN (EA-
CGAN). The EA-CGAN is designed to establish a more at-
tainable transformation from the normalized SAR spectra to
the normalized wave spectra. An energy attention module is
constructed to let the EA-CGAN prioritize the valuable wave
energy information. In the following subsection, we outline the
main structure of the EA-CGAN and explain the implementation
of normalized wave spectrum inversion.

1) Structure of EA-CGAN: The structure of EA-CGAN is
shown in Fig. 7. This model consists of an energy attention
generator and a discriminator, both utilizing the convolution-
BatchNorm-ReLu module form [44]. The role of the generator
is to produce complete wave spectra that closely resemble the
transformed ERA-5 wave spectra S(kx, ky). On the other hand,
the discriminator aims to distinguish the generated wave spectra
from the ERA-5 transformed wave spectra S(kx, ky).

These two components engage in an adversarial competition,
wherein their abilities to generate authentic wave spectra and

discriminate the generated counterparts are maximized. Fol-
lowing adversarial training, the generated wave spectra exhibit
realistic characteristics and become indistinguishable from the
real ERA-5 wave spectra when evaluated by the discriminator.
The structure of the energy attention generator in the EA-CGAN
is depicted in Fig. 8. During the training stage, the normalized
SAR cross-spectrum passes through a series of layers that suc-
cessively downsample until a bottleneck layer. At this point, the
process is reversed, allowing all information from SAR cross
spectra to flow through all the layers. Substantial spectrum
information exists between the normalized SAR cross-spectra
and the normalized wave spectra. For instance, the SAR cross
spectra and wave spectra nearly share the direction of peak
wave propagation. To leverage this information effectively and
in line with the architecture of a “U-Net” [45], skip connections
(depicted as red dotted lines in Fig. 8) are added to facilitate the
sharing of spectrum information. Specifically, the skip associ-
ations are added between each layer i and layer n− i, where
n is the total number of layers. In this arrangement, each skip
association combines all features at layer i with those at layer
n− i.

The wave spectrum energy values are quite small at specific di-
rections and wavenumbers, resulting in near-zero pixel values in
both the SAR cross-spectrum and wave spectrum. Consequently,
the generator needs to pay more attention to pixels that contain
valuable energy information. To address this, an energy attention
module is introduced in each convolution block to guide the gen-
erator in focusing on locations with significant wave spectrum
energy, as illustrated in Fig. 9. Given an intermediate feature
map, the spectrum energy attention module generates attention
maps along the spatial dimension channel. Subsequently, the
spectrum energy attention map is multiplied by the input feature
map to adjust feature refinement.

2) Loss Functions: The SAR cross-spectra, corresponding
ERA-5 wave spectra, and retrieval wave spectra are denoted as
P , S, and SG, respectively. The energy attention generator and
the discriminator of EA-CGAN optimize themselves through
two loss functions L1 and LG for the generator, and LD for the
discriminator. The generatorG aims to generate a wave spectrum
SG that closely resembles the ERA-5 wave spectrumS. Two loss
functions are employed to evaluate the similarity on two aspects.
The L1 norm loss function is given by

L1 = |SG − S|. (11)

The L1 norm loss function provides an objective similarity
measure between SG and S. The LG loss obtained from the
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Fig. 8. Structure of the energy attention generator.

Fig. 9. Energy attention module.

discriminator measures the similarity between SG and S.

LG = E[log(1−D(SG, S))]. (12)

The term D(SG, S) calculated from the discriminator D is a
dissimilarity score that estimates the dissimilarity between SG

and S with respect to the value in the interval of 0–1. The
term 1−D(SG, S) indicates the similarity by the discriminator
D. Optimizing LG to minimization boosts the generator G to
generate the retrieval wave spectrum, which is close to the
ERA-5 wave spectrum, and cheats the discriminator D as far
as possible. To make D effectively discriminate the generated
wave spectrum SG from the ERA-5 wave spectrum S, the loss
function for optimizing D is expressed as follows:

LD = E[logD(SG, S)] (13)

with LD measuring the different score of D. We maximize the
loss LD to train the discriminator. The entire loss function of
training the EA-CGAN is formed by summing the loss functions
(11) and (12) to train G and the loss function (13) to train D.
The entire loss function is

LCGAN = LG + LD + αL1 (14)

where α is an empirical scaling variables. We individually
minimize and maximizing the loss LCGAN to train G and D
as follows:

(G∗, D∗) = arg min
G

max
D

LCGAN. (15)

First, the values of G are updated by minimizing the sum of (11)
and (12). Then, the values ofD are updated by maximizing (13).
The min-max training process concerning (15) is adversarial and
can be considered a race between G and D.

Finally, the discriminator is unable to be differentiated be-
tween generated wave spectra and ERA-5 wave spectra. The
Adam optimizer [46] is utilized to implement the minimization
and maximization process.

Fig. 10. Framework of wave spectrum energy intensity retrieval.

3) Wave Spectrum Energy Distribution Retrieval via Energy
Attention Generator: Following the adversarial training stage,
the energy attention generator is extracted for achieving the wave
energy distribution retrieval. The generator G∗ revised after
the adversarial training stage is capable of directly generating
the complete corresponding normalized wave spectra without
relying on prior information. From the perspective of wave
spectrum retrieval, the generator establishes a direct and intricate
nonlinear transformation from the SAR cross-spectra to the wave
spectra.

B. Wave Spectrum Energy Intensity Retrieval

This section introduces the process of wave spectrum energy
intensity retrieval. The overall framework is shown in Fig. 10.
First, the machine learning algorithm XGBoost is implemented
to retrieve theHs from 4 scalar variables and 20 CWAVE spectral
parameters. The XGBoost has been successfully applied to fit
Hs from several SAR features [30]. The XGBoost model can be
expressed as follows:

ŷi =

K∑
k=1

fk (xi) , fk ∈ F (i = 1, 2, . . . n) (16)

in which F is a list of decision trees, ŷi denotes the forecast
Hs, and n denotes the data number. XGBoost is trained by
minimizing the objective function shown as follows:

LObj = L+Ω. (17)

In this context, L evaluates the bias between ŷi and yi which
denotes the Hs calculated from ERA-5 wave spectra. The ad-
ditional regularization term Ω decreases the complexity of the
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Fig. 11. Process of removing 180◦ ambiguity for the retrieval wave spectrum
retrieved from the sample in Fig. 4. The red dashed box represents the ultimate
retrieval wave spectrum.

XGBoost to avoid overfitting. Next, we integrate the retrieved
Hs with the corresponding generated normalized wave spectrum
to calculate practical intensity values. The lowest intensity of the
practical wave spectrum is considered as zero, as wave energy
is negligible at certain wavenumbers. Therefore, the practical
wave spectrum can be represented as follows:

S(kx, ky) = SPmaxS0−1(kx, ky). (18)

Once the maximum intensitySPmax is determined, the intensity
values for the entire practical wave spectrum are established.
Based on (1), the maximum intensity SPmax is expressed as
follows:

SPmax =
H2

s

16
∫∫

S0−1(kx, ky)dkxdky
· (19)

C. Ultimate Directional Wave Spectra

The directional wave spectra obtained using (18), while re-
taining a 180◦ ambiguity postcalculation, require only one half
for analysis. To resolve this ambiguity and enhance directional
resolution aided by the temporal separation between individ-
ual imagettes [40], the imaginary part of the cross-spectrum
P

(1,3)
s (k, τ) between individual looks 1 and 3 is employed.

A positive peak in this imaginary cross-spectrum identifies the
wave propagation direction and is considered as the directional
wave spectrum’s center point. For instance, in Fig. 4, a positive
peak is observed in the North-East direction. To remove the 180◦

ambiguity, the positive peak of the imaginary part is selected as
the center of the ultimate directional wave spectrum. Subse-
quently, the complete 180◦ range of the retrieval wave spectrum
is extracted, as depicted in Fig. 11, where the red dashed box
represents the ultimate retrieval wave spectrum.

The overall wave spectrum two-stage retrieval strategy is
shown in Algorithm 1.

Algorithm 1 delineates our proposed two-stage retrieval strat-
egy for retrieving complete wave spectra from Gaofen-3 SAR
products, eliminating the need for prior information. Depending
on specific requirements, the wave spectra in the wavenumber
kx − ky domain can be transformed back to the frequency-
direction formulation using (8) and (9).

Algorithm 1: The Two-Stage Retrieval Strategy.

Inputs: SAR cross spectra P (kx, ky), SAR scalar features.
1) The normalized wave spectra S0−1(kx, ky) are
generated by the energy attention generator G from the
SAR cross spectra.

2) The significant wave heights Hs are estimated from
SAR scalar features via XGBoost.

3) Combining the Hs and retrieval normalized wave
spectra S0−1(kx, ky), the maximum intensity SPmax for
each retrieval wave spectrum is obtained.

4) The complete retrieval wave spectra S(kx, ky) are
calculated by S(kx, ky) = SPmax × S0−1(kx, ky).

5) After removing the 180-degree ambiguity, the ultimate
wave spectrum is obtained.

Outputs: Retrieval Wave Spectra S(kx, ky)

V. 2-D RETRIEVAL WAVE SPECTRUM EVALUATION

Our wave spectrum two-stage retrieval framework is im-
plemented using the PyTorch framework on CentOS 7.3. The
EA-CGAN is trained with SGD, employing a learning rate of
0.001, a momentum of 0.95, a constant LR schedule, and a batch
with a size of 32. The training consists of 150 iterations. The
training session runs for 150 epochs with a batch size of 8.
The learning rate of the Adam optimizer starts from the initial
0.0005, using the ascending decay as well as the rate of 0.96.
The XGBoost is trained with an estimator number of 200, max
depth of 50, and learning rate of 0.05.

A. Qualitative Evaluation of Normalized 2-D Wave Spectra

The pivotal aspect of the proposed two-stage retrieval strategy
is the retrieval of normalized wave spectra. While the normalized
wave spectra are represented in the range of 0–255 rather than
practical values, various wave parameters such as mean wave
period, peak period, and peak direction can be derived based on
these normalized wave spectra. The energy intensity retrieval
stage does not alter the shape of the normalized wave spectra, but
only adjusts the wave energy values for each wavenumber. In this
section, the retrieved normalized wave spectra, S0−1(kx, ky),
from the first stage are evaluated against the ERA-5 normalized
wave spectra using a 2-D spectrum similarity measurement.

So far, only a few evaluation criteria can accurately assess the
similarity of 2-D wave spectra. In order to rigorously evaluate the
performance of our proposed method in retrieving normalized
wave spectra, we utilize a set of widely recognized evaluation
metrics commonly employed for measuring imagettes similarity.
These metrics serve to quantitatively measure the degree of
similarity and dissimilarity between the 2-D normalized ERA-
5 wave spectra and the 2-D normalized retrieval wave spec-
tra. Specifically, four key evaluation parameters are employed.
The relevant quantitative evaluation metrics are presented as
follows.

1) Peak Signal-to-Noise Ratio (PSNR): PSNR is a metric
commonly used for assessing image quality, and it can
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TABLE I
QUALITATIVE EVALUATION RESULTS FOR ENERGY DISTRIBUTION RETRIEVAL IN FOUR SEA STATES

also indicate image similarity. Computed as the mean
squared error between the signal (ERA-5 wave spectra)
and the noise (differences between ERA-5 and retrieval
normalized wave spectra), a high PSNR value indicates a
small mean squared error in the retrieval result, thereby re-
flecting a high similarity between the retrieval and ERA-5
normalized wave spectra.

2) Structure Similarity Index Measure (SSIM): SSIM quan-
tifies differences in peak wave energy, contrast, and wave
energy distribution between the normalized retrieval wave
spectra and normalized ERA-5 wave spectra. Ranging
between 0 and 1, a higher SSIM value indicates a closer
approximation of the normalized retrieval wave spectra to
the normalized ERA-5 wave spectra.

3) Root Mean Square Error (RMSE): RMSE is an objective
evaluation indicator calculated by the pixel-level error
between the normalized retrieval wave spectrum and the
normalized ERA-5 wave spectrum. Reflecting the degree
of difference between them, a small RMSE represents
a superior result where the normalized retrieval wave
spectra closely match the normalized ERA-5 wave spectra.

4) Linear (Bravais–Pearson) Correlation Coefficient ρ: ρ is
employed to estimate the correlation between the retrieval
spectra and the reference ERA-5 spectra. It is represented
as follows:

ρ(A,B) =

N∑
i,j=1

(Aij − μA) (Bij − μB)·

1√(∑N
i,j=1 (Aij − μA)

2
)(∑N

i,j=1 (Bij − μB)
2
)
(20)

where Aij and Bij indicate the energy of retrieval wave
spectrum and the ERA-5 wave spectrum on wavenumbers
kij(i, j = 1, . . . , N). kij represents the wavenumber with
the interval of Δk = 0.001 and the range of [0.005, 0.2].
μA and μB denote the average values for Aij and Bij ,
separately.

Table I presents the results of qualitative similarity evaluations
across four sea states: Hs ≤ 1.5 m, 1.5 m < Hs ≤ 3 m, 3 m
< Hs ≤ 4.5 m, and Hs > 4.5 m. The SSIM, PSNR, and RMSE

scores for the entire test dataset demonstrate sufficient perfor-
mance in terms of image similarity [47], affirming the proficient
generative capability of the proposed energy attention generator.
More specifically, the SSIM, PSNR, and ρ(A,B) values for the
retrieval results in three sea states (Hs > 1.5 m) exceed 0.9,
30 dB, and 0.85, respectively. In addition, the RMSE values
for the retrieval results in these states (where Hs > 1.5 m) are
consistently below 7.5.

When comparing the four sea states, the retrieval samples in
the highest sea state (Hs > 4.5 m) exhibit the most significant
average scores across all three evaluation criteria. In contrast,
the retrieval samples in the lowest sea state (Hs ≤ 1.5 m)
demonstrate inferior average scores, likely attributed to the
poor signal-to-noise ratio of SAR spectra in this lowest sea
state. In general, the influence of noise in SAR cross-spectra
is more pronounced in low sea states, despite the reduction of
speckled noise through cross-spectrum processing. The noise
energy levels in low sea states are relatively improved, leading
to a more challenging scenario where noise and useful wave
spectra information become intertwined and indistinguishable.
As a result, the energy attention generator of the EA-CGAN
may misconstrue irrelevant noise information as useful wave
spectra information, generating inaccurate wave information
from noise signals in SAR spectra. Fig. 12 illustrates histograms
of SSIM, PSNR, and ρ(A,B) for the retrieved energy distri-
bution results. While the majority of samples exhibit satisfac-
tory SSIM, PSNR, and NRMSE results, a subset of extreme
conditional retrieval outcomes can impact the overall retrieval
performance.

Figs. 13 and 14 present eight specific examples across four
sea states, providing a detailed exploration of the effectiveness
of the energy distribution retrieval model. Each row corresponds
to a group of time-space-matched samples. The main wave di-
rection of each sample is obtained from the corresponding SAR
cross-spectrum which is as explained in Section IV-C. Visually,
these 2-D normalized retrieval examples exhibit a high degree
of consistency with their respective 2-D normalized ERA-5
wave spectra in terms of relative energy values and distribution.
For some SAR products that have distinctive wave features,
the proposed EA-CGAN demonstrates robust capabilities in
retrieving complete wave spectra, as shown in Figs. 13, 14(b),
and (d). In Fig. 13(c), EA-CGAN generates additional wave
information present in the SAR cross-spectrum but absent in the
ERA-5 wave spectrum. Even for SAR products lacking distinct
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Fig. 12. Histograms of PSNR, SSIM, and linear correlation coefficient ρ(A,B).

Fig. 13. Retrieval normalized wave spectrum results on two comparably high sea states. (a)Hs = 5.35 m. (b) Hs = 5.23 m. (c) Hs = 4.43 m. (d) Hs = 4.36 m.

wave features, as observed in Fig. 14(c) and (d), our proposed
EA-CGAN demonstrates its ability to extract valuable wave
information from the SAR cross-spectrum, which may contain
complex noise signals.

The wave propagation direction is a vital parameter that can be
roughly recognized from SAR imagettes and SAR cross-spectra.
In the presented examples, the wave propagation direction in 2-D
normalized retrieval wave spectra is observed to be closer to
that in SAR cross-spectra than in 2-D normalized ERA-5 wave
spectra, particularly evident in Fig. 13(a). These observations
suggest that the generator of EA-CGAN successfully establishes
a direct transformation from SAR normalized cross-spectra to
the corresponding normalized wave spectra.

In summary, the evaluation results confirm the capability
of the energy distribution wave spectrum retrieval model to
effectively retrieve normalized wave spectra for most sea states.

B. Qualitative Evaluation of the Ultimate Wave Spectra

Following the confirmation of the effectiveness of the EA-
CGAN in the first stage, we proceed to evaluate the ultimate
directional wave spectra S(kx, ky) with a focus on the omni-
directional wave spectra S(k) and several practical wave pa-
rameters. The ultimate directional wave spectra are acquired
according to the process in Section IV-C. Prior to the evaluation,
the S(kx, ky) is transformed to S(k, θ) using (9).

1) Qualitative Evaluation of the Omni-Directional Wave
Spectra: The omni-directional wave spectra S(k) are deter-
mined by integrating S(k, θ) in wave propagation direction,
expressed as

S(k) =

∫ 2π

0

S(k, θ)dθ. (21)
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Fig. 14. Retrieval normalized wave spectrum results on two comparably low sea states. (a) Hs = 1.78 m. (b) Hs = 2.18 m. (c) Hs = 0.91 m. (d) Hs = 1.40 m.

Three evaluation indicators (i.e., the linear correlation coeffi-
cient ρ in terms of one dimension, the relative integral error
ΔE, the peak wavenumber error Δkp1) are employed to quan-
titatively assess the retrieval omni-directional normalized wave
spectra.

The linear (Bravais–Pearson) correlation coefficient ρ for
the omnidirectional wave spectrum similarity measurement is
defined as follows:

ρ(A,B) =

∑N
i=1 (Ai − μA) (Bi − μB)√(∑N

i=1 (Ai − μA)
2
)(∑N

i=1 (Bi − μB)
2
)
(22)

whereAi andBi indicate the mean retrieval wave spectra and the
mean ERA-5 wave spectrum discretized on wavenumberski(i =
1, . . . , N). kij represents the wavenumber with the interval of
Δk = 0.001 and the range of [0.005, 0.2]. μA andμB denote the
average values for Ai and Bi, respectively. The relative integral
error ΔE quantitatively assesses the dissimilarity between the
ERA-5 omnidirectional spectra and the retrieval omnidirectional
wave spectra [48]. ΔE is defined as follows:

ΔE =

∑N
i=1 AiΔkAi −

∑N
i=1 BiΔkBi∑N

i=1 BiΔkBi

× 100% (23)

where Ai and Bi denote the average retrieval wave spectra
and the mean ERA-5 wave spectra on wavenumbers ki (i =

1, . . . , N ), respectively. The peak wavenumber error Δkp1 es-
timates the dissimilarity on peak wavenumber. It is represented
as follows:

Δkp1 =
kp1_A − kp1_B

kp1_B
× 100% (24)

wherekp1_A, kp1_B indicate the wavenumber with the maximum
energy.

Fig. 15 demonstrates the retrieval of omni-directional spectral
results in four sea states. The sea state, 3m ≥ Hs > 1.5 m,
achieves the most outstanding fitting with the greatest ΔE =
−1.2%,Δkp1 = 4.03%, but an inferior ρ = 0.94. For the two
comparably high sea states (Hs > 4.5m and 4.5 m≥ Hs >3 m),
the retrieved omni-directional spectra demonstrate apparent un-
derestimation when the wavenumber is lower than 0.75 rd/m. In
addition, a small overestimation appears when the wavenum-
ber exceeds 0.75 rd/m. For the sea state Hs ≤ 1.5 m, the
retrieval results show substantial overestimation with ΔE =
−15.2%,Δkp1 = 7.87%, and ρ = 0.97. These deviations in the
retrieval of omni-directional wave spectra are mainly caused by
the poor fitting performance of Hs by the XGBoost model. The
Hs estimation results via XGBoost also exhibit overestimation
and underestimation in the lowest and highest sea states.

In summary, the retrieval of omni-directional spectra shows
superior consistency with ERA-5 in medium sea states (4.5 m
≥ Hs > 3 m and 3 m ≥ Hs > 1.5 m). In extreme sea states
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Fig. 15. Retrieval omni-directional spectra results for four sea states. N indicates the number of samples in the corresponding sea state. (a) Hs > 4.5 m.
(b) 4.5 m ≥ Hs > 3 m. (c) 3 m ≥ Hs > 1.5 m. (d) 1.5 m ≥ Hs.

(Hs > 4.5 m and Hs ≤ 1.5 m), the consistencies, while infe-
rior, are acceptable. The variation tendency of retrieval omni-
directional spectra and ERA-5 omni-directional spectra in four
sea states are similar, which indicates that the EA-CGAN model
achieves superior performance. Improving the performance of
the Hs retrieval model can enhance the effectiveness of the
omni-directional spectra fitting because the main difference is
derived from specific intensity values.

2) Qualitative Evaluation of Ocean Wave Parameters: The
evaluation of the energy intensity retrieval model extends to
practical wave parameters computed from the ultimate retrieval
wave spectra. These parameters include peak wave period, sig-
nificant wave height, mean wave period, and peak direction. To
evaluate the energy intensity retrieval model qualitatively, three
standard metrics are employed, which are the mean bias (Bias),
root mean square error (RMSE), and correlation coefficient
(Corr).

The peak wave period (PP ) is defined as follows:

PP =
2π√
gkmax

(25)

where kmax denotes the wavenumber of the peak wave energy.
The peak wave direction denotes the direction of the peak wave
energy. Due to the 180◦ ambiguity of the ultimate retrieval wave
spectrum, two peak wave directions with an interval of 180◦ are
captured. The peak wave direction, closer to the positive peak

direction of the imaginary part of the corresponding SAR cross-
spectrum, is considered as the ultimate peak wave direction. The
positive peak direction of the imaginary indicates the practical
peak wave direction so that the largest difference between the
retrieval and ERA-5 peak wave direction is 90◦. We calculate
the significant wave height (Hs) using the following formula (1).
Accurate representation of mean ocean wave periods is essential
for various practical applications, and different formulations
exist for this purpose. One simplest representation, Tm01, is
defined as

Tm01 = m0/m1. (26)

In addition, the frequently used zero up-crossing period, denoted
as Tm02, is expressed as

Tm02 = m0/m2. (27)

The energy wave period is defined by

Tm−10 = m−1/m0, (28)

where the moments mk are given by

mn =

∫ 2π

0

∫ fmax

fmin

fnS(f, θ)dfdθ. (29)

These different mean ocean wave periods have been used in
various contexts, with Tm02 being widely used in ocean en-
gineering, and Tm−10 commonly employed in wave energy
applications [49].
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TABLE II
WAVE PARAMETER RETRIEVAL RESULTS ARE SUBJECT TO COMPARING THE RETRIEVAL WAVE SPECTRA AND ERA-5 WAVE SPECTRA

Table II presents the comprehensive evaluation results for the
retrieval of six key wave parameters, while Fig. 16 illustrates
scatter plots showing these parameters. Notably, samples from
two moderate sea states (4.5 m ≥ Hs > 3 m, 3 m ≥ Hs >
1.5 m), constituting a substantial portion of the total dataset,
exhibit superior scores across all three evaluation indices for
six wave parameters. The evaluation of significant wave height
(Hs) across the entire dataset demonstrates satisfactory results
in terms of three metrics. Samples from the lowest sea state yield
comparatively lower evaluation scores, likely influenced by the
smaller sample size.

The peak period evaluation results in Table II indicate a rea-
sonable overall correlation of 0.7492, accompanied by an RMSE
of 1.519 s and a Bias of 0.1382 s. The minimal observed peak
period is approximately 7.1 s, corresponding to a wavelength of

78.5 m. It is important to note that identifying the peak period
depends on accurately determining the peak wavenumber pixel
in the wave spectrum. As the peak wavenumber value drops and
the peak period increases, the prediction error for the peak period
also rises due to the resolution of peak wavenumber pixels.
Consequently, when dealing with high peak periods, even slight
shifts in pixel positions can cause substantial inaccuracies in
estimating the peak period. This factor inherently limits the ac-
curacy of peak period retrieval, as illustrated by Fig. 16(a), where
a single high peak period corresponds to several retrieved peak
periods. The sea state of 4.5 m ≥ Hs > 3 m demonstrates the
most favorable performance, achieving a correlation of 0.8019,
an RMSE of 1.231 s, and a Bias of −0.1952 s. Conversely,
the lowest sea state (Hs ≤ 1.5 m) yields the least satisfactory
results. This difference is primarily due to the prevalence of swell
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Fig. 16. Scatter results of retrieval ocean wave six parameters: (a) peak period, (b) peak direction, (c) significant wave height Hs, (d) mean period Tm01,
(e) zero up-crossing period Tm10, and (f) energy wave period Tm02. The data number is 4,024.

waves in the lowest sea state, characterized by extended peak
periods. Waves with larger peak periods give greater challenges,
resulting in more significant errors compared to waves with
shorter periods.

Table II further highlights the satisfactory performance of the
three practical wave period parameters across total test samples,
with Bias values below 0.20 s, RMSE values below 0.65 s, and
correlation coefficients above 0.8. The lowest and highest sea
states exhibit comparatively lower correlation scores on the three
period parameters when compared to the moderate sea states,
a trend consistent with the omni-directional wave spectrum
results. This difference is related to the limited availability of
extreme sea state data, contributing to a reduced performance
evaluation. In addition, it should be mentioned that longer wave

periods are typically associated with more intense events and
high sea states [18], which contain long-winded sea and swell
waves. As expected, the RMSE and Bias of the three wave
periods in high sea states are generally larger than those of low
sea states. Comparing the results of Fig. 15 and Table II, it is
evident that the estimation of mean wave periods (MWPs) in the
two moderate sea states is better than that in the two extreme sea
states. This discrepancy is due to the superior energy consistency
observed in the omni-directional spectra of the two moderate sea
states. The residual trends in mean wave period estimation mirror
those of the omnidirectional spectrum estimation in Fig. 15:
Shorter MWPs are overestimated but longer MWPs are under-
estimated. For the sea state of 4.5m ≥ Hs > 3m, Fig. 15(b)
illustrates a more favorable fitting for k below approximately
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Fig. 17. Comparison of the sample proportion with MRE and NRMSE.

0.01 rd/m compared to k above this value. Therefore, the re-
trieval performance ofTm−10 is better than that ofTm02 in the sea
state of 4.5m ≥ Hs > 3m. Fig. 17 further contrasts the sample
distribution with Mean Relative Error (MRE) and Normalized
RMSE (NRMSE) and reveals a decreasing error trend with an
increase in data size for the four parameters calculated from
wave spectra.

In the work of Lin et al. [50], they utilized the Parameterized
First-guess Spectrum Method (PFSM) to retrieve wave spectra
from 50 VV-polarization Sentinel-1 SAR imagettes in IW mode
over China’s seas. When comparing their retrieval wave spectra
with ECMWF reanalysis wave data, the evaluation metrics for
Tm02 exhibited a Bias of –1.11 s, RMSE of 2.43 s, and STD of
2.21 s. In contrary, ourTm02 yields a Bias of 0.1633 s, and RMSE
of 0.6206 s. Johnsen et al. [51] assessed the mean wave period
Tm−10 from the ASAR WM products and the WAM spectra
during May, September, and December 2004. Their evaluation
showed an RMSE and Bias of 1.3 s and 1.1 s for Tm−10,
and 0.6 m and –0.2 m for Hs. In comparison, our retrieval
method show better results for Tm−10, Tm02, and significant
wave height than those reported by Lin et al. and Johnsen et
al. Furthermore, Johnsen et al. also assessed wave direction
for retrieval wave spectra from ASAR and reported an RMSE
and Bias of approximately 0.9 rd (51.56◦) and 0.02 rd (1.146◦),
respectively. Our wave direction retrieval results exhibit lower
RMSE across four sea states, although the Bias, particularly in
the lowest sea state, requires improvement.

VI. CONCLUSION

In this work, we focus on the intricacies of the 2-D wave
spectrum retrieval problem using the Gaofen-3 SAR wave mode
data and ERA-5 2-D wave spectra. Specifically, we propose a
universal two-stage retrieval wave spectrum strategy consisting
of energy distribution retrieval and energy intensity retrieval.
In the first step, our focus is on retrieving normalized wave
spectra using the proposed EA-CGAN. The generator of the
EA-CGAN establishes a direct and nonlinear transformation
from normalized SAR cross spectra to normalized wave spectra.
Benefiting from the imagination capability of EA-CGAN, we
achieve the generation of complete 2-D wave spectra from SAR
cross-spectra without requiring additional inputs. The second
step involves the retrieval of significant wave height (Hs) values
from 24 SAR scalar features based on the XGBoost regression
model. The combination of normalized wave spectra and ob-
tained significant wave height values results in the ultimate
wave spectra. The SAR cross spectra make significant con-
tribution to the shape of retrieval wave spectra and the wave
parameters related to the energy density, such as wave period,
peak period, and peak direction. The 24 SAR scalar features
influence the performance of practical intensity of retrieval wave
spectra.

We finally compare our proposed strategy with some of the ex-
isting wave spectrum retrieval methods, including MPI, PFSM,
and PARSA methods. The key observations are summarized as
follows.
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1) MPI, PFSM, and PARSA Methods: While these methods
have shown promising wave spectrum retrieval results
over the last a few decades, they are limited by the complex
calculation processes associated with nonlinear transfor-
mations and the need for prior information as the first
guess wave spectra. Our proposed method can effectively
reduce the time consumption for wave spectrum retrieval.
The generator of the EA-CGAN directly establishes the
nonlinear transformation from SAR cross spectra to wave
spectra after training, eliminating the need for iterative
computations of the loss function. It has been shown that
retrieving wave spectra for the total test data (4202) takes
only 5 min, with each SAR cross-spectrum requiring only
5 s. Importantly, our method does not need prior informa-
tion as necessary inputs, which enhances its applicability
to other satellites.

2) Cross Spectrum-Based Wave Retrieval Method: While this
method eliminates the need for an additional spectrum, it
is constrained by poor azimuth resolution. Its retrieval per-
formance is compromised due to the presence of a cutoff
wavenumber. The azimuth wave information beyond the
cutoff wavenumber in the SAR cross-spectrum becomes
distorted, which then causes a significant challenge in
achieving complete wave spectra retrieval without sup-
plementary wave information inputs. In contrast, in our
proposed approach the generator efficiently extracts infor-
mation from the Gaofen-3 SAR cross-spectrum during the
training stage and attempts to generate new information as-
sociated with the target ERA-5 wave-spectrum data. After
the training, the generator is equipped with the capability
to complement specific wave spectrum information based
on each SAR cross-spectrum. This dynamic adaptability
enhances the robustness of our method, making it adept at
addressing the limitations posed by cutoff wavenumbers
in cross-spectrum-based wave retrieval methods.

3) Limitations and Future Work: Despite the advantages
listed above, our method has limitations in the process
of removing the 180◦ ambiguity, particularly when in-
fluenced by the positive peak in the imaginary part of
the cross-spectrum. The removal performance is con-
strained when the wave spectrum exhibits multiple peaks
in opposite directions. In addition, the Hs retrieval model
can be improved, especially in scenarios involving wave
breaking, which is a crucial influencing factor for wave
characteristics. For this reason, incorporating the steep-
ness variable, which scales the breaking intensity [52],
will be part of our future work. Looking forward, we aim
to expand our dataset by including buoy data, additional
SWIM spectral data, wave model outputs, and altimeter
data. This expansion will not only diversify our train-
ing set, but also enhance the robustness of our model’s
validation.
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