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Frequency-Driven Edge Guidance Network for
Semantic Segmentation of Remote Sensing Images

Jinsong Li , Shujun Zhang , Yukang Sun , Qi Han , Yuanyuan Sun , and Yimin Wang

Abstract—Semantic segmentation plays a significant role in pars-
ing remote sensing images. However, mainstream segmentation
models lack a thorough understanding of the complex structures
and scale differences, and struggle to effectively locate and em-
phasize diverse edges. Aiming at these limitations, we propose a
frequency-driven edge guidance network, named FDEG-Net, for
semantic segmentation of remote sensing images. First, we design a
joint sparse context aggregation module that integrates both dense
local context and sparse long-range context to improve the analysis
of intricate and multiscale objects. Second, an edge guidance mod-
ule is developed for strong interclass edge acquisition. It applies a
2-D discrete wavelet transform, coefficient superposition method,
and adaptive edge feature enhancement algorithm to reduce low-
frequency information and highlight salient boundaries in spatial
features. This module has two significant advantages. 1) The edge
positions are defined in pixel intensity with high interpretability.
2) The modular design without additional edge labels is plug-and-
play. The effectiveness and robustness of this module are validated
through edge visualization results. The proposed FDEG-Net is eval-
uated on the Potsdam, Vaihingen, and GID datasets, demonstrating
its excellent performance in accurately capturing the rich semantics
of geographic space features.

Index Terms—Context extraction, edge guidance, remote sensing
images (RSIs), semantic segmentation.

I. INTRODUCTION

S EMANTIC segmentation is a crucial task in comprehending
remote sensing images (RSIs) and plays an increasingly

important role in land resource utilization, urban planning, and
environmental protection [1]. With the rapid advancement of
remote sensing technology, images cover more diverse contents
with higher spatial resolution [2]. Consequently, traditional
image processing and computer vision methods are no longer
sufficient for effective analysis. In recent years, deep learning
(DL) technology, particularly convolutional neural networks
(CNNs), has achieved significant success in various computer
vision tasks, including semantic segmentation of RSIs [3]. Due
to the excellent feature extraction ability of CNNs, CNN-based
semantic segmentation methods in natural images are introduced
to RSIs. Specifically, methods based on the fully convolutional
network [4] and U-Net [5] have been rapidly developed [6], [7].
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However, convolutional receptive fields are limited in size [8],
making it difficult for CNNs to consider enough pixels to
establish global context. To overcome this limitation, some
studies [9], [10] enlarge the receptive field of CNNs through
pooling and dilated convolution. Nevertheless, these methods
suffer from sparsity (compressed information and atrous inter-
val), where the object’s local discriminant information becomes
fuzzy, leading to semantic confusion. One potential solution to
this problem is to introduce self-attention [11]. Self-attention
uses matrix computation to capture the global correlation be-
tween arbitrary pixels. However, self-attention requires signif-
icantly more computation than convolution. Further, thanks to
the multihead self-attention, some Transformer-based schemes
have made promising progress [12], [13]. While these methods
have powerful capabilities in capturing global context, they
also exhibit limitations in computational resources and memory
efficiency [14].

Recently, researchers have explored the large dense convolu-
tions as an alternative to self-attention for context modeling [15].
This method has demonstrated the potential to rival self-attention
while maintaining acceptable computational costs. Therefore,
inspired by the fuzzy vision of humans, we consider the design
of the receptive field from the perspective of the convolutional
kernel, aiming to strike a balance between sparsity and density.
We develop a joint sparse context aggregation (JSCA) approach,
which adopts a large sparse window and dense local context to
approximate the human visual field (focused center and fuzzy
surroundings). This approach allows small dense kernels to
focus on the current object, capturing its discriminant features,
whereas large sparse kernels expand the context to establish
global understanding simultaneously.

In addition to expanding receptive the fields of CNNs, detailed
spatial information is essential for semantic segmentation. While
the semantic representation is acquired through image encoding,
this comes at the cost of losing spatial details, which hinders
dense pixel classification [16]. To address this issue, an effective
strategy is to enhance and extract spatial information from
low-level features, which can then be combined with high-level
feature upsampling during the decoding process [17]. For spa-
tial information, different objects typically display significant
variations in their feature expressions, with the key aspect being
the identification of edges between them. Therefore, accurately
identifying interclass edges is crucial for extracting explicit
spatial information, particularly for RSIs [18].

Recent studies on RSI segmentation have mainly focused
on boundary supervision [19], [20], [21], [22], [23], [24], [25]
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Fig. 1. By frequency-domain transformation, our proposed method generates
independent edge features based on pixel intensity without additional data
support.

and additional data support [26]. Typically, the ground truth
for edges (edge GT) is generated from the segmentation labels
to serve as a reference for the network’s boundary supervision
branch. While these methods partially address the issue of fuzzy
boundary segmentation, the introduction of branch networks
and additional data results in model bloat, increased parame-
ters, reduced computational efficiency, and limited generality.
Traditional boundary detection algorithms, such as differential
operators, perform well in natural images, but have received lim-
ited attention in RSI segmentation [27], [28]. This is primarily
due to their weak noise resistance.

The wavelet transform has been extensively researched in the
field of frequency analysis. It has the ability to generate feature
maps based on predefined rules and effectively distinguish high-
frequency information from low-frequency information [29].
This means that the wavelet transform takes into account image
structures, particularly the variations in pixel intensity, during
feature extraction. On the other hand, CNNs abstract objects into
features, decreasing their complexity and indirectly reducing the
impact of noise on high-frequency information. Based on the
above observation of wavelet transform and CNNs, our objective
is to accurately extract edges from the feature-level space by
introducing wavelet transform to improve RSI semantic segmen-
tation. To this end, we design an edge guidance module (EGM)
based on 2-D wavelet transform, detecting edges in feature-level
space. This module includes a coefficient superposition method
and an edge feature enhancement algorithm that adaptively
emphasizes the high-frequency features reflected by boundary
information from both horizontal and vertical directions. It is
worth noting that we do not use any edge GT or additional data,
only identify the boundaries in the features from a frequency
perspective, as shown in Fig. 1. This is an essential difference
from previous methods.

In this study, we propose a novel network called frequency-
driven edge guidance network (FDEG-Net) that tightly couples
JSCA and EGM. Context information interpreted by JSCA is
scheduled across scales to the decoder. The EGM provides

detailed spatial information to both the encoder and decoder in
a circular manner. We conduct comprehensive ablation studies
and compare FDEG-Net with both CNN-based computer vision
methods and RSI-specific approaches on three different RSI
datasets to demonstrate the effectiveness of FDEG-Net.

The main contributions of this study are as follows.
1) Inspired by human vision’s fuzzy characteristics, we de-

velop a JSCA module that combines local context and
large sparse context. This approach allows CNNs to cap-
ture object’s discriminant semantic and establish global
understanding in images.

2) A novel frequency-driven edge feature extraction method
is put forward. It calculates edge positions based on the
high- and low-frequency representation of the wavelet co-
efficients in all directions. Independent edge information
loops into the encoder and decoder, thus refining spatial
features. This method does not utilize additional edge
labels and can be independently and flexibly embedded
within CNNs.

3) Proposing a FDEG-Net to improve the semantic segmen-
tation of RSIs by tightly coupling context information and
fine-grained features across different scales. Compared
with 16 advanced methods, the network achieves excellent
performance on three publicly available datasets including
Potsdam, Vaihingen, and GID datasets.

The rest of this article is organized as follows. Section II
introduces related works on semantic segmentation of RSIs.
Section III elaborates the proposed FDEG-Net. In Section IV,
we present a comprehensive experimental evaluation. Section V
discusses this study. Finally, Section VI concludes this article.

II. RELATED WORKS

A. Context Interpretation for Segmentation in RSIs

The limitation of the receptive field size in CNNs restricts
their ability to capture long-range context. Researchers have
explored different methods to address this issue. Yu et al. [30]
and Diakogiannis et al. [31] adopted a pyramid pooling mod-
ule [10] to aggregate features at different scales to capture
global context in RSI segmentation. Several studies [32], [33],
[34], [35], [36], [37] directly utilized atrous spatial pyramid
pooling (ASPP) [9], which performs well in natural images, to
integrate multiscale contexts. Furthermore, ASPP-based mod-
els have been developed to improve the performance for RSI
scenes [38]. For example, EaNet [18] proposed a large kernel
pyramid pooling that captures multiscale contexts using hy-
brid asymmetric convolution with atrous rates. However, these
sparsity modeling methods only establish context in limited
locations. This can lead to interobject semantic confusion, where
small objects can be easily obscured by more salient objects,
especially when they are close together.

Another approach to capturing global context is self-attention
mechanism [39], which has shown promising results [40].
Thereafter, self-attention is applied to model long-range spatial
correlation in high-level features of RSIs [41], [42], [43]. For
example, Zhang et al. [44] designed an adaptive ASPP that intro-
duces self-attention modules at each scale to enhance semantic
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context understanding. Although these methods prove the effec-
tiveness of self-attention, they bring computational burden. In
addition, some researchers have put forth Transformer-based
approaches [45], [46], [47] but at the cost of computational
resources and memory.

Compared with self-attention modeling, the context represen-
tation of dilated convolution is indeed sparse or rough. However,
recent research suggests that the outstanding performance of
self-attention may be attributed to its ability to capture global
context through a global window [15]. This finding motivates
the exploration of designing large dense kernel convolutions to
capture a wide range of context.

B. Edge Extraction for Segmentation in RSIs

Edge extraction are prominent areas of research in semantic
segmentation, particularly in the context of RSIs. Some stud-
ies employ traditional image processing algorithms, such as
watershed algorithm [48], to extract boundaries. Li et al. [28]
proposed an edge distributed attention, which incorporates the
Canny operator into self-attention to emphasize edges. Chen
et al. [49] simultaneously fused the Canny results of labels
and input images into the network. Notably, Azimi et al. [27]
inserted the wavelet decompositions of input images into CNNs
to segment lane markings in RSIs. They only simply used three
wavelet decompositions of input images and did not investigate
how to better highlight high-frequency information and reduce
low-frequency noise in decomposition results. In this article,
we directly decompose features by wavelet transform and adopt
four decompositions to emphasize high-frequency information
represented by boundaries and suppress noises. In addition, to
aid in segmentation, researchers have also introduced additional
data with boundary attributes, such as digital surface model
(DSM) [26].

Recent studies have focused on optimizing the loss function
and incorporating additional edge supervision. The most com-
mon approach is to perform edge supervision on the multilevel
features in encoder or decoder [50], [51], [52], [53], [54],
[55], [56]. Zheng et al. [18] developed an edge-aware loss func-
tion to enhance edge information directly from segmentation
prediction, facilitating the separation of confusing objects with
sharp contours. Sun et al. [20] proposed an adaptive edge loss
that optimizes the edge-body segmentation jointly, specifically
aimed at identifying tiny objects. Li et al. [21] constructed a
semantic boundary awareness network, which incorporates edge
ground truth (GT) and employs a multitask loss to supervise
the boundaries in the encoder features. Sui et al. [23] first
pretrained a boundary detection network using edge GT. Then,
the network constrains the segmentation results through loss cy-
cles and feature bootstrapping. To improve boundary prediction
performance, some studies employ combination methods. Pan
et al. [19] performed Canny and morphological operations to the
input image, generating an edge-region map that is supervised
by edge GT and embedded into the decoder to identify edges.
Jin et al. [22] adopted edge GT to supervise spatial information,
guiding multimodal fusion through boundary features.

It is apparent that the complexity of the aforementioned
methods is increasing. In light of this, our focus is to reduce the

model’s reliance on edge GT and the design of the loss function.
By solely utilizing the traditional differential operator, we can
effectively extract high-quality boundary features.

III. METHODOLOGY

A. Overview of the FDEG-Net

This section presents the overall structure of FDEG-Net, as
illustrated in Fig. 2. FDEG-Net follows an encoder–decoder
structure that is based on a variant of U-Net. The encoder
applies a ResNeXt-101 [57] as the backbone of FDEG-Net. The
encoding features hierarchically incorporate the JSCA module
and EGM. The JSCA module captures long-range context at
high-level semantics, whereas the EGM refines high-resolution
features to produce high-quality edges. Besides, the decoder
adopts a cross-scale fusion strategy to gradually align the details
and semantics. This strategy consists of three fusion modules,
each leveraging contextual features from two scales to guide the
integration of detailed features. The three features are aggregated
using Conv-BN-ReLU, and a scale attention unit (SAU) is
applied to consider the relative importance of features. For more
information on the fusion module, please refer to the two dotted
boxes on the right side of Fig. 2. Finally, bilinear interpolation is
applied in the decoder to restore the spatial resolution for dense
prediction.

B. JSCA Module

When individuals focus their vision on a significant target,
they tend to observe their surrounding environment in a gen-
eralized manner. However, in the case of RSIs, direct visual
observation of images from this perspective is not possible.
Nevertheless, at the semantic level, RSIs exhibit certain reg-
ularities in its contextual information. For example, cars are
expected to be present on roads rather than on the rooftops
of buildings. Similarly, buildings are typically accompanied by
roads or surrounded by green vegetation.

CNNs exhibit a characteristic wherein large receptive fields
allow the network to consider a broader context. On the other
hand, small receptive fields are good at capturing local details.
By employing dilated convolution with different atrous rates,
CNNs effectively obtain a multiscale context. Therefore, uti-
lizing local context with multiscale receptive fields enables the
network to perceive the inherent contextual semantics present in
RSIs.

Dilated convolution is utilized to simulate a large-window
sparse context, which is then combined with local details to
generate a joint sparse context. This joint sparse context is
leveraged to foster the learning of long-range relationships.
Consequently, a JSCA module is designed to extensively explore
the contextual information present in the images. The JSCA
module consists of five branches as shown in Fig. 3, and its
operation process is as follows.

Let X ∈ RC×H×W denotes the input feature map, with C, H,
and W representing its channel, height, and width, respectively.
The subscript i is the number of branches, where i = {1, 2, 3}.

First, the three main branches consist of 3 × 3 depthwise sep-
arable convolutions (DSConv) to compute contextual features
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Fig. 2. Overview of the proposed FDEG-Net. The JSCA module establishes long-range associations in high-level features, whereas the EGM extracts and
reinforces edge features in low-level features.

Fig. 3. Detailed design of the JSCA module. Local information is attached to each rate-scale feature to represent the joint sparse context. The SAU denotes scale
attention unit the same as in Fig. 2.
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FSC of different scale. These context features can be described
as follows:

FSCi
= DSConv3×3(X|ai) (1)

where a is the atrous rate. The three atrous rates are set to 2, 3,
and 4. This operation can preserve original semantics on a single
channel while reducing the computational burden. Therefore, the
shape of the FSC is C × H × W. Note that the atrous rate in the
other JSCA module is set to 3, 5, and 7, and the smaller rate
combination is used to parse the top-level context.

The atrous rates for the two groups are set as follows. The
objective of the proposed JSCA module is to capture long-range
context, covering the entire feature map. On one hand, a larger
rate leads to ineffective feature learning as it reduces the valid
filter weights [9]. To preserve more valid filter weights, the
receptive field of the maximum atrous rate should be close to
the feature size. Consequently, the maximum atrous rates for
the first and second groups are set to 4 and 7, respectively.
Since the maximum atrous rate of the first group is 4, the other
two atrous rates can only be reduced to 2 and 3. On the other
hand, an improper group of atrous rates will result in a gridding
problem [58]. Therefore, we set the atrous rates at two intervals
to prevent gridding problem and capturing duplicate semantic
information.

Subsequently, local features FL are extracted using a standard
3 × 3 DSConv. They are then added to the FSCi

pixel by pixel,
resulting in the joint sparse context FJSCi

. Afterward, the FJSC

from each scale undergoes fusion using 1 × 1 convolution to
learn the associations between local features and long-range
context. The FJSCi

is expressed as follows:

FJSCi
= Convr1×1(FL + FSCi

)

= Convr1×1 (DSConv3×3 (X) + FSCi
) (2)

where r represents the dimension reduction ratio of channels,
and r = 4.

Lastly, the SAU is employed to process the three main
branches to enhance the expression of the joint sparse context
for each scale. Then, they are stacked as multiscale joint sparse
context FMS-JSC, and aggregated with the top 1 × 1 convolution
branch to generate the output features Xout. The FMS-JSC and
Xout are defined as follows:

FMS-JSC = Concat((FJSCi
+ SAU(FJSCi

)) (3)

Xout = Convr1×1(Concat(FMS-JSCi
,Convr1×1(X))).

(4)

Within SCEG-Net, the JCSA module is applied to the top
two layers of ResNeXt-101. Although these layers have large
receptive fields relative to the inputs, the JSCA can still acquire
inherent contextual knowledge by utilizing scale-cropped orig-
inal inputs. In summary, the JCSA module incorporates dense
local kernels into large sparse kernels to proficiently capture
object discriminant features and abundant long-range context.

C. Edge Guidance Module

Since features of CNNs essentially capture the abstract map-
ping of corresponding objects, the final details within the objects
tend to be attenuated, resulting in heightened high-frequency
information at the interclass edges. Therefore, we construct a
frequency-driven EGM without any parameters, as depicted in
Fig. 4. This module comprises of four steps: First, the 2-D
discrete wavelet transform is employed to extract frequency
information in feature maps. Second, the coefficients repre-
senting the frequency are superimposed to determine the edge
region, obtaining edge texture maps. Third, an adaptive threshold
algorithm is applied to remove noise and enhance the edge
representation in edge texture maps. Fourth, the edge texture
maps are then fed into two paths: 1) They are concatenated with
details at the next level. 2) They are aggregated with higher-level
semantics. This allows the edge information to be reused at
different resolutions, thereby enhancing the model’s ability to
detect edge regions. We will now provide illustrations for these
four steps.

Let the input feature map be F ∈ RC×H×W . The C, H, and
W denote the channel, height, and width of the F, respectively.
For each channel, assuming that

Fc = fc + εc (5)

where f represents the clear body feature, ε stands for the
unrecognizable smaller feature (as noise), and c is the channel
number. The f and ε are independent of each other.

F’s wavelet coefficient matrix Coe is generated via a 2-D
discrete wavelet transform. The transformation is as follows:

Coec = ωFcω
T (6)

where ω is a standard Haar wavelet transform matrix. The Haar
wavelet transform can decompose feature map components of
different directions with fewer parameters and inference delay
than other wavelet basis functions [59].

The ω contains the Haar basis function of the following form:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
h0(t)=h00(t)=

1√
H
, t ∈ [0,1]

hk(t)=hqp(t)=
1√
H

⎧⎪⎨
⎪⎩
2

q
2 , p−1

2q ≤ t < p−0.5
2q

−2
q
2 , p−0.5

2q ≤ t < p
2q

0, otherwise, t ∈ [0,1]

(7)

where t ∈ [0, 1]. Since H = W in the input feature F, the
matrix size in the following formula is represented by H.
k = {0, 1, 2, . . . , H − 1}, H = 2l, and l ∈ N ∗. The p and q
represent integer factorization of k, and k = 2q + p− 1, where
0 ≤ p ≤ l − 1, p = 0 or 1 for q = 0, and 1 ≤ p ≤ 2q for q �= 0.
Each row ofω contains the elements hk,r(t), which make up the
1-D vector �hk, where r = {0, 1, 2, . . . , H − 1} is the position
number, and t = {0, 1/H, 2/H, . . . , (H − 1)/H}. Therefore,
ω is the following matrix:

ω =

⎛
⎜⎜⎜⎜⎝

�h0

�h1

...
�hH−1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

h0,0(t) · · · h0,H−1(t)

h1,0(t) · · · h1,H−1(t)
...

. . .
...

hH−1,0(t) · · · hH−1,H−1(t)

⎞
⎟⎟⎟⎟⎠ . (8)
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Fig. 4. Detailed design of the EGM. It leverages wavelet transform to obtain feature subbands with edge attributes. Subsequently, these subbands are used to
generate adaptive thresholds and superpose coefficients, highlighting edge features.

The decomposition process of transformation can be de-
scribed as follows: Initially, a 1-D discrete wavelet transform
is applied to each row of the feature map, resulting in the extrac-
tion of low- and high-frequency components in the horizontal
direction. Subsequently, a 1-D discrete wavelet transform is
performed on each column of the transformed feature map, pro-
ducing the low-frequency subband LL and the high-frequency
subbands LH, HL, and HH in the vertical, horizontal, and
diagonal directions. Consequently, the Coe can be represented
by the following matrix:

Coez,c =

(
LLz,c LHz,c

HLz,c HHz,c

)
(9)

where z denotes the number of the wavelet transform, and z = 1.
For simplicity, the following formulas will not be accompanied
by z.

Each subband has a size of (C, H / 2, W / 2). With the exception
of the LL subband, the HL, LH, and HH subbands contain edge
texture information and high-frequency noise. In the subbands,
the magnitude of wavelet coefficients directly represents the
strength of edge texture. This implies that if there are edges
present in the feature map, the sum of corresponding coefficients
in the LH and HL subbands should be greater than the coefficient
value in nonboundary regions. In addition, the LL subband
exhibits lower coefficient values at high-frequency locations.
Therefore, based on this frequency domain characteristic, it is
possible to determine whether edges exist in the corresponding
feature map of the coefficient matrix. The edge texture features
Coee are determined as follows:

Coee
c(i, j) =

LHc(i, j) +HLc(i, j)

LLc(i, j)
(10)

where i and j are the position number.
To mitigate the impact of noise, only the HL and LH sub-

bands, which contain edge texture in the horizontal and vertical
directions, are retained. There are two main reasons for this:
1) The HL and LH subbands also show significant wavelet

coefficients at diagonal edge locations. This is because the Haar
wavelet basis function has a small filter length (=2), which
results in a small transformation window. In cases where an edge
has a distinct skew or curve, it can be seen as a combination of
multiple small horizontal and vertical lines. Therefore, the HL
and LH subbands are effective in capturing edge features in
directions other than just horizontal and vertical. 2) The HH
subband contains more noise. Fragmented features are often
irregular and are rarely presented in regular horizontal and
vertical directions. Since the HH subband represents texture in
oblique directions, it is more susceptible to capturing fragmented
features and thus, more noise. The visualization effect of (10) is
shown at the bottom of Fig. 4. The green and blue areas represent
vertical and horizontal edges, whereas the other areas correspond
to low-frequency information. Obviously, by performing matrix
division, the edge region is effectively highlighted. At this point,
a feature map containing edge information of moderate intensity
has been successfully extracted.

The high-frequency information is retained and sharpened
when the features are translated into the frequency domain
space. However, high-frequency noise independent of the edge
is also embedded. Therefore, based on the wavelet threshold
theory [60], an adaptive edge feature enhancement algorithm is
designed to highlight the wavelet coefficients on the edge region.
The pseudocode is outlined in Algorithm 1.

It is worth noting that the whole process from feature input
to Algorithm 1 does not introduce learnable parameters, so it is
necessary to learn edge information through feature aggregation.
Specifically, F̂ e is fed to the two types of pipeline flows to
provide edge guidance. In the concatenating flow, it is utilized
to help determine the position of the object in neighboring layer
features Fal. In the aggregation flow, its guidance aligns the
details F and two high-level semantics (Fs1 and Fs2). The two
types of guidance are described as follows:{

Concat flow: Concat(F̂ e, Fal)

Agg flow: Concat(Concat(F̂ e, F ), Fs1, Fs2)
. (11)
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Algorithm 1: Adaptive Edge Feature Enhancement Algo-
rithm.

Input: Subband HH ∈ RC×(H/2)×(W/2) and edge texture
features Coee

Output: Enhanced edge features F̂ e

# Line 1-15: Adaptive modeling on HH. Let ζF,c, ζf,c, ζε,c
denote the standard deviation of Fc, fc, εc.
1: According to (5), so ζ2F,c = ζ2f,c + ζ2ε,c.
2: for each channel HHc ∈ HH do
3: for all pixel hi,j ∈ HHc do
4: sort(hi,j), from the smallest to largest
5: hmed = median(sort(hi,j)), and hmax = max(sort(hi,j))
6: Compute noise standard deviation: ζε,c = hmed/0.6745

7: Compute variance of F: ζ2F,c =

∑H/2
i=1,j=1 h

2
i,j

(H/2)×(W/2)
8: end for
9: Compute variance of f: ζ2f,c =

√
max(ζ2F,c − ζ2ε,c, 0)

10: if ζ2ε,c ≥ ζ2F,c then
11: ζ2f,c = 0, but compute adaptive threshold Tc = hmax

12: else
13: Compute adaptive threshold Tc = ζ2ε,c/(2× ζ2f,c)
14: end if
15:end for # Adaptive threshold T are obtained.
# Line 16-24: Strong edge modeling on Coee.
16:for each channel Coec ∈ Coee do
17: for all pixel xi,j ∈ Coec do
18: if xi,j > Tc then
19: F̂ e(i, j) = xi,j

20: else
21: F̂ e(i, j) = 0
22: end if
23: end for
24:end for # Enhanced edge features F̂ e are obtained.

IV. EXPERIMENT

A. Datasets and Training Details

The experiments are conducted on three datasets: Potsdam
and Vaihingen of ISPRS Remote Sensing Image Segmentation
Challenge and the Gaofen Image Dataset (GID) [61].

Potsdam dataset: The Potsdam dataset consists of 38 high-
resolution RSIs that cover the northeastern region of Germany.
These images showcase a diverse urban landscape, including
buildings, streets, and vegetation. Each image has a size of
6000 × 6000 pixels and has a spatial resolution of 0.05 m.
The dataset provides six bands including red, green, blue, near
infrared, DSM, and normalized DSM. Note that the experiments
only utilize the first three bands. In addition, the labels are
divided into six categories: impervious surfaces, buildings, low
vegetation, trees, cars, and background. For testing, the chosen
images include IDs 2_13, 2_14, 3_13, 3_14, 4_13, 4_14, 4_15,
5_13, 5_14, 5_15, 6_13, 6_14, 6_15, and 7_13. ID 2_10 is
selected as the validation set. The training phase utilizes the
remaining 22 images, excluding ID 7_10 due to a labeling error.

Fig. 5. Potsdam and Vaihingen datasets. The second and third columns are
GTs without and with erosion boundaries.

Fig. 6. GID dataset. The first row is images. The second row is GTs.

Vaihingen dataset: The Vaihingen dataset contains 33 images
captured in central Germany, showcasing typical village char-
acteristics such as compact buildings and lush vegetation. The
average size of the image is 2494 × 2064 pixels, with a spatial
resolution of 0.09 m. The dataset provides four bands: red, green,
near infrared, and DSM. The first three bands are utilized in the
experiments. In addition, the dataset follows the same category
classification as the Potsdam dataset. The test set consists of
images with IDs 2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 27, 29, 31,
33, 35, and 38. Image ID 30 is selected as the validation set. The
training set is constructed using the remaining 15 images.

Examples of the above two datasets are shown in Fig. 5. The
GT is classified into two categories: nonerosive boundary and
erosive boundary. For the latter, black pixels with a circular
disc of a 3-pixel radius are added at the object edge to mitigate
the influence of uncertain border definitions during evaluation.
It is important to note that, except for a proving test, all ex-
periments in this article utilize ground reference data without
erosion boundary. Consequently, the experimental results are
lower when compared with those obtained using label data with
erosion boundary.

GID: As illustrated in Fig. 6, the GID comprises 10 RGB
images of China, capturing 15 land use categories. These
images were collected by the Gaofen-2 satellite. Each image
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TABLE I
RESULTS OF DIFFERENT MODELS ON THE POTSDAM TEST SET

spans a geographic area of 506 km2, with a resolution of
7200 × 6800 pixels. To facilitate training, we partition each
image into nonoverlapping patches of size 256× 256. Moreover,
we randomly allocate 60% of the patches for training, 20% for
validation, and 20% for testing.

Data augmentation applied to the original training images
encompassed cropping them into nonoverlapping 256 × 256
blocks, performing random rotations (90◦, 180◦, 270◦), applying
random scale cropping (scaling factor: 0.2–1.0), horizontal flip-
ping, and vertical flipping. In addition, the models are evaluated
directly using the 256 × 256 test images.

For training, the Adam optimizer (β1 = 0.9, β2 = 0.999) is
employed, using an initial learning rate of 0.0001. The training
process consists of 300 epochs, with the learning rate halved
every 30 epochs. In addition, a batch size of 16 is selected and the
model is trained using the cross-entropy loss function. PyTorch
is utilized as the DL framework for all experiments conducted
on a single NVIDIA TITAN XP GPU with 12 GB of RAM.

B. Evaluation Metrics

To quantitatively assess the performance of the proposed
model, the evaluation of the results is based on the four metrics:
overall accuracy (OA), intersection over union (IoU), Kappa
coefficient (K), and F1-score (F1). AF means the average F1.
The calculation methods are as follows:

OA =
TP + TN

TP + FN + FP + TN
(12)

IoU =
TP

TP + FN + FP
(13)

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1 =
2× Precision × Recall

Precision + Recall
(16)

K =
OA − pe
1− pe

(17)

where TP, TN, FP, and FN represent the number of true positive,
true negative, false positive, and false negative predicted pixels.
The pe is the hypothetical probability of chance agreement and

pe=
(TP+FP)× (TP+FN)× (FP+TN)× (FN+TN)

(TP+FN+FP+TN)2
.

(18)

C. Experimental Results

To demonstrate the effectiveness of the proposed net-
work, a comprehensive analysis is performed comparing it
with various advanced segmentation models, namely, U-
Net [5], PSPNet [10], DeepLabV3+ [17], DANet [40], OCR-
Net [62], EaNet [18], SCAttNet [63], MANet [41], LANet [8],
BANet [12], DCST [13], UNetFormer [45], MAResU-Net [11],
MACU-Net [64], A2-FPN [42], BESNet [52], HBCNet [51],
GCDNet [54], and CMTFNet [46]. For a fair comparison, these
models with the ResNet family backbone adopt ResNeXt-101.
In addition, unless otherwise specified, all quantitative experi-
mental results are presented as percentages (%).

Quantitative analysis: The precision results on the three
datasets are presented in Tables I–III. In these tables, the black
bold font indicates the highest accuracy, whereas the under-
lined figures indicate the second highest accuracy. Traditional
baselines for natural images perform poorly when applied to
RSIs with wide fields of view and complex scenes. Sparse
context modeling methods such as PSPNet and DeepLabV3+
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TABLE II
RESULTS OF DIFFERENT MODELS ON THE VAIHINGEN TEST SET

TABLE III
RESULTS OF DIFFERENT MODELS ON THE GID TEST SET

lack the ability to focus on the current object semantics, making
them unsuitable for RSIs. DANet and OCRNet, which introduce
self-attention mechanisms, show significant improvements in
accuracy.

Recent CNN-based RSI-specific methods utilize multiscale
feature fusion and attention mechanisms to effectively im-
prove segmentation results, such as MAResU-Net, A2-FPN, and
CMTFNet. However, due to insufficient boundary information,
A2-FPN, with the second-highest accuracy on the GID dataset,

falls behind our method by 0.807% and 2.220% in MIoU and AF,
as shown in Table III. In addition, Transformer-based methods
show a strong segmentation ability. UNetFormer and CMTFNet
achieve suboptimal accuracy on the Potsdam and Vaihingen
datasets, as shown in Tables I and II. Similarly, due to better
boundary protection, our method outperforms UNetFormer by
0.544% and 0.305% in K on the Potsdam dataset and AF on the
Vaihingen dataset. On the other hand, methods with edge aware-
ness, such as BESNet, HBCNet, and GCDNet, aim to improve
accuracy by edge supervision. However, these methods heavily
rely on the quality of the edge GT. In contrast, the proposed
EGM generates independent and distinct edge features, which
can be recycled to provide multiscale clues for locating edges.
As a result, our method achieves higher precision compared
with the above methods with edge supervision. In short, our
proposed FDEG-Net combines context modeling (JSCA) and
boundary protection strategy (EGM) simultaneously to tightly
couple context and spatial information with clear boundaries.
Therefore, FDEG-Net improves the intraclass consistency and
interclass discriminability of predictions, resulting in better ac-
curacy performance.

Qualitative analysis: We selected 15 different scenarios from
the three datasets to visually compare the segmentation results
of various models. The segmentation advantage of our proposed
model can be observed in red box area of each figure. Fig. 7
presents the results on the Potsdam dataset. Our proposed net-
work outperforms other models in capturing object shapes (in
the first and second images) and identifying differences between
classes (in the third image). In the fourth and fifth images, due to
the dendritic characteristics of trees, locating the interclass edge
between the tree and other categories is challenging. Most con-
trast methods generate fake edges in these scenarios. However,
our network, which incorporates the proposed EGM, effectively
captures high-frequency edge information resulting from inter-
class differences, achieving more accurate segmentation results.
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Fig. 7. Segmentation results on the Potsdam dataset. (a) Image. (b) GT. (c) U-Net. (d) PSPNet. (e) DeepLabv3+. (f) DANet. (g) OCRNet. (h) SCAttNet.
(i) MANet. (j) EaNet. (k) LANet. (l) BANet. (m) DCST. (n) UNetFormer. (o) MAResU-Net. (p) MACU-Net. (q) A2-FPN. (r) BESNet. (s) HBCNet. (t) GCDNet.
(u) CMTFNet. (v) FDEG-Net (Ours).

Fig. 8 showcases the segmentation results on the Vaihingen
dataset. Our method demonstrates its strengths in accurately
recognizing multiscale objects (in the first and second images)
and avoiding interference from shadows (in the third, fourth,
and fifth images). This is achieved through the incorporation
of the JSCA module in the semantic space, which integrates
sparse large kernel convolutions with long-range awareness into
the local context. As a result, the network learns the surrounding
context information of the object, thereby allowing it to alleviate
the negative impact of shadows and occlusions and ultimately
produce superior segmentation results.

For the GID, as shown in Fig. 9, benefiting from the discrimi-
nation ability of the EGM for the interclass edges, the proposed
FDEG-Net can effectively handle objects with striped patterns
(such as narrow rivers and roads in the first, third, and fourth

images) and rugged contours (contour lines in the second image).
In addition, the JSCA module incorporates local information
into wider receptive fields to emphasize the current semantic,
allowing the model to reduce interference from distant salient
objects on the current object. This results in improved segmen-
tation, as seen in the third and fifth images). In comparison,
other methods exhibit varying degrees of edge distortions and
misclassifications.

Efficiency analysis: In addition to accuracy, we have also
conducted an efficiency analysis of the aforementioned models,
encompassing training time, inference time, parameters, and
computational complexity floating point operations (FLOPs).
As shown in Table IV, FDEG-Net demonstrates significantly
lower time requirements for both training and inference com-
pared with EaNet and UNetFormer, while delivering comparable



LI et al.: FREQUENCY-DRIVEN EDGE GUIDANCE NETWORK FOR SEMANTIC SEGMENTATION OF RSI 9687

Fig. 8. Segmentation results on the Vaihingen dataset. (a) Image. (b) GT. (c) U-Net. (d) PSPNet. (e) DeepLabv3+. (f) DANet. (g) OCRNet. (h) SCAttNet.
(i) MANet. (j) EaNet. (k) LANet. (l) BANet. (m) DCST. (n) UNetFormer. (o) MAResU-Net. (p) MACU-Net. (q) A2-FPN. (r) BESNet. (s) HBCNet. (t) GCDNet.
(u) CMTFNet. (v) FDEG-Net (Ours).

performance to MANet. In addition, compared with the BESNet,
HBCNet, and GCDNet based on edge supervision, FDEG-Net
shows different degrees of advantages. In short, FDEG-Net’s
memory consumption and FLOPs are reasonable when com-
pared with other RSI-specific methods.

D. Ablation Study

Quantitative analysis of JSCA module and EGM: To evaluate
the effectiveness of the JSCA module and EGM, we conducted
extensive ablation experiments using the same hyperparameter
settings and runtime environment. The baseline model used for
comparison was obtained by removing the JSCA module and
EGM from FDEG-Net.

The results in Tables V and VI show that incorporating
JSCA improves the baseline model’s ability to capture a broader

context, resulting in an improvement of approximately 0.2%
(OA) across the three datasets, with a slight increase in training
time. Notably, the inclusion of JSCA yields a significant increase
of 0.967% and 0.601% in MIoU on the Vaihingen and GID
datasets. While JSCA enhances the ability of context aware-
ness, object localization depends on the guidance provided by
edge information. By combining EGM with the aforementioned
components, we observed further improvements compared with
the baseline. There are increases of 0.472% and 0.599% in OA
and MIoU on the Potsdam dataset, and 0.899% and 1.456% on
the Vaihingen dataset. The two metrics also improve by 0.883%
and 3.502% on the GID dataset. Notably, these improvements
require very little parameter increase. In addition, the EGM per-
forms computations for each channel in the features, including
matrix multiplication, addition, and potential matrix reshaping
operations. This requires a certain amount of computation and
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Fig. 9. Segmentation results on the GID dataset. (a) Image. (b) GT. (c) U-Net. (d) PSPNet. (e) DeepLabv3+. (f) DANet. (g) OCRNet. (h) SCAttNet. (i) MANet.
(j) EaNet. (k) LANet. (l) BANet. (m) DCST. (n) UNetFormer. (o) MAResU-Net. (p) MACU-Net. (q) A2-FPN. (r) BESNet. (s) HBCNet. (t) GCDNet. (u) CMTFNet.
(v) FDEG-Net (Ours).

memory space, which affects the training time. In contrast, JSCA
is primarily characterized by a large number of convolution oper-
ations. Therefore, JSCA mainly brings an increase in parameters,
whereas EGM primarily affects FLOPs and training time. In
summary, these results demonstrate the effectiveness of each
proposed component in improving RSI semantic segmentation.

Qualitative analysis of EGM: To further demonstrate the ef-
fectiveness of EGM in edge guidance, we visualized the heatmap
results of models with and without EGM on the Potsdam and
GID datasets. In addition, we displayed the features of ten
channels on the backbone network and the features extracted
by the EGM.

The results for the Potsdam dataset are presented in Fig. 10.
In the case of small objects, such as cars, the baseline model
equipped with EGM demonstrates better ability to detect gaps
between cars. The feature visualizations in the last row reveal
that the EGM weakens the smoothing effect and enhances the
expression of car edge information. For large-scale objects such
as buildings and trees, EGM outperforms the baseline model
without it in capturing edge features, thereby demonstrating its
robustness to lines and curves. Low vegetation and impervious
surfaces often have irregular shapes and shading, but the baseline
model with EGM is less affected by these irregularities. This
is achieved by converting features to the frequency domain,
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Fig. 10. Visualization of heatmap and features on the Potsdam dataset. Edge extraction results are clearly listed on the last row. (a) Car. (b) Building. (c) Tree.
(d) Low vegetation. (e) Impervious surface.

TABLE IV
COMPARISON OF MODEL EFFICIENCY

allowing EGM to ignore low-frequency information and extract
high-frequency features related to object edges. This adaptation
enables it to effectively handle objects with different shapes and
environmental interference.

On the GID dataset in Fig. 11, these scenes showcase the
intricate edge features exhibited by various objects, with the
EGM successfully preserving the integrity of object edges.
Although the presence of intraclass variations prompts the EGM

to generate additional edge responses, the interference caused to
interclass edges remains minimal. To be more precise, intraclass
edges and interclass edges are separated from each other within
the backbone features, and the high-frequency information ex-
pressed by them does not overlap. Consequently, the edges
extracted by the EGM remain distinctly visible.

Impact of different label types: Previous research [7] has
shown that utilizing labels with eroded boundaries can improve
higher accuracy on the Potsdam and Vaihingen datasets. How-
ever, this approach only predicts the boundaries on the side
closer to the object’s center, which does not fully reflect the
model’s sensitivity and discrimination toward object boundaries.
In this study, we assessed the performance of our proposed
method using labels with noneroded boundaries to evaluate its
true effectiveness. In addition, to provide a more comprehensive
demonstration of our method’s ability, we reevaluate our model
using labels with eroded boundaries. The results presented in
Fig. 12 indicate that our proposed network achieves OA of
91.277% on the Potsdam dataset and 90.545% on the Vaihin-
gen dataset, showcasing competitive results. Other metrics also
exhibit significant improvements.

Impact of different backbone networks: Differences in the
backbone network can significantly impact performance. In
order to analyze this, we conducted experiments on different
backbone networks, as shown in Fig. 13. After considering
the depth and width of the network, we selected ResNet-50,
ResNeXt-50, ResNet-101, and ResNeXt-101 and evaluated the
performance of our proposed method with these backbones. Ob-
viously, the fourth option, which utilized ResNeXt-101, achieves
the highest accuracy. The clear and refined features extracted
by the backbone network ResNeXt-101 aid EGM in accurately
localizing and extracting edges. As a result, using a strong
backbone network enhances the performance of our proposed
method.
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TABLE V
ABLATION STUDY RESULTS ON THE POTSDAM, VAIHINGEN, AND GID DATASETS

Fig. 11. Visualization of heatmap and features on the GID dataset. Edge extraction results are clearly listed on the last row. (a) Pond. (b) Traffic land. (c) Industrial
land. (d) River. (e) Irrigated land. (f) Lake. (g) Artificial grassland. (h) Shrub land. (i) Urban residential. (j) Dry cropland.

Fig. 12. Experimental results of different label types. (a) Potsdam dataset.
(b) Vaihingen dataset.

TABLE VI
ABLATION STUDY RESULTS ON THE MODEL EFFICIENCY

V. DISCUSSION

The frequency-driven edge guidance network proposed in this
article achieves more accurate and robust results in semantic
segmentation of RSIs. This mainly benefits from the influence
of the two components in the network, JSCA and EGM. The
stronger the feature learning and representation capabilities of
these components, the better the overall segmentation results.
However, through our experiments, we can find that the wavelet
transform lacks sensitivity to adjacent objects with high inter-
class similarity, leading to potentially false segmentation. This
is because the process of wavelet transform is based on pixel
intensity. For edges with strong fuzziness and uncertainty, the
pixel intensity of features is relatively weak. In this case, the
wavelet transform may have potential losses of pixel conversion.
In addition, the training efficiency of the proposed method can
be further improved, which is crucial for evaluating the model
performance.

On the other hand, the main advantage of EGM is that it
defines edge positions based on pixel intensity, making it easily
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Fig. 13. Experimental results of different backbones on the three datasets.
(a) Potsdam dataset. (b) Vaihingen dataset. (c) GID dataset.

interpretable. In addition, it targets feature maps rather than
input images. These advantages provide opportunities for other
potential types of inputs, such as hyperspectral images, synthetic
aperture radar images, and DSM. By further analyzing and
studying the frequency domain properties of these multisource
images, we can gain more clues to the key features of objects.
In the future, we plan to explore multimodal techniques to

fully utilize multisource frequency domain features to address
the limitations of the proposed method, ultimately improving
semantic segmentation.

VI. CONCLUSION

In this study, we propose FDEG-Net, a network for RSI
semantic segmentation. Specifically, the designed JSCA module
enhances the CNNs’ ability to model long-range dependencies,
effectively addressing object semantic confusion caused by scale
differences and complex environments. To improve the segmen-
tation of interclass edges, we design a frequency-driven edge
extraction module EGM based on wavelet transform theory to
explore the high-frequency characteristics reflected by edges.
The EGM flexibly generates edge features of ground objects
without introducing additional edge labels. Independent edge
features guide the refinement of spatial information to obtain
accurate segmentation results. Experimental results on the Pots-
dam, Vaihingen, and GID datasets demonstrate that FDEG-Net
has achieved maximum improvements of 0.807%, 2.220%, and
0.544% in MIoU, AF, and K, respectively, compared with CNN-
based methods and Transformer-based methods. A detailed vi-
sual analysis of edge extraction intuitively shows that EGM has a
clear interpretability advantage. Furthermore, frequency domain
properties can provide valuable clues to features of interest, thus
improving pixel-level tasks. In future research, we intend to ex-
plore supplementary methods, such as incorporating multimodal
information, to improve the accuracy of edge segmentation.
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