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Abstract—High-quality soil moisture (SM) estimation is crucial
for various applications, including drought monitoring, environ-
mental assessment, and agricultural management. Advances in re-
mote sensing technology have enabled the retrieval of near real-time
Earth surface SM using both active and passive sensors. However,
the ESA climate change initiative (CCI) SM product, which com-
bines data from multiple sensors, sacrifices spatial-temporal reso-
lution and coverage due to satellite orbit constraints and retrieval
algorithms. To address this issue, an SM reconstruction approach
based on a conditional variational autoencoder model was devel-
oped, leveraging the high spatial resolution of SMAP L4 data and
the accuracy of CCI fused products across different land cover
types. This method resulted in the creation of a global three-day SM
product at 0.0625◦ spanning from 2015 to 2021. The reconstructed
SM product underwent rigorous validation against global core SM
sites and sparse observation networks. The evaluation employed
multiple metrics, including the global unbiased root mean square
error (ubRMSE) and correlation coefficient (CC). The validation
yielded results, with ubRMSE values of approximately 0.029 and
0.071 m3/m3, and CC values of around 0.863 and 0.743 for core SM
sites and sparse observation networks. This reconstructed product
offers global coverage and enhanced accuracy compared to existing
benchmarks.

Index Terms—Conditional variational autoencoder (CVAE),
ESA climate change initiative (CCI), product reconstruction,
SMAP L4, surface soil moisture (SM).
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I. INTRODUCTION

SOIL moisture (SM) plays a crucial role in both the hydro-
logical cycle and the energy balance at the Earth’s surface,

holding significant sway over the distribution of precipitation,
incident radiation on Earth’s land surface, and the regulation of
various surface energy fluxes [1]. Its influence extends to crucial
factors such as watershed runoff [2], radiation balance [3],
carbon transport [4], and even the modulation of regional precip-
itation patterns [5]. Accurately depicting the spatial and temporal
distributions of moisture within the topsoil layer is paramount
for comprehending the Earth system, and it lays the foundation
for meteorological, hydrological, and agricultural disaster fore-
casting and predictions. However, the inherently heterogeneous
distribution of precipitation, soil textures, land cover types, and
topography gives rise to substantial variability in SM on a spatial
scale [6], [7]. This variation poses challenges for in situ SM
observations, which often fall short in capturing watershed-scale
estimations. In addition, the paucity of available in situ SM data
and their limited spatial representativeness further hinder their
applicability across various domains [8], [9].

To mitigate these constraints, land surface (hydrologic) mod-
els (LSMs) have been utilized to simulate SM across different
soil layers, leveraging data from atmospheric general circulation
models [10]. These models play a critical role in comprehend-
ing SM dynamics and have been extensively employed for
operational drought monitoring. Nonetheless, the accuracy of
LSM-generated SM is contingent upon external forcing and
model parameterization, introducing uncertainties into the es-
timations [11], [12], [13].

Remote sensing emerges as a promising solution for mon-
itoring regional and global SM, offering insights across dif-
ferent spatial and temporal scales. Microwave remote sensing,
which is relatively unaffected by atmospheric conditions and
cloud cover, holds a distinct advantage in assessing SM due
to its penetrating capability [14], [15]. Satellite observations
are utilized to extract SM information through both active and
passive microwave remote sensing methods [16], [17], [18],
[19], [20], [21], [22], [23], [24], [25], [26]. SM retrieval methods
based on microwave remote sensing can be grouped into five
categories [27], [28]: physical, semiempirical, empirical, vege-
tation contribution-based, and change-detection-based models.
Among them, physical models rely on the physics of microwave
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interaction with soil, while semiempirical and empirical ap-
proaches use a mix of theory and observed data. Vegetation
contribution models account for the influence of plants on the
signal, and change-detection methods track variations in the
signal over time to infer SM changes. However, these satellite-
based observations are constrained by their sun-synchronous
orbits, resulting in discontinuous spatial and temporal coverage.
Furthermore, the presence of environmental factors, such as
vegetation and snow, poses challenges to the accuracy and spatial
resolution of the derived SM data [29], [30].

To overcome these challenges, the following three primary
strategies have emerged:

1) fusing multisource satellite observations;
2) assimilating satellite data into LSMs;
3) incorporating SM-related land surface variables using ma-

chine learning techniques.
The first approach involves merging SM products from mul-

timodal satellite sensors to enhance spatial consistency and
resolution [31], [32], [33]. The climate change initiative (CCI)
SM product, spanning decades and incorporating numerous
microwave SM datasets, exemplifies this fusion strategy [34],
[35]. The second strategy integrates satellite observations into
LSMs through data assimilation, bolstering model accuracy,
and forecasting capabilities [36], [37], [38], [39]. While this
approach has demonstrated success, challenges persist in rec-
onciling different assimilation operators, model calibrations,
and temporal-spatial disparities [40], [41]. The third method
utilizes machine learning techniques, including random forest,
support vector machine, and artificial neural network, to en-
hance the accuracy of SM estimation by integrating relevant
factors [42], [43], [44], [45], [46]. Owning to its potent capacity
to fit a nonlinear relationship between independent and depen-
dent variables [47], machine learning approaches, specifically
random forest [42], [43], [48], [49], [50], [51], support vector
machine [52], artificial neural networks [44], [45], [53], [54],
[55], convolutional neural network [46], [54], [56], and long
short-term memory neural network [57], [58] were adopted to
improve and estimate SM in recent years. For instance, Long
et al. [43] generated long-term daily seamless SM datasets based
on the random forest model by combining high quality land sur-
face temperature (LST), normalized difference vegetation index
(NDVI), surface albedo, precipitation, soil texture, CCI, and in
situ SM observations over the Hebei Province, China. Taking
the features of the atmospheric and geophysical information
derived from satellite and ground-based observations into ac-
count, Abbaszadeh et al. [59] proposed a random-forest-model-
based scheme to reconstruct the level 3 daily SMAP radiometer
SM product over the continental United States (CONUS). Yao
et al. [60] transferred the merits of SMAP to AMSR-E/2 and
developed a global daily SM product using artificial neural
networks. Li et al. [49] presented a long-term SM dataset
of 1-km spatial resolution derived through machine learning
trained by the in situ SM observations from 1789 stations world-
wide and 15 SM-related variables from ERA5-Land, USGS
land cover, and MODIS leaf area index over China. SMAP-
HydroBlocks (SMAP-HB) SM dataset leverages microwave
satellite data, high-resolution (HR) land simulations, radiative
transfer modeling, and machine learning, along with ground

observations. By combining these approaches, SMAP-HB pro-
vides estimation of surface SM at 30-m resolution across the
USA. However, most of these machine-learning-based methods
strongly rely on the locations of the ground-based observa-
tions [61]; taking these observation data as training targets for
machine learning is obviously lacking of regional representa-
tive but ignoring local distribution characteristics and spatial
heterogeneity of SM [62], [63], which is difficult to extend
to global scales for supervised machine-learning-based models
due to the uneven distribution of observational sites and spatial
heterogeneity of SM.

In order to overcome these constraints, we propose a novel
approach for reconstructing a HR worldwide SM product. Lever-
aging the comprehensive ESA CCI SM dataset and SMAP as-
similation products, we employ variational inference and a con-
ditional variational autoencoder (CVAE) to seamlessly merge
these datasets and enhance the precision and coverage of SM es-
timations. This approach overcomes challenges associated with
missing values, limited use of multisource observations, and
spatial distribution disparities. By incorporating the strengths of
both datasets, we achieve a globally consistent and high-quality
SM product.

The rest of this article is organized as follows. Section II intro-
duces the ESA CCI, SMAP L4 SM products, and in situ dataset,
outlining their roles in our proposed scheme. Section III details
the main components of the proposed model. Sections IV and V
present experimental settings, results, and validation processes,
showcasing the effectiveness of our approach. Section VI delves
into discussions regarding the comparative performance of our
scheme against alternative methodologies. Finally, Section VII
concludes this article.

II. DATA

A. ESA CCI and SMAP L4 SM Product

The SM CCI project, as a component of the ESA Program on
Global Monitoring of Essential Climate Variables, was started in
2010 as an element of the CCI, which produced an updated SM
product (ESA CCI SM) each year. The ESA CCI SM product
integrates multiple SM data from both active and passive mi-
crowave sensors to create three products: ACTIVE, PASSIVE,
and COMBINED product that utilizes both active and passive
microwave data. We collected COMBINED microwave product
of CCI as the basic data source for SM product reconstruction,
which, respectively, rescaled whole level 2 observations into a
common model-based climatology. This dataset spans 40 years
with spatial resolution of 0.25°, available from November 1978
to December 31st, 2021.

On January 31st, 2015, NASA launched the SMAP satellite,
which became the world’s inaugural space-based system for
monitoring SM at a depth of roughly 5 cm below the Earth’s
surface, employing a combination of both active and passive
microwave observations at the L band frequency. Unfortunately,
the active radar sensors onboard the satellite were damaged on
July 7th, 2015, therefore, currently only the passive SM data
are available. SMAP SM dataset include four levels of products.
In this study, we collected SMAP Level 4 (L4) Global 9-km
EASE-Grid Surface and Root Zone Soil Moisture Analysis
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Fig. 1. (a) Geolocations of the sparsely distributed in situ SM observations for validations over the CONUS and (b) geolocations of the sparsely distributed in
situ SM observations for validations over the Oklahoma state, USA.

TABLE I
OVERVIEW OF THE SPARSELY DISTRIBUTED NETWORKS FOR SM IN-SITU

OBSERVATIONS

dataset with spatial resolution of 9 km updated from National
Snow and Ice Data Center (NSIDC).

The spatial coordinate system of SMAP L4 and ESA CCI SM
products was unified as GCS WGS84, and the global coverage
of ESA CCI SM product is about three days, therefore, the
three-day mean composition was proceeded for ESA CCI SM
products.

B. In Situ SM Dataset

SM validation primarily relies on comparisons with inde-
pendent in situ measurements. These measurements can be
categorized into two main types.

1) Core validation sites: These sites provide accurate SM
estimates at specific spatial scales relevant to models and
satellite retrievals, but are limited to a restricted set of
climatic and land cover conditions.

2) Sparse networks: These networks offer SM estimates at
individual point locations within grid cells, encompassing
a wider range of environmental conditions. However, they
may not capture the full spatial variability of SM.

To evaluate the accuracy of our simulated long-term SM
dataset (2016–2021), we employed in situ observations from
two sources: core validation sites and sparsely distributed rep-
resentative sites worldwide (as described in [64]). Typically,
sparse network SM observations were derived mostly by single

sensor positioned inside Table I, consisting of the soil cli-
mate analysis network (SCAN), U.S. climate reference network
(USCRN), automated snow telemetry (SNOTEL), Oklahoma
mesonet (OKM), trans African hydro-meteorological observa-
tory network (TAHMO), Australian moisture monitoring net-
work (OZN), and LAB-net. Fig. 1 exhibited the geolocations
of sparse networks in the CONUS where many locally dense
distributed sensor networks were set up for accurate SM at the
grid cell scale of the SM product.

The SM datasets from core validation sites used in present
study include those from the United States Department of
Agriculture watershed sites (Walnut Gulch, Little Washita, Fort
Cobb), Reynolds Creek and Little River sites from NSIDC, Ti-
betan Plateau sites (Maqu), Remedhus Network sites (REMED-
HUS), Benin site in AMMA-catch network, Yanco sites, and
the Shandian River Basin Network (Shandian River site), which
were presented in Fig. 2 and summarized in Table II.

SM Datasets obtained from SCAN, USCRN, SNOTEL,
REMEDHUS, TAHMO, and LAB-net sites were made avail-
able by the international soil moisture network (ISMN). Our
proposed SM dataset reconstruction scheme belongs to an un-
supervised model category, and all the in situ SM datasets were
used only for validation of the model. When validations of the in
situ SM dataset were performed, stations with integrity of time
series of SM dataset greater than 80% were selected as the valid
in situ dataset.

III. METHODOLOGY

A. Our Proposed SM Reconstruction Scheme

Based on the CVAE [65], a worldwide seamless long-term
SM product reconstruction scheme was developed. The process
of variational inference ensures the learned distribution aligns
with a desired distribution. First of all, we assumed that the
HR SM map of SMAP L4 product is XHR ∈ Rm×n, the high
precision but low resolution (LR) SM map of ESA CCI product is
XLR ∈ Rαm×αn, where (m,n) is the dimension of the map andα
is the sampling factor. D is the degradation kernel that represents
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Fig. 2. Spatial distribution of core validation sites all over the world.

TABLE II
OVERVIEW OF CORE VALIDATE SITES

various types of multiplicative noise and spatial sampling. The
relationship between XLR and XHR can be expressed as

XLR = D⊗XHR + μ (1)

where ⊗ stands for the convolution operator, μ is the additive
noise, and both XLR and XHR are three-day composited SM
maps. To reconstruct a high spatial resolution and high accuracy
SM map, (1) can be solved as the maximum a posterior (MAP)
problem as follows:

X̂HR = argmax
XHR

logP (XLR | XHR) + logP (XHR) (2)

where X̂HR is the reconstructed SM map. logP (XLR | XHR)
is the log-likelihood of the observed SM given HR SM map
and logP (XHR) as the priori information of HR SM map used
for model optimization. The temporal resolution of ESA CCI
synthetic SM dataset is three days, while the original SMAP L4
dataset is 3 h. One scene of ESA CCI SM product corresponds
to 24 scenes of SMAP within three days, in order to better learn
the corresponding SM spatial variability and to utilize a larger
training sample size, each CCI patch with its corresponding 24
SMAP patches was fed input into the model training separately
for optimizing the solving process described in (2) to obtain

multiple reconstructed X̂HR

X̂HRi
= argmax

XHR

logP (XLR,Ri | XHR) + logP (XHR)

(3)

where Ri ∈ SSMAP and X̂HRi
∈ SSM, and we defined the re-

constructed SM space as SSM and the reference SMAP space
as SSMAP. Given reference SMAP time series Ri, the intended
reconstructed SM can be sampled from SSMAP space. To main-
tain the high spatial resolution of the reconstructed SM map, we
used multiple scenes of the SMAP maps as a spatial distribution
constraint variable while rebuilding high accuracy SM maps.

The entire architecture of the proposed scheme was presented
in Fig. 3, which exhibited the steps for training and for the
model inference process, the model’s loss computation part
was removed, with the same flow of inputs and computation
graphs as training. The scheme can be subdivided into three
parts with order of: SM encoder; CVAE; and SM decoder. In the
training phase, the proposed scheme took the reference SMAP
sequence (Ri) and the composited CCI (XLR) as input. From
composited CCI and reference SMAP series, feature maps FX

and FRi were extracted using the SM encoder. For conditional
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Fig. 3. Training procedure of the proposed mode. Feature encoder extracts latent variables z from reference features, and z represents the updated target
distribution with new mean and variance. Feature decoder transforms z into a conditional feature map CR, and CR is used to guide the generation of new SM
maps. Training target: Optimizes the model to match the learned distribution with a normal distribution, and KL divergence is employed to measure the difference
between the learned and expected distributions.

feature sampling, reference SMAP featuresFRi were transferred
to a hidden space SSMAP using the CVAE. In other words, the
CVAE produces synthetic features by mapping random feature
vectors, thereby generating conditional features denoted asCRi.
Concurrently, the CCI feature maps FX were disassembled
into separate mean and variance feature maps Fμ and FΣ, re-
spectively. These two individual components were subsequently
integrated with the conditional features through a computational
process, yielding the estimated features. The SM decoder then
took the estimated features to rebuild the SM maps. In short, the
CVAE uses latent variables from Encoding process to capture
the essential information from reference SMAP data. Decoding
process leverages the latent variables and conditional features to
generate new SM data. The process of variational inference as
aforementioned guides the learned distribution aligns with the
desired CCI SM’s distribution.

B. SM Encoder for Fusing SMAP and CCI SM Product

We took use of the pretrained VGG19 model [66] to build
the encoder of the proposed framework, keeping only the con-
volutional layers while removing the fully connected layers.
The choice of a smaller convolution kernel is the key of VGG;
in addition to using less computation and introducing more
nonlinearity to produce the same receptive field, the VGG’s
3× 3 convolution kernel can also improve the model’s capability
to fit data. As the result, we trained VGG19 to extract feature
maps from SMAP (FRi = G(Ri)) and CCI (FX = G(XLR)),
where G denotes the feature extraction procedure of VGG. In
this process, SM map of the ESA CCI SM product will be up
sampled to four times of its original resolution, i.e., 0.0625°. And
SM maps of the SMAP L4 SM product will be resized from 9 km

spatial resolution to 0.0625°. Using a pretrained VGG encoder
has advantage for the following two reasons:

1) VGG was trained with many images with 2-D structure,
resulting in generalized extracted feature maps for spatial
grids with various contents;

2) With VGG, SMAP and CCI SM are projected to the same
feature domain, which is convenient to fuse their features.

C. Conditional Variational AutoEncoder (CVAE)

The CVAE, as shown in Fig. 3, involves determining the
mean and variance of the target distribution by encoding proce-
dure with feature encoder, and then, reconstructing the outputs
through decoding process with feature decoder. By measuring
how closely the rebuilt distribution resembles the target dis-
tribution, the parameters involved are adjusted. In this study,
employing the CVAE, the model can learn the hidden distri-
bution by encoding the reference features from SMAP into a
latent space as a latent variable z [67]. The reference features
can be transferred by the feature decoder as conditional feature
map CR. The feature encoder and decoder are two components
of the variational inference process (specific components are
shown in Fig. 4). The objective of variational inference is aimed
to train the generative model for the reference SM map derived
from SMAP data, which can be written as a normal distribution
model as P (z | Ri) = N ∼ (z;μ(Ri),Σ(Ri)), where μ and
Σ = diag(σ2

1 , . . . , σ
2
n). To put it another way, we gather the

spatial correlations and convert them into a probability model.
Using a normal distribution Q(z) = N ∼ (0, I), encoded fea-
tures are sampled from the reference model with z = μ+ ε× σ
to introduce randomness. KL divergence is used in the sampling
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Fig. 4. Structure of the feature encoder, feature decoder, and SM decoder in the proposed CVAE.

process to optimize the model and ensure that the learned prob-
ability model is reasonably approximate to a normal distribution
as follows:

DKL(P (z | Ri)‖‖(z)) = E[logP (z | Ri)−Q(z)]

=
1

2

(
−
∑
i

(
log σ2

i + 1
)
+
∑
i

σ2
i +

∑
i

μ2
i

)
. (4)

Like the conditions made previously for reconstruction in the
training phase, we continue to employ the feature encoder during
inference to derive a specific prior distribution, P (z | Ri) =
N ∼ (z;μ(Ri),Σ(Ri)). The conditional feature maps CR are
then produced by returning the learned distribution to the spatial
domain using one convolution block (we also interpolate and
resample it to the same size as the input CCI SM maps). To
propagate the conditional features CR onto the CCI SM feature
map, we utilize a convolutional block to learn the spatial statistics
of mean and variance for the CCI SM maps as Fμ and FΣ.
The fused features are then denoted by the formula FX|R =
CR · (1 + FΣ) + Fμ.

D. SM Decoder For the HR SM Map

Finally, the SM Decoder, as exhibited in Fig. 4, learns to
enhance the SM map from the reconstruct feature FX|R. Like
the VGG encoder, the SM decoder stacks three convolutional
layers and two bilinear interpolation operators to restore the
fused feature maps to the residual correction map. The residual
map is summed with the synthesized SMAP SM map to obtain
the final reconstructed SM map.

E. Training for Reconstruction

To train the proposed model to reconstruct the SM maps with
high spatial resolution and high precision, a compound loss
function is adopted in this study, and it is composed of six parts:
KL loss, content loss, style loss, SSIM loss [68], Lap loss, and
total variation loss. The total loss for SM reconstruction can be
formulated as

Ltotal = λKLLKL + λcontent Lcontent + λstyle Lstyle +

λSSIMLSSIM + λLap LLap + λTVLTV. (5)

1) KL loss is employed for the purpose of optimizing the vari-
ational lower bound of the logarithmic likelihood function,
as formulated in (4).
Utilizing style and content losses for style transfer is an ef-
fective method to transmit the reference distribution to the
target while keeping the spatial information unchanged. It
is appropriate for SM reconstruction using references as
well. Our objective is to reconstruct the SM product with
data precision close to the CCI and with spatial resolution
equivalent to the reference SMAP. To put it differently,
we attempt to guarantee that the reference features are
transferred to the anticipated SM.

2) With regard to content loss, we use VGG-19 to reconstruct
the SM and extract features for the CCI (the feature map
from the last layer is taken from VGG-19). These features
are referred to as WCCI and W(SM), respectively. We also
have the loss between reconstructed SM and CCI SM for
the pixel-wised difference. Total content loss is as follows:

Lcontent =
∥∥WCCI −W

̂SM

∥∥
1
+ ‖CCI − ŜM‖1. (6)

3) We calculate the mean and variance of the feature maps
VCCI and V(SM) of the CCI and the rebuilt map RSM
from different layers of VGG-19 to compare how well the
reconstructed features match with the extracted features
as follows:

Lstyle =
∑
i

‖ mean
(
V i

CCI − V i
SM

) ‖1
+ ‖ var (V i

CCI − V i
SM

) ‖1 (7)

where i is the index of the VGG-19 layers, and mean and
var are procedures for calculating the mean and variance
of the feature maps.

4) A perception-based model called structural similarity in-
dex measure (SSIM) is used to compare two images by tak-
ing image deterioration into account as a perceived change
in structural information, which leads to the definition of
the SSIM loss function as

LSSIM =

(
2μSMAPμ̂SM +C1

) (
2σSMAP_̂SM +C2

)
(
μ2

SMAP + μ2
̂SM

+ C1

)(
σ2

SMAP + σ2
̂SM

+C2

)
(8)
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C1 = (0.01 ∗ l)2, C2 = (0.03 ∗ l)2, C3 = C2/2, where l
is the specified range value of SM, and μSMAP, μ

̂SM are
the mean value of SMAP and the reconstructed SM map,
respectively. σ2

SMAP, σ
̂SM, and σSMAP_̂SM are the variance

of SMAP, variance of ŜM and covariance between SMAP
and ŜM respectively.

5) The Laplacian loss quantifies the difference between the
SMAP and the rebuilt SM map’s Laplacian matrix and,
consequently, expresses the difference in detail structure
between two maps. The loss can be written as

LLap =
∑
j

22j
∥∥∥Lj(SMAP)− Lj(ŜM)

∥∥∥
1

(9)

where Lj(SMAP) and Lj(ŜM) are the jth level of the
Laplacian pyramid representation of SMAP and the re-
constructed SM map, respectively.

6) The first-order horizontal and vertical pixel gradients are
calculated using the total variation loss to promote smooth-
ness in the reconstructed SM maps.

LTV =
∑
m,n

((SM̂m,n−1 − SM̂m,n)
2

+ (SM̂m−1,n − ŜMm,n)
2)1/2 (10)

where m and n are the spatial indices of the SM map,
respectively.

IV. EXPERIMENTS SETTINGS

A. Dataset and Settings

Since the ESA CCI SM product cannot cover the entire world
seamlessly in a single day, SM dataset from the last and the
next days are also utilized, i.e., the data were composited by
moving-average windows over three days. Although the data
were temporally composited, ice, snow, frozen soil, water bod-
ies, and so on are considered incapable of retrieval of SM by
satellite observations. As a result, if grid points located in these
regions were invalid values, they are removed from the training
SM map. Since such land cover types take account of relatively
minor part of the Earth surface, the regional statistical distri-
bution properties remain unaffected. The training samples were
prepared for model training after the preprocessing as described
previously. However, when performing model validation and
comparisons, site measurements, SMAP, and CCI were still
used as the validation set when valid observations existed in
the snow regions. Note that the proposed deep-learning-based
model is an unsupervised model without in situ observation
data as labels involved, and the CVAE reconstruction model
adjusts the model parameters based on the similarity between
the statistical distribution of the reconstructed data and the
statistical distribution of the input/reference data. Therefore,
the whole datasets of SMAP and CCI SM products was input
to the proposed model for “map to map” training rather than
pixel-wise training.

Since the objective of our study is aimed to reconstruct a
globally seamless SM product with high data precision and

Fig. 5. Colorful boxes correspond to divided regions with shortened letters
denoting the region names.

spatial resolutions compared to the currently available SM prod-
uct, for the sake of fully taking regional heterogeneity and the
reduction of high demand of computer hardware into account,
we subdivided the global land surface into 16 parts (regions such
as Japan, Indonesia, New Zealand and Greenland whose spatial
distribution is relatively fragmented, were not considered for SM
reconstructions; these regions can be processed individually in
small-scale chunks, whose processing can be carried out in the
subsequent data updating), as shown in Fig. 5. Regarding in situ
SM sites for validations, we removed sites with no more than
80% time series completeness and retained sites with more valid
data values.

With a windows server equipped with an Intel i9-10900 K
processor and a GeForce RTX 2080Ti GPU, all the trials for
this study were conducted. The model was implemented by the
PyTorch framework. In the training phase, the learning rate was
set to 0.0001 and Adam was employed as an optimizer. We
trained the model for 5 × 104 iterations totally. The proposed
model comprises a total of 122 713 026 parameters are trainable.
It takes 18 minutes on the server to complete the training of one
epoch of the soil moisture map covering the entire region of the
continental United States with a timeseries length of 728.

B. Validation and Assessment

This study employed the correlation coefficient (CC) and
unbiased root mean square error (ubRMSE) as the criterions
to evaluate the performance of the model. The degree of linear
correlation between variables can be effectively determined
using the CC.

CCx,y =

∑n
i=1 (xi − x̄) (yi − ȳ)√∑n

i=1 (xi − x̄)2
√∑n

i=1 (yi − ȳ)2
(11)

wherexi and yi are the predicted and the measured SM on the ith
day, respectively; x̄ and ȳ are arithmetic average of the predicted
and the measured SM, respectively; and n denotes the number
of days during the study period.

bias = x̄− ȳ. (12)

The degree of overestimation and underestimation of obser-
vations can be measured as bias. In contrast, the root mean
square error (RMSE) could numerically show how dispersed
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the predictions are

RMSE =

√∑n
i=1 (xi − yi)

2

n
. (13)

SM deviations may vary with the seasons. Considering this
slowly changing deviation, ubRMSE reflects the error in the
measured and the predicted SM values by removing the past
average seasonal cycle variation information

ubRMSE =

√∑n
i=1 {(xi − x̄)− (yi − ȳ)}2

n
. (14)

Therefore, these metrics enable us to investigate the model’s
competence in SM reconstruction over the case study regions
systematically and comprehensively.

For sparse networks, a single measuring station within a raster
grid provides predicted SM for validation. In contrast, core
validation networks contain multiple in situ sites per grid, using
the average SM. Diverse SM products have varying precision,
temporal, and spatial resolutions, often with HR grids for each
LR grid. In this study, to compare different scale SM products ac-
curately [69], we adopt the evaluation strategy from [64]. When
comparing SM estimates at 0.25° resolution against correspond-
ing in situ measurements, bilinear interpolation is employed to
extract SM values with the reference site locations. For reference
pixels defined at 0.0625° resolution, HR SM estimates are aggre-
gated using an area-weighted averaging approach to match the
coarser spatial scale at 0.25°resolution. Consequently, the SM
values of different spatial resolution products corresponding to
each site can thus be calculated.

To verify the superiority of our proposed method, we com-
pared it with the cumulative distribution function (CDF) match-
ing algorithm [70]. This algorithm utilizes the cumulative dis-
tribution frequencies of two datasets to establish a mapping
relationship between them. We applied it to both SMAP L4 and
CCI data by dividing the cumulative distribution curves into
six parts at seven frequency points (0, 10%, 30%, 50%, 70%,
90%, and 100%). The CDF matching adjusted the target SMAP
L4 data to generate CDF SM data (CDFsm) that approximates
the distribution of the CCI data, which is further discussed in
Section IV-A.

V. EXPERIMENTAL RESULTS

Through the trained CVAE, the seamless global three-day
composited SM products from April 1, 2015 to December 31,
2021 were eventually generated. The reconstructed SM product
saved in NetCDF format can be downloaded online1 for free.
Codes were made available online.2

To investigate the variability of the proposed scheme, we
quantified the accuracy of the reconstructed SM product
(CVAEsm) in terms of both its spatial and temporal accuracy
using in situ observations both from sparse networks and core
validation sites over the world (as shown in Figs. 1 and 2). Com-
parisons were made between the reconstructed SM product with

1[Online]. Available: https://doi.org/10.5281/zenodo.800060
2[Online]. Available: https://github.com/YangTze7/CVAE-SM

TABLE III
METRICS FOR THE COMPARISONS BETWEEN CVAESM, CCISM, AND SMAPSM

OVER SPARSE NETWORK IN THE CONUS

the original CCI SM (CCIsm) and SMAP L4 SM (SMAPsm)
products (being the baseline products). Evaluation on the quality
of the reconstructed SM product was done by use of the average
daily in situ observations within the grid cells where all the SM
products are available at that time simultaneously.

A. Sparse Network Validation

In situ SM observations from 2016 to 2020 were used to
validate the reconstructed SM product. The in situ observation
sites are located in evenly distributed areas across the CONUS
with diverse topography, land use, and soil types.

1) Sparse Networks in the CONUS:
a) Temporal statistics: Metrics for the comparisons be-

tween CVAEsm, CCIsm, and SMAPsm over sparse network in
the CONUS were examined, the results were listed in Table III.
It was noted that the reconstructed SM product CVAEsm per-
formed better according to various criterions.

Similarly, the performance of the CVAEsm over the sparse
networks in the CONUS was shown in Fig. 6. It is observed that
the averaged CC of CCIsm and SMAPsm are 0.636 and 0.613,
respectively, while the value for CVAEsm is 0.653. Especially,
CVAEsm performed better than CCIsm and SMAPsm regarding
temporal correlation in regions with mountains and a prevalence
of snow (e.g., at SNOTEL sites), with CC of 0.516, 0.479,
and 0.498, correspondingly. To demonstrate the SM dynamics
of these datasets, the three-day composited time series of SM
derived from CVAEsm, CCIsm, SMAPsm, and CDFsm in the
sparse in situ observation sites was shown in Fig. 7.

The results indicated that the CVAEsm presented the highest
median and mean temporal correlation of 0.733 and 0.700
among the sparse sites in CONUS, respectively. The recon-
structed SM product CVAEsm suggested mean improvement
of 0.012 and 0.055 in temporal correlation concerning the
SMAPsm and CCIsm, with ubRMSE reduction of 0.001 and
0.003 relative to the SMAPsm and the CCIsm, respectively.

In the CONUS, ubRMSE values and correlation of the
CVAEsm are regionally homogeneous, as can be seen in
Fig. 8(a)–(c), which the reconstructed SM product was improved
over most observational sites in comparison to the standard
products. The differences in the assessment metrics between the
CVAEsm and the baseline products were exhibited in Fig. 8(d)–
(l). Regarding the relative difference of CCs, the dots in CCI
and SMAP are dominated by blue tones, indicating that CCs
of most regions are improved by the CVAE. Regarding the
relative difference of ubRMSE, the points in CCI and SMAP

https://doi.org/10.5281/zenodo.800060
https://github.com/YangTze7/CVAE-SM
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Fig. 6. Scatterplot of CCIsm, SMAPsm, CDFsm, and CVAEsm versus sparse in situ SM over the CONUS.

are dominated by red tones, indicating that ubRMSE of most
regions is lowered through the CVAE.

2) Spatial Statistics: The spatial correlation for SM products
every three days was determined to evaluate to which degree the
SM products are of spatial representative by comparing the daily
SM products at grid-cell level with daily in situ observations
across CONUS. Fig. 9 presented variations of the spatial corre-
lations between each of the SM products of SMAPsm, CCIsm,
and CDFsm with the in situ observations for each time step over

the CONUS. It can be observed that the CVAEsm presented the
higher spatial correlation (0.584) across the CONUS than CCIsm
and SMAPsm, and the CVAEsm showed mean improvement
of 0.036 and 0.013 in spatial correlation with respect to the
SMAPsm and CCIsm, as shown in Fig. 9, over the time span
of time series of SM products from 2016 to 2019. After three
days of average composition the time series of SM dataset is
485 time steps. The CVAEsm exhibits greater spatial correlation
compared to SMAPsm and CDFsm across the majority of time
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Fig. 7. Three-day composited time series of SM derived from CVAEsm, CCIsm, SMAPsm, and CDFsm in the sparse in situ observation sites all over the world.

TABLE IV
METRICS FOR THE COMPARISONS BETWEEN CVAESM, CCISM, AND SMAPSM

OVER SPARSE NETWORK OUTSIDE THE CONUS

steps, and the spatial correlation of CVAEsm is higher than that
of CCI at 292 time steps and lower than that of CCI at 193 time
steps

3) Sparse Networks Outside the CONUS: The performance
of the CVAEsm over the sparse sites outside the CONUS (in-
cluding LAB-net, SMOSMANIA and TAHMO networks) were
analyzed with comparisons between the SM products and the
in situ SM observations. The results were illustrated in Fig. 10
and a statistical matrix summarized for the analyses was listed
in Table IV.

As portrayed in Fig. 10, the scatters showing the relationship
between the estimated SM products and the in situ observed
SM from the sparse sites over the LAB-net, SMOSMANIA,
and TAHMO demonstrated the better accuracy of the CVAEsm
compared with other products. CVAEsm performed better over
the LAB-net and TAHMO sites, and the CCs of CVAEsm were
0.925 and 0.726 with the ubRMSE about 0.062 and 0.054, re-
spectively, in the two sparse networks. Statistics of the CVAEsm
were close to SMAP L4 and better than CCI products over the
SMOSMANIA networks, with a CC of 0.937 and ubRMSE
values of 0.024 m3/m3. Overall, the averaged CC and ubRMSE
of the CVAEsm, CCIsm, and SMAPsm products over sparse
network outside the CONUS were 0.863 (0.843,0.832) and 0.046
(0.054,0.046), respectively. All aforementioned explored issues
indicated that the CVAEsm performed better over the sparse sites
outside the CONUS.

B. Core Site Validation

The core validation sites are underrepresented in spatial cov-
erage compared to the sparse networks. Yet, they have the denser
sensor networks to provide accurate SM measurements within
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Fig. 8. Spatial distribution of the temporal statistics of the generated product and how they differ from those of the base products. The correlation, RMSE, and
ubRMSE for CVAEsm for all sites are displayed in the first row. The subsequent rows display variances in the assessment metrics comparing CVAEsm with the
baseline products.

the grid cells of the SM map. The estimated SM was validated
against core validation sites for the period from 2016 to 2020
all over the world. Representative core validation sites, includ-
ing Walnut Gulch watershed sites, Little Washita sites, Fort
Cobb sites, Little River sites, Reynolds Creek sites, REMED-
HUS sites, Tibetan Plateau Maqu site, Shandian River sites,
Yanco sites, and Benin sites, were selected for validations. With
their extensive coverage of global geography, land cover types,
and soil textures, these ground-based sites serve as the impor-
tant validation points for satellite SM products. The CVAEsm

over the core validation sites was validated by comparing the
estimated SM product with the in situ observations from those
sites, and the results were exhibited in the scatter plots in Figs. 11
and 12, a statistical matrix summarized these results was listed
in Table V.

As portrayed in Figs. 11 and 12 and listed in Table V, the scat-
ter plots and score metrics derived from ten areas demonstrate the
higher accuracy of the CVAEsm product compared to the other
SM products. In general, the reconstructed SM by the CVAE
showed better accuracy over ten core validation sites, with an
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Fig. 9. Increased value of CVAEsm’s spatial correlation with the in situ ob-
servations for each time step over the CONUS than the SM products (SMAPsm,
CCIsm, and CDFsm).

TABLE V
METRICS FOR THE COMPARISONS AMONG THE CVAESM, CCISM, AND

SMAPSM OVER THE CORE VALIDATION SITES

average CC of 0.863 and an average ubRMSE of 0.029 m3/m3.
The CCs of CVAE sm with the in situ observed SM from the most
core validation sites ranked the highest. For the REMEDHUS
and Maqu core validation sites, although the CCs of CVAEsm
did not reach the highest, they were only slightly lower than the
best products by 0.009 and 0.001, respectively. And comparisons
of three-day composited time series of SM from the CVAEsm,
CCI, SMAP L4, CDFsm, and the in situ observed SM from the
core validation sites over the world were shown in Fig. 13.

VI. DISCUSSIONS

A. Comparison With CDF Matching-Based SM

The CVAE-based reconstruction of SM against the CDF
matching-based ones were validated, both of which use CCIsm

TABLE VI
METRICS FOR THE COMPARISONS BETWEEN CVAESM AND CDFSM OVER

CORE VALIDATION SITES

TABLE VII
METRICS FOR THE COMPARISONS BETWEEN CVAESM AND CDFSM OVER

SPARSE NETWORK

and SMAPsm as inputs and do not require additional variables,
as well as ground-based measurements as inputs. Comparisons
were made between the CVAEsm and the CDFsm products
through the core validation sites and sparse networks, and the
results were listed in Tables VI and VII. The averaged CC and
ubRMSE of the CVAEsm and CDFsm products over the core
validation sites are 0.863 (0.838) and 0.029 (0.031), respectively.
And the averaged CC and ubRMSE of the CVAEsm and CDFsm
products over the sparse networks in the CONUS are 0.743
(0.710) and 0.071 (0.076), respectively.

B. Comparisons With Other SM Products

In addition, we compared the accuracy of CVAEsm with those
of four SM products proposed by recent studies, including the
following:

1) ANN-based SM data product (NNsm) that transfers the
merits of SMAP to AMSR-E/2 with in situ SM observa-
tions [60];

2) gap-filled AMSR2 SM data product (SGDsm) based on
partial convolutional neural network with in situ SM ob-
servations [56];

3) ERA5 SM product (ERA5sm), one of the most commonly
used sources of SM in geoscience studies [71];

4) SMAP-HydroBlocks as listed in Tables VIII–XI and
Fig. 17.

The comparisons were made for the period from 2016 to 2019.
CVAEsm outperforms NNsm, SGDsm, and ERA5sm regarding
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Fig. 10. Scatterplot of CCIsm, SMAPsm, CDFsm, and CVAEsm products versus sparse in situ SM observations outside CONUS.

TABLE VIII
METRICS FOR THE COMPARISONS BETWEEN CVAESM, NNSM, AND SGDSM

OVER THE CORE VALIDATION SITES

the CC and ubRMSE for both core validation sites and sparse
networks. The averaged CC and ubRMSE of the CVAEsm,

TABLE IX
METRICS FOR THE COMPARISONS BETWEEN CVAESM, NNSM, AND SGDSM

OVER THE SPARSE NETWORKS

NNsm, SGDsm, and ERA5sm products over core validation
sites are 0.863 (0.732, 0.677, 0.813) and 0.029 (0.043, 0.061,
0.048), respectively. And the averaged CC and ubRMSE of
the CVAEsm, NNsm SGDsm, and ERA5sm products over the
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Fig. 11. Scatterplots of the CCIsm, SMAPsm, CDFsm, and CVAEsm versus in situ SM observations from the core validation sites over the CONUS.
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Fig. 12. Scatterplot of the CCIsm, SMAPsm, CDFsm, and CVAEsm versus in situ SM observations from the core validation sites outside CONUS, USA.
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Fig. 13. Comparisons of three-day composited time series of SM from the CVAEsm, CCI, SMAP L4, CDFsm, and the in situ observed SM from the core
validation sites over the world.

sparse network are 0.743 (0.447, 0.380, 0.713) and 0.071 (0.101,
0.154, 0.080), respectively. CVAEsm is statistically superior
to the other SM products in both core validation sites and
sparse networks and is of more obvious advantages over NNsm
and SGDsm. Since SMAP-HB introduces several HR auxiliary
variables to participate in the modeling, its resolution reaches
about 30 m, which is a large scale difference compared with
the reconstructed data by our proposed method. To reduce the
influence of spatial scale effects on the validation results, we
aggregated the SMAP-HB data to the same spatial scale as
CVAEsm and selected the OK mesonet in situ measured data
from 2016 to 2019 for accuracy assessment. As shown in Fig.
17, while SMAP-HydroBlocks achieves the highest agreement

(CC) with the reference SM, it also has the highest bias and
RMSE. This suggests that SMAP-HydroBlocks might capture
the overall distribution of SM well but may have a tendency to
underestimate the values in the area. SM enhanced by CVAE has
a good balance between agreement, bias, and RMSE. It has a
very close CC to SMAP-HydroBlocks, the relatively lower bias
and RMSE.

C. Validations at Different Spatial Scales

Accuracy assessment at different spatial scales was conducted
using in situ SM observation sites all over the world, CONUS,
and Oklahoma state. Due to the uneven spatial distribution of
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Fig. 14. Global map of CCIsm, SMAPsm, CDFsm, CVAEsm, NNsm, SGDsm, and ERA5sm on June 3, 2019. Since many areas in SGDsm’s global map have
values greater than 0.6, the color bar range is adjusted to 0–1.

sparse networks around the world, the average value of verifica-
tion accuracy by core validation sites was used to evaluate the
accuracy of SM products at the global scale, while the validations
at the CONUS and Oklahoma state were performed over the core
validation sites. The assessments listed in Table XII indicated
that CVAEsm achieved better accuracy on all three spatial scales
compared with CCIsm, SMAPsm, and CDFsm. Overall, the
average accuracy of CCIsm in the global and Oklahoma state is
lower than SMAPsm and higher than SMAPsm in the continental
scale of the United States. And the CDFsm obtained through
CDF matching performs worse than CVAEsm, and its precision

at the global scale is lower than SMAPsm, while it is better than
CCIsm and SMAPsm in the CONUS and Oklahoma state.

Visual comparisons on the global, CONUS, and OKM SM
maps of these products on June 3, 2019 were shown in Figs. 14–
16. CVAEsm, CDFsm SMAPsm, and SMAP-HB have richer
spatial texture and more continuous variation at spatial scales.
In contrast, CCIsm, NNsm, and SGDsm are poor in charac-
terizing regional heterogeneity and have less spatial continuity
due to their lower spatial resolution. Although ERA5sm has a
close spatial resolution of 0.1° to SMAP L4, ERA5sm is less
representative on the spatial heterogeneity of SM.
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Fig. 15. Map of CCIsm, SMAPsm, CDFsm, CVAEsm, NNsm, SGDsm, ERA5sm, and SMAP-HBsm across Oklahoma, USA on June 3, 2019.

TABLE X
METRICS FOR THE COMPARISONS BETWEEN CVAESM AND ERA5SM OVER

THE CORE VALIDATION SITES

SMAPsm was used as the reconstructed data source of
CVAEsm, and its original spatial resolution is 9 km. To quan-
titatively express the reconstructed spatial texture quality, we
introduced PSNR and SSIM to compare the spatial texture
quality of SM products with SMAPsm as the benchmark in
the CONUS from 2016 to 2020. Among the four types of
the reconstructed products and ERA5sm, according to the
PSNR and SSIM calculations, the spatial texture quality of
CVAEsm and CDFsm is close to that of SMAP L4. The average
PNSR and SSIM of the CVAEsm and the CDFsm products
over the CONUS are 79.096 and 0.945, 77.340, and 0.954,
correspondingly. The spatial texture quality of SGMsm, NNsm,
and ERA5sm is worse than that of SMAPsm, with PNSR
and SSIM of 61.978, 67.102, 68.217 and 0.557,0.646, 0.656,
respectively.
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Fig. 16. Map of CCIsm, SMAPsm, CDFsm, CVAEsm, NNsm, SGDsm, ERA5sm, and SMAP-HBsm across the CONUS on June 3, 2019.
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TABLE XI
METRICS FOR THE COMPARISONS BETWEEN CVAESM AND ERA5SM OVER

THE SPARSE NETWORKS

TABLE XII
METRICS FOR THE COMPARISONS BETWEEN CVAESM, CCISM, AND SMAPSM

AT DIFFERENT SPATIAL SCALE

TABLE XIII
METRICS FOR THE COMPARISONS BETWEEN CVAESM AND CVAESM

WITHOUT PROBAILISTIC DISTRIBUTION LEARNING

TABLE XIV
METRICS FOR THE COMPARISONS BETWEEN CVAESM WITH DIFFERENT

NUMBER OF BASE CHANNELS OF DISTRIBUTION ENCODER AND DISTRIBUTION

DECODER

Fig. 17. Scatterplot of CVAEsm and SMAP-HB products versus sparse in
situ SM observations in Oklahoma, USA. (a) Enhanced by CVAE. (b) SMAP-
HydroBlocks.

D. Parameter Sensitivity Analysis

In order to demonstrate the effectiveness of CVAE distribution
learning for our proposed model, we conducted ablation exper-
iments to compare the experimental results of the model after
removing the distribution encoder and distribution decoder with
the original CVAE model. The result is shown in the table XIII.

Since the original CVAE model has better performance on
three out of the four metrics (Bias, RMSE, and CC), the
ablation experiments demonstrate that the distribution encoder
and decoder play an important role in the effectiveness of the
model for probabilistic distribution learning.

We also analyzed the effect of the number of base convolu-
tion channels of the input distribution encoder and distribution
decoder on the fusion accuracy of the SM map. As shown in the
table XIV, while the increase in CC between 32 and 128 channels
is not very large (0.003), it suggests that a higher number of
channels might allow the model to learn more complex features
from the input data, leading to a slightly better agreement with
the actual SM map. It is important to note that increasing the
number of channels can also lead to overfitting, where the model
memorizes the training data rather than learning generalizable
patterns. The optimal number of channels would likely need to
be determined through experimentation on a specific dataset.

VII. CONCLUSION

In this study, a new SM reconstruction scheme based on the
variational autoencoder was proposed to reconstruct a global
high quality three-day seamless SM product from 2015 to 2021
by using the CCI and SMAP L4 SM products. The scheme does
not rely on ground measurements of SM and other geographic
auxiliary variables, takes the statistical distribution characteris-
tics of 16 regions around the world into account, thereby reduces
the impact of missing areas, and combines the high spatial
resolution of SMAP L4 with the high accuracy of CCI fusion
products across a wide range of ground cover types. Validations
of the reconstructed SM product in both global sparse networks
and core validation sites show that the reconstructed SM product
has a higher correlation with ground-based observations and
smaller ubRMSE than the baseline product, and better spatial
detail than the recently proposed NNsm, SGDsm, and ERA5sm
SM products.

APPENDIX

Researchers in hydrology, climatology, ecology, and related
fields can access this three-day soil moisture product online,3

facilitating valuable insights and applications in these domains.
The code utilized in this research is accessible online.4
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