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Cross-Domain Few-Shot Segmentation for Remote
Sensing Image Based on Task Augmentation

and Feature Disentanglement
Jiehu Chen , Xili Wang , Ling Hong , and Ming Liu

Abstract—Few-shot segmentation aims to segment a large num-
ber of unlabeled samples in the target domain, by leveraging the
images and labels from the source domain as well as a few labeled
samples from the target domain. This is pivotal in tackling the
scarcity of labeled samples in remote sensing image segmentation
tasks. However, prevalent few-shot segmentation methods over-
look inter-domain discrepancies, do not model and leverage the
relationship between samples, and often only implement binary
classification but not multi-class classification directly. To address
these problems, we propose a cross-domain few-shot segmentation
method based on task augmentation and feature disentanglement
for practical remote sensing segmentation tasks. On one hand,
task augmentation, which involves increasing the diversity of the
training set and generating more challenging training data, can
improve the model’s generalization. On the other hand, feature
disentanglement, involving the extraction of domain-irrelevant fea-
tures for segmentation, improves the transferability of the model.
Furthermore, to flexibly capture the relationships between the
segmented regions, a graph with regions as nodes and relationships
between nodes as edges is constructed. Then, labels are propagated
from the labeled nodes to the unlabeled nodes in the graph by
label propagation algorithm to implement multi-class classifica-
tion directly. We conducted experiments on two public datasets
as well as a Tibetan Plateaudataset collected by our group.And
the experimental results show that the proposed method leads to a
significant improvement in accuracy compared to existing methods,
demonstrating its effectiveness.

Index Terms—Cross domain, feature disentanglement, few-shot
segmentation, remote sensing image (RSI), task augmentation
(TA).

I. INTRODUCTION

B ENEFITING from the rapid progress in remote sensing
(RS) technology, remote sensing images (RSIs) have en-

tered the era of Big Data, and the automatic analysis and
understanding of these abundant RSIs have become an active
research field in the RS and computer community [1]. Getting
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land cover information from RSIs by semantic segmentation
is fundamental research in RSIs [2]. Semantic segmentation
determines the land cover type on each image pixel and provides
both semantic and location information for the earth observation
and land use. Land cover information can be quickly obtained
from RSIs by semantic segmentation and further applied in land
planning, environmental protection, disaster monitoring [3], and
other fields. Deep-learning-based methods are the mainstream in
RSI land cover segmentation research. Traditional deep learning
networks require a large amount of labeled training data, which,
in reality, are time consuming and labor intensive to obtain.
Compared with computers, humans are often able to utilize prior
knowledge to quickly identify new things given only a few or
even one sample. Enabling the machines to quickly segment the
objects by leveraging existing information and a few labeled
samples, like humans do, is the target of few-shot segmentation.
Few-shot segmentation has become research cutting edge in the
field of deep learning in recent years since it has more practical
value though challenging [4].

In the existing few-shot segmentation tasks, two datasets are
usually involved: 1) a source datasetDS containing a large num-
ber of labeled samples and 2) a target datasetDT containing only
a few labeled samples and a majority of unlabeled samples. The
corresponding label sets of the two datasets are YS and YT . The
purpose of few-shot segmentation is to train a model using DS

and the few labeled samples in DT that has good generalization
for DT . In DT , the labeled samples form the support set and the
unlabeled samples constitute the query set.DS and DT usually
come from the same source but have disjoint category sets YS

and YT , i.e., YS ∩ YT = φ.
Few-shot semantic segmentation is pioneered by Shaban et al.

[5]. Later works mainly adopted the metric-based mainstream
paradigm [6] with various improvements. The main idea of
the metric-based method is to obtain the feature representation
(i.e., prototype) of each category with the support set. Then,
the categories of unlabeled pixels are predicted by the nearest
distance between the category prototypes and unlabeled pixel
features.

When the existing few-shot segmentation methods are di-
rectly applied to RSI land cover segmentation, three problems
arise.

1) Most of the existing methods disregard the interdomain
discrepancies between DS and DT , and assume that
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different datasets are derived from the same source. How-
ever, due to differences in sensors, shooting angles, ge-
ographical locations, etc., there are usually interdomain
discrepancies between DS and DT in RSI segmentation
tasks. At the same time, due to the limited diversity of the
dataset, the model trained on DS may not generalize well
to DT, which results in performance degradation when
predicting samples inDT .

2) The existing few-shot segmentation methods are mainly
based on the convolutional neural network (CNN) struc-
ture, while the CNN only considers the local spatial re-
lationships but cannot flexibly model the relationships
among distant regions [7].

3) In the existing few-shot segmentation setting [5], only
two categories need to be segmented (i.e., foreground and
background) within a single image. Most methods are
limited to binary classification with such a setting. But
in RSIs, images often contain multiple categories where
each of which needs to be segmented, which is a more
challenging and realistic problem.

To solve the above problems, we propose a cross-domain few-
shot multiclass segmentation method for the RSI based on task
augmentation and feature disentanglement (TAFD). On the one
hand, we introduce the idea of task augmentation [8] and feature
disentanglement [9] to improve the transferability of the model
from two levels. First, at the data level, we design a data augmen-
tation method to improve the generalization ability of the model.
Traditional data augmentation generally enlarges the training
set through operations, such as rotation and random crop, which
cannot provide more diverse training data for cross-domain tasks
with large differences in data. Different from traditional data
augmentation, we propose the method “task augmentation.” This
method expands data distribution space through transformed
data using data transformation and benefits for cross-domain
tasks. Second, at the feature level, domain-irrelevant features
are extracted by feature disentanglement and used for label pre-
dictions; this mitigates the impact of interdomain discrepancies
on segmentation. On the other hand, in order to flexibly capture
relationships between local or long-range regions in an image
or regions from different images, we first obtain superpixels
by oversegmentation and then model the relationships among
superpixels by the graph. With the graph, predictions can be
made through label propagation. But for images, there are often
unlabeled superpixels that do not have a path to any labeled
superpixels; predictions are made by the metric distance in such
cases.

In addition, the existing methods assume that the categories
in DS and DT are disjoint [10], i.e., YS ∩ YT = φ. But in RSI
few-shot segmentation tasks, the categories of DS and DT often
partially overlap, as shown in Fig. 1. Therefore, in this article,
we broaden the definition, and the cases YS ∩ YT �= YT are all
considered as few-shot segmentation.

The contributions of this article are threefold.
1) A cross-domain few-shot segmentation method TAFD

is proposed to address practical problems in RS. TAFD
significantly reduces the negative impact of domain dis-
crepancies on segmentation. Moreover, by leveraging the

Fig. 1. Illustration of cross-domain few-shot segmentation for RS land cover,
which aims to segment query images using DS and support images in DT.

relationships between data in the graph model, it provides
additional information for label prediction. Compared to
the existing methods, TAFD improves segmentation ac-
curacy notably.

2) TAFD is proposed to improve the transferability of the
model. At the data level, a task augmentation method
based on gradient ascent is presented to transform training
data in each iteration, which can indirectly extend data
distribution and enhance the generalization ability of the
model in a wider data distribution space; at the feature
level, domain-irrelevant features extracted by feature dis-
entanglement are utilized for segmentation; this reduces
the impact of interdomain discrepancy and ultimately
improves the model accuracy.

3) A graph network is utilized to model the relationships
among regions from different or the same image, so
that the structural information implicit in the data can
be exploited, and the labels can be spread through label
propagation on the graph.

The rest of this article is organized as follows. Section II gives
a brief introduction to the related works. Section III describes
our proposed method in detail. Section IV reports and analyzes
the results on two public RS few-shot datasets and our collected
Tibetan Plateau dataset, with comparisons to several comparable
methods. Section V discusses the advantages and limitations of
the proposed method. Finally, Section VI concludes this article.

II. RELATED WORKS

In this section, we will review the works related to few-shot
segmentation, cross-domain few-shot learning, and graph neural
networks (GNNs).

A. Few-Shot Segmentation

The purpose of few-shot segmentation is to segment a large
number of unlabeled samples in the target domain DT by
leveraging the images and labels from domain DS as well as
a few labeled samples from domain DT. Shaban et al. [5] first
define the few-shot image segmentation problem and introduce
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a method to address it. Their approach employs an encoder–
decoder architecture, with decoder parameters adjusted based on
the support set, enabling elementwise classification of the query
set. Subsequently, more research has been done on few-shot
segmentation.

Few-shot segmentation methods can be broadly classified into
two types: metric-based methods [6], [11], [12], [13], [14], [15],
[16] and weighted mask methods [17], [18], [19], [20], [21], [22]
according to different decoders. Metric-based methods generally
aim to obtain the prototype of each category by mask average
pooling [11] with the support set’s feature maps and then predict
labels by measuring the metric distances between prototypes
and pixel-level features in query images. Metric-based meth-
ods can be further divided into single-prototype methods [11],
[12], [13], [14] and multiprototype methods [15], [16]. In the
single-prototype approaches, each category is represented by
one feature vector. Some methods compute prototypes only by
a few support samples [11], [12], [13], which can easily fail to
cover the underlying appearance discrepancy between the sup-
port set and the query set. To solve the problem and enhance pro-
totype representation of each category, some methods compute
the prototypes with both support images and high-confidence
query predictions [14]. Single prototype is usually insufficient
to represent a category with a complex appearance; therefore,
the multiprototype methods are proposed. In the multiprototype
methods, clusters are first obtained by clustering methods [15],
[16] on the regions corresponding to each category in the support
set, and then, each category is represented by multiple feature
vectors (multiprototype) derived from clusters. Compared with
single prototypes, multiprototype methods are often able to
capture the diversity of objects but have higher computational
complexity.

Besides the metric-based methods, some methods are imple-
mented based on the weighted mask methods [17], [18], [19],
[20], [21], [22]. Weighted mask methods adopt the prototype
of the foreground from the support feature map to compute
elementwise cosine distance with the query feature map to attain
a weighted mask. The weighted mask that highlights the region
of the foreground is multiplied or concatenated with the query
feature map. The predictions are generated by deconvolution on
the weighted query feature map. Restricted by the structure of the
deconvolutional module, the weighted mask methods generally
only solve the binary category segmentation task in one image
and are difficult to generalize to RS segmentation tasks involving
multiclassification.

The abovementioned methods assume that DS and DT

come from the same domain, which often fails to hold in
RSI segmentation tasks. Therefore, it is often difficult for
them to obtain high segmentation accuracy in cross-domain
segmentation.

B. Cross-Domain Few-Shot Learning

In recent years, some scholars have conducted research on the
challenging cross-domain few-shot learning problem (CD-FSL)
[23]. CD-FSL mainly solves the problem of few-shot classifica-
tion or segmentation tasks when there are domain discrepancies

between DS and DT, and the category sets are disjoint. In the
early stage, research mainly focuses on the field of image classi-
fication [24]. Cross-domain few-shot segmentation research has
been started since 2022 [25], [26], [27]. The methods mainly
include domain-agnostic feature extraction [25], [26] and fine-
tuning method with labeled samples in DT [27].

The above cross-domain methods do not generalize well due
to the limited diversity of training data. And they ignore the
relationships between distant regions in the image. In addition,
most of the abovementioned methods can only perform binary
classification. Their applications are limited since we need to
segment all the land cover categories in the RSI.

C. Graph Neural Networks

GNNs [28] are effective tools for modeling the relationships
between nodes (data), which have been widely used in computer
vision. Graph convolutional networks can model long-range
spatial as well as local relations in the RSI naturally, while CNNs
only consider local relations. In the field of image segmentation,
a pixel or superpixel is treated as a node, and the edge represents
the relationship between two nodes [29]. The graph provides
more information implied in data, and this is beneficial for
obtaining distinguishing features. Image segmentation can be
implemented by sending the learned features on the graph to a
classifier (such as softmax) or label propagation between nodes
on the graph. Graph construction is the key in GNN-based image
segmentation methods. Some methods directly construct a graph
at the pixel level [30], [31]. However, when the image becomes
large in size, such a fashion could lead to a tremendous amount
of computation, which limits their applicability for general com-
puters. To solve this problem, the methods that construct a graph
at the superpixel level [32], [33] or in a mini-batch fashion [34]
are proposed, which enables GNNs to model spatial structures
of RSIs with acceptable computational overhead. However, the
existing methods usually construct a graph on a single image,
which cannot capture the relationship among superpixels of
different images.

D. Domain Adaptation

Domain adaptation strives to address the performance degra-
dation by the data distribution discrepancy between the source
domain and the target domain. In semantic segmentation tasks,
most studies endeavor to minimize domain gaps between the two
domains through adversarial training. Some of these approaches
focus on aligning distributions in the output space [35], while
others seek to eliminate discrepancies in the input level or (and)
feature level [36], [37]. Current domain adaptation methods for
image segmentation predominantly target unsupervised domain
adaptation tasks where the categories of the source and target
domains are entirely identical. There are relatively fewer re-
search works on unsupervised open-set domain adaptation [38]
or few-shot domain adaptation [9], [39], [40], and most of them
study image-level classification but not pixel-level semantic
segmentation. Tavera et al. [40] first propose a domain adaptation
method for the few-shot segmentation. However, this method
requires an additional dataset apart from DS and DT during
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Fig. 2. Illustration of the proposed model. The proposed model can be divided into four parts: task augmentation, superpixel extraction, feature disentanglement,
and label prediction.

training. This additional dataset needs to share the same label
set with DS and style properties with DT, which poses significant
difficulties in RS applications.

III. METHODOLOGY

The proposed method models the relationships among super-
pixels with the help of graph and spreads the labels from the
labeled nodes to those unlabeled nodes by label propagation on
the graph. Especially, feature disentanglement and task augmen-
tation are proposed to improve the generalizability of the model.
The model framework is shown in Fig. 2.

The model includes four parts: 1) task augmentation, which
can improve the generalization ability of the model by aug-
menting the diversity of training data; 2) superpixel extraction,
which extracts features and generates superpixels; 3) feature
disentanglement, which extracts the domain-irrelevant features
from the superpixels; and 4) label prediction, in which a graph
network is first used to model relationships among superpixels
with domain-irrelevant features and spread labels from labeled
superpixels to unlabeled ones by label propagation. Then, the
labels of the remaining unlabeled nodes are obtained through a
metric method. Finally, the superpixels are mapped back to the
size of the original image to obtain the segmentation result. We
will explain each part and the training process of the model in
the following subsections.

A. Task Augmentation

We propose a data augmentation method to increase the
diversity of the training data (i.e., DS and a few labeled samples
in DT) in the training phase. Data augmentation is a commonly
employed technique in deep learning, especially when training
data are scarce or a domain discrepancy exists between the train-
ing and test datasets. It often results in improved performance

[41]. Traditional data augmentation (such as flipping, rotation,
adding noise, and so on) can increase the quantity of training
data, but it does not guarantee that the additional data will
enhance the performance of the model [42]. Motivated by Wang
and Deng [8], we propose a task augmentation method for cross-
domain image segmentation. Compared with the traditional data
augmentation method, the proposed method does not directly
increase the amount of data, but iteratively transforms the train-
ing data during the training phase and produces new samples that
are harder to segment. This implicitly expands the distribution
space of samples and then improves the segmentation accuracy
in the cross-domain task.

Let Dtrain denote the distribution of training data, and Dtest

denote the distribution of test data. The distribution distance be-
tween Dtrain and Dtest is ρ. We expect that the model trained on
Dtrain also achieves good performance on Dtest; it is equivalent
to finding the solution to the following problem:

min
θ∈Θ

sup
Dist(Dtrain,Dtest)≤ρ

E[L((X,Y ); θ)] (1)

where sup denotes supremum. The model parameter is θ, and Θ
is the parameter space of the model. (X,Y ) ∈ Dtest is a sample
with its label come from Dtest.. E[·]denotes the mathematical
expectation and L((X,Y ); θ) denotes the segmentation loss
of predicting Y from X (see formula (19) in Section III-E).
Aiming at finding the minimum value of the supremum of
E[L((X,Y ); θ)] in Dtest, the solution to formula (1) can guar-
antee good performance over a wider distribution space with
a distance of ρ from Dtrain compared to simply training on
Dtrain. Since the labels in Dtest are unknown, it is difficult
to solve formula (1). The literature [8] proposes to transform
the training data with task augmentation to generate fictitious
test data outside the distribution of training data and uses these
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Fig. 3. Examples of images before and after task augmentation, heatmap of the changing pixels, and predicted results before and after training on task augmentation
(TA) data. (a) Images before TA. (b) Images after TA. (c) Pixel change heatmap. (d) True labels. (e) Predicted results of images before TA (without training on TA
data). (f) Predicted results of images after TA (without training on TA data). (g) Predicted results of images after TA (training on TA data).

fictitious test data to train the model. Thus, the model can achieve
better generalization performance for cross-domain data.

Task augmentation is implemented iteratively. Assuming that
the current sample from training set is X0, the augmented data
XM (fictitious test data) are obtained through M iterations as
follows:

Xi = Xi−1 + β · ∇Xi−1
L((Xi−1, Y0); θ), i = 1, 2, . . .M

(2)
whereY0 is the ground-truth mask ofX0(task augmentation does
not change the mask; Y0 is also the ground-truth mask of Xi). ∇
is the symbol for the gradient. β denotes the step size and β > 0.
Too large β would lead to difficulties in model convergence
during training. The difference between XM and X0 increases
as M increases, bringing an expanded sample distribution space.
However, a large M value will increase computation. In the
experiment, it is found that M = 10 and β = 0.0001 can obtain
good results without adding much time complexity.

To better understand formula (2), we substituteXM generated
by (2) into the loss function L(·)and obtain

L((XM , Y0); θ)

= L((XM−1 + β · ∇XM−1
L((XM−1, Y0), θ), Y0); θ). (3)

Let ΔXM−1 = β · ∇XM−1
L((XM−1, Y0), θ); then, we have

L((XM , Y0); θ) = L((XM−1 +ΔXM−1, Y0); θ)

≈ L((XM−1, Y0); θ)+β · (∇XM−1
L((XM−1, Y0); θ))

2

≥ L((XM−1, Y0); θ) ≥ · · ·L((X0, Y0); θ). (4)

From formula (4), it can be seen that the segmentation loss
obtained by XM is greater than or equal to that obtained by
X0. This means that we generate more “challenging” (i.e.,
difficult to train) data for model training. These harder data impel
the model to achieve satisfactory results, thus improving the
generalization of the model more effectively than the traditional
data augmentation.

In the training phase, we sample a batch of labeled data in each
iteration and perform data augmentation and then send them to
the model for training. All of the training data in each epoch
are transformed in this way. Since the value of the loss function

changes continuously during training, the augmented data also
change in each iteration, which enables the model to get more
diverse data and improve the performance of the model.

The purpose of data augmentation is to generate more chal-
lenging data for model training, thus enhancing the perfor-
mance of the model. Fig. 3 displays some examples before
[see Fig. 3(a)] and after [see Fig. 3(b)] task augmentation.
Due to the limited number of iterations of task augmentation,
the visual difference between images before and after task
augmentation is slight. To clearly demonstrate the differences
before and after task augmentation, we calculate X̂(x,y) =

‖X(x,y)
M −X

(x,y)
0 ‖2/max

i,j
(‖X(i,j)

M −X
(i,j)
0 ‖2) for the corre-

sponding pixels before and after task augmentation, where
X

(x,y)
0 and X

(x,y)
M represent the pixel at position (x, y) before

and after task augmentation, respectively. The value of X̂ranges
from 0 to 1, where closer to 1 indicates that the corresponding
pixel changes larger after task augmentation. We visualize X̂
using a heatmap, as shown in Fig. 3(c). Fig. 3(e) and (f) repre-
sents the obtained segmentation results of X0 and XMusing the
model that trained on data without task augmentation. Fig. 3(g)
illustrates the predicted results of XM obtained by the model
trained on data with task augmentation. Comparing Fig. 3(e) and
(f), it can be seen that the misclassified regions are increased after
task augmentation, indicating that task augmentation indeed
generates more challenging training data. Comparing Fig. 3(f)
and (g), it can be observed that after training on the augmented
data, the model achieves better segmentation results on chal-
lenging data. Therefore, the model’s performance is enhanced
through this task augmentation approach.

B. Superpixel Extraction

A graph is used to model the relationships between nodes
involving both adjacent and distant regions (i.e., nodes) in one
image or from different images. To reduce the computational
complexity, the graph is constructed at the superpixel level. As
shown in Fig. 4(a), oversegment a batch of images by SLIC
[43]. For the labeled images, labels (i.e., masks) can ensure
that all the pixels in one region correspond to only one label.
The obtained R oversegmented regions ri, i = 1, 2, …, R, are
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Fig. 4. Data processing flow of TAFD. (a) Extracting superpixels from the support set and the query set. (b) Constructing the graph with superpixels. (c) Spreading
labels to the unlabeled nodes from labeled ones by label propagation. (d) Predict those unreachable unlabeled regions by metric distance. (e) Mapping the superpixels
back to the original image.

Fig. 5. Structure of the feature disentanglement network. Features from the
labeled superpixels and unlabeled superpixels are concatenated together as
the input; through feature disentanglement, the domain-irrelevant features and
domain-specific features are obtained. The parameters of disentanglement are
obtained by minimizing domain loss in the training phase.

regarded as R superpixels. A CNN (VGG16 or ResNet50 as
in [13]) is used to extract the feature maps of the images and
upsample the feature maps to the size of the original images. By
averaging the corresponding feature maps on ri, we can obtain
the feature vectors hi of ri; then, hi will be sent to the feature
disentanglement part to extract domain-irrelevant features.

C. Feature Disentanglement

Feature disentanglement helps to find features that are in-
variant or specific to different data domains [9]. The domain-
invariant feature is conducive to improving cross-domain gener-
alization. Therefore, we use a feature disentanglement network
φ(·) to disentangle the superpixel’s features hi into domain-
irrelevant features hi

i and domain-specific features hs
i , namely:

(hi
i,h

s
i ) =φ(hi). (5)

The domain-irrelevant feature hi
i is fed into the label predic-

tion part to conduct the few-shot segmentation, while domain-
specific feature hs

i is abandoned since they contain inductive
bias learned from a particular domain. The structure of the
feature disentanglement network is the same as in [9], primarily
comprising a batch normalization layer, a rectified linear unit
(ReLU) activation layer, and several fully connected layers, as
depicted in Fig. 5.

A domain classifier d(·) is set to help with feature disen-
tanglement. For the domain-irrelevant feature hi

i, we cannot
distinguish whether the feature derives from DS or DT. d(·)

implements this discrimination, and its output is approximately
0.5, so the loss function is

LD1 =

NS∑
n=1

KL(d(hi(S)
n ), 0.5)+

NT∑
n=1

KL(d(hi(T )
n ), 0.5) (6)

where KL(·) is Kullback–Leibler divergence loss, NS is the
number of superpixels from DS, and NT is the number of
superpixels from DT. By minimizing (6), the output feature hi

i

will confuse d(·) and make the classification probabilities of
both domains’ data are around 0.5, which means that hi

i does
not contain domain-specific information.hs

i contains much more
domain-specific features, so d(·) may distinguish whether the
input features come from DS or DT more easily. We set the
output of d(·) to be 0 for samples from DS and 1 for samples
from DT. Therefore, the domain loss function is

LD2 =

NS∑
n=1

CE(d(hs(S)
n ), 0)+

NT∑
n=1

CE(d(hs(T )
n ), 1) (7)

where CE(·) is the cross-entropy loss. By minimizing (7), the
disentangled hs

i contains specific information related to each
domain.

The total domain loss is

LD = LD1+LD2. (8)

The training process of the feature disentanglement will be
described in Section III-E.

D. Label Prediction

The label prediction process predicts labels using domain-
irrelevant features. Label prediction consists of three steps:
label propagation, metric prediction, and mapping superpixels
to mask maps. Label propagation spreads labels from the labeled
superpixels to unlabeled ones if there are paths between them,
as shown in Fig. 4(b) and (c). There may be some unlabeled
nodes that are not connected to any of the labeled samples (the
graph is not fully connected, and this is common for images);
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in this scenario, the metric-based method is used to predict the
categories of such nodes.

The weight between two nodes in the graph is defined by the
Gaussian function

Aij = exp

(
−
∥∥hi − hj

∥∥2
2

2σ2

)
(9)

where hi and hj are the domain-irrelevant features correspond-
ing to the superpixels i and j. σ is the scale parameter. The value
of σhas an impact on the classification results. The weight of
the edge between any two nodes is close to 0 when σ is too
small, making it difficult for label propagation. If σ is too large,
two nodes with low similarity will get a large weight, causing
many nodes of different categories to interfere with each other.
Therefore, we select σ adaptively based on a trained network
g(·)whose inputs are the node features [44]. The similarity
function is

Aij = exp

(
−1

2

∥∥∥∥hi

σi
− hj

σj

∥∥∥∥
2

2

)
(10)

whereσi = g(hi), σj = g(hj), and g(·) consists of a two-layer
fully connected network adding an activation layer. In the train-
ing phase, g(·) learns how to produce appropriate σaccording
to the input feature to achieve high accuracy. Afterward, in the
testing phase, g(·) automatically generates suitable σ for test
data. To prevent the nodes of different categories connected, for
labeled nodes i and j, A is further processed as

Aij = 0 if yi �= yj (11)

where yi and yj are the labels of nodes i and j, respectively.
When either i or j is an unlabeled node, we require only

that when Aij is greater than a threshold η, there is an edge
between nodes i and j. This helps to prevent nodes of different
categories from being connected to each other. Therefore, A goes
on processing as

Aij = 0 if Aij < η (12)

η ∈ (0, 1) is a threshold. If η is small, there are edge connec-
tions between nodes of different categories, which will have a
negative impact on segmentation. Therefore, η should be a value
close to 1.

Label propagation can be expressed as

F t+1 = αÃF t + (1− α)Y (13)

where Ã ∈ RL×L represents the graph adjacency matrix after
normalization. L is the number of superpixels.Y ∈ RL×N refers
to the initial label. Y i,j = 1 if the ith superpixel is labeled with
j; otherwise, Y i,j = 0. N is the number of categories. F t ∈
RL×Ndenotes the predicted results after t iterations. α ∈ (0, 1)
controls the amount of propagated information. Small α slows
down propagation, while largeα leads to faster propagation. But
large α may cause an oversmoothing issue since there exists an
edge connection among nodes with different categories in the
graph. Because most of the nodes with different categories are
ensured not to be connected by formulas (11) and (12), α is set
to a relatively large value of 0.99, which is also a recommended

value by most works [44], [45], [46]. The final results can be
calculated as follows:

F ∗ =
(
I − αÃ

)−1

Y (14)

where F ∗ is the prediction result and I is an identity matrix.
Because there are some nodes whose weights to all other

nodes are less than threshold η, the above-constructed graph
is usually a disconnected graph and labels cannot be propagated
to some unlabeled nodes. Therefore, we predict the labels of
such nodes with the nearest distance of them to each category
prototype, as shown in Fig. 4(d). The prototype for each category
is computed as

ck =
1

|S(k)|
∑

j∈S(k)

hj (15)

where |S(k)| represents the number of the labeled superpixels
belonging to category k. Because some labeled superpixels in
formula (15) are from the query set, we can reduce the gap
between the support set and the query set to some extent. Then,
we obtain the node’s predicted probability by softmax based on
the Euclidean distances of its feature and the prototypes [47]

p(y = k|x) = exp(−‖hi − ck‖22)∑
i exp(−‖hi − ci‖22)

. (16)

After assigning labels to all the superpixels, we map the
superpixels back to the size of the original image and then obtain
the segmentation result of the image, as shown in Fig. 4(e).

E. Training Processing

The whole training process contains two stages: the pre-
training stage and the training stage. In the pretraining stage,
parameters are initialized by training the model on DS. The loss
function in the pretraining phase is the segmentation loss. The
segmentation loss consists of two parts, one of which is the
cross-entropy loss

LCE = − 1

Np

∑
x,y

∑
i∈C

yi(x,y) log(ŷ
i
(x,y)) (17)

where yi(x,y) represents the real label, ŷi(x,y) represents the pre-
dicted label, Np represents the number of pixels, and C represents
the category set.

Cross-entropy loss usually has poor performance for cate-
gories with small sample sizes, so dice loss [48] is also used in
the training process

LDICE =
1

|C|
∑
i∈C

⎛
⎜⎝1−

2
∑

x,y y
i
(x,y)ŷ

i
(x,y)∑

x,y

(
yi(x,y)

)2
+
∑

x,y

(
ŷi(x,y)

)2
⎞
⎟⎠

(18)
where |C| represents the number of categories.

The segmentation loss in the pretraining phase is

LC = LCE + LDICE. (19)

In the training stage, the model is trained with DS and a few
labeled samples from DT simultaneously. All training data are
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TABLE I
CHARACTERISTICS OF DIFFERENT DATASETS

transformed to increase the diversity of the training set. The loss
function of this stage is expressed as follows:

L = L
(S)
C + L

(T )
C + λLD (20)

where L
(S)
C and L

(T )
C denote the segmentation loss on DS and

DT, respectively. LD is the domain loss given by formula (8). λ
is a weight of the domain loss function and λ > 0. The domain
loss may overpower L(S)

C and L
(T )
C for a large λ. Therefore, it is

recommended to be less than 1.
In the test phase, the target dataset is fed into the model to

obtain segmentation results for the unlabeled samples.

IV. EXPERIMENTAL RESULTS

In this section, we first introduce the datasets used in the ex-
periment in Section IV-A. Then, we describe the implementation
details and the compared methods in Sections IV-B and IV-C,
respectively. Finally, we present and analyze the experimental
results in Sections IV-D–IV-F, where Section IV-D shows the
performance of the proposed method on two public datasets,
Section IV-E presents a series of ablation studies to demonstrate
the impact of each part in our proposed method, and Section IV-F
shows the results on our collected Tibetan Plateau dataset.

A. Dataset

Experiments are conducted using two public datasets,
WHDLD [49] and GID5 [50], along with one private dataset
Tibetan Plateau. WHDLD (Wuhan dense labeling dataset) is
cropped from a large RS image of Wuhan urban area obtained by
GF-1 and ZY-3 satellites; the images in WHDLD are manually
labeled with six categories. GID5 contains 150 high-quality
GF-2 images acquired from more than 60 different cities in
China with five categories. The Tibetan Plateau dataset covers
the city of Lhasa and its surrounding areas obtained by Jilin-1
satellite and is manually annotated into eight categories. The
three datasets are summarized in Table I.

The above three datasets are acquired over different geograph-
ical regions. There are distinct distribution discrepancies among
them. They also have different sets of categories. Due to the large
amount of data in the GID5 dataset, we selected six images from
GID5 and cropped them to a total of 4368 images with a size of
256 × 256.1 The other two datasets do not undergo additional
processing. In the experiments, we select one dataset as DS, and

1The cropped GID5 can be downloadable at https://drive.google.com/file/d/
1xw5xi66u2mYQeMN6OZ11NWcrUIJ28ApQ/view?usp=sharing

the other dataset as DT. K images, which cover all categories
of DT, are randomly sampled from DT as the support set. In
the pretraining phase, DS is used to train the model to obtain
initial parameters. Then, DS and the support set from DT are
augmented by task augmentation to train the model. Finally, the
model is evaluated on DT. Because different support sets lead to
different results, our experimental results are the average results
on ten different support sets.

B. Implementation Details

The experiments are implemented on PyTorch, accelerated by
NVIDIA GeForce RTX 3090 GPU. The CPU is AMD Ryzen
5900X. The initial learning step is 5.0 × 10−4. During the
training process, the learning rate is reduced by half every
2000 episodes. VGG16 and ResNet50 pretrained in ImageNet
[13] are used as the backbone to extract features. A 1 × 1
convolution is used to fuse features from backbones and outputs
64-D features. The feature disentanglement network consists
of three fully connected layers and a ReLU activation layer.
It receives the 64-D features from backbones and outputs two
32-D disentangled features. Best results are obtained when η is
0.9, and λ is 0.5 through cross-domain few-shot segmentation
experiments on two public datasets. Therefore,η is fixed to 0.9,
and λ is fixed to 0.5 in the experiments.

To quantitatively evaluate the performance, we use the mean
intersection over union (mIoU), mean F1 score, and overall
accuracy (OA) as evaluation indexes [51]. The three metrics
are calculated as follows:

mIoU =
1

N

N∑
i=1

TPi

TPi + FPi + FNi
(21)

meanF1 =
1

N

N∑
i=1

2TPi

2TPi + FPi + FNi
(22)

OA =
TP + TN

TP + FP + FN + TN
(23)

where TP, TN, FN, and FP are the true positives, true negatives,
false negatives, and false positives, respectively, and N denotes
the number of categories.

C. Compared Methods

To evaluate the effectiveness of the method TAFD, we com-
pare it with some comparable methods: PANet [6], CAPL [13],
and two improved methods based on PANet. Except for a few
methods such as PANet and CAPL, most of the existing few-shot

https://drive.google.com/file/d/1xw5xi66u2mYQeMN6OZ11NWcrUIJ28ApQ/view?usp=sharing
https://drive.google.com/file/d/1xw5xi66u2mYQeMN6OZ11NWcrUIJ28ApQ/view?usp=sharing
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TABLE II
COMPARISON OF DIFFERENT METHODS

TABLE III
RESULTS OF DIFFERENT METHODS WHEN DS IS WHDLD, DT IS GID5, AND SHOT IS FIVE

TABLE IV
RESULTS OF DIFFERENT METHODS WHEN DS IS WHDLD, DT IS GID5, AND SHOT IS TEN

segmentation methods only tackle binary classification (back-
ground and foreground) but not multicategory classification
tasks directly. PANet is a method based on a single prototype,
and a single prototype is generally hard to represent the diversity
of categories [21]. Besides, PANet ignores the gap between the
support set and the query set when calculating the prototype
[14]. To enrich the compared methods, we propose two im-
proved PANet methods based on ASGNet [21] and SSP [14],
respectively. The first improved method ASGNet∗ is based on
ASGNet, which represents each category by multiple prototypes
using K-means, and the prediction of labels adopts the same
metric as PANet. The second improved method SSP∗ enhances
features, which is derived from the idea of SSP. To reduce the
gap between the support set and the query set in binary category

segmentation, SSP enhances the prototypes of the foreground
and background by the high-confidence areas in the query set,
respectively. We utilize the foreground enhancement method of
SSP to enhance the categories’ prototypes in PANet since there
is no background in our datasets. Other parts in SSP∗ are the
same as in PANet. The main differences between the proposed
method and the compared methods are listed in Table II.

D. Results of the Public Datasets

Tables III and IV show the results of the proposed method
and the compared methods in terms of accuracy when DS is
WHDLD and DT is GID5. Fig. 6 shows some segmentation re-
sults of different methods. There are five categories in DT, where
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Fig. 6. Qualitative results of different methods when DS is WHDLD, DT is GID5, and shot is five.

TABLE V
RESULTS OF DIFFERENT METHODS WHEN DS IS GID5, DT IS WHDLD, AND SHOT IS FIVE

building and water are the common categories and farmland,
forest, and meadow are the private categories of DT. The number
below the category in tables represents the proportion. “shot”
in the experiments denotes the total number of labeled images
in DT, which is different from the definition of “shot” in the
existing literature. In the existing literature [5], “shot” generally
refers to the number of labeled samples per category. In [11]
and [14], PANet uses two backbones (VGG16 and ResNet50)
in the experiments, and the other compared methods only use
ResNet50. Therefore, we use both VGG16 and ResNet50 for the
proposed method.

It can be seen from Tables III and IV that the proposed method
is superior to the compared methods in terms of accuracy (mIoU,
mean F1, and OA) when “shot” is five or ten. Concretely, the
proposed method surpasses the suboptimal results by 6.32%,
6.18%, and 5.58% of mIoU, mean F1, and OA when shot is
five, and by 7.30%, 5.94%, and 7.84% of mIoU, mean F1, and
OA when shot is ten, respectively. In terms of each category’s
IoU, the proposed method achieves the best result in building,
forest, water, and meadow and is similar to the best result (SSP∗)
in farmland. The results indicate that the proposed method can

better alleviate the impact of interdomain discrepancy and effec-
tively improve the generalization performance in cross-domain
segmentation tasks.

From Fig. 6, we can see that the proposed method pro-
vides more satisfied segmentation results with only five labeled
support images than the compared methods. For the private
categories farmland, forest, and meadow in DT, the proposed
method can also provide relatively satisfactory results, which
demonstrates the competitiveness of the proposed method in the
cross-domain few-shot segmentation task.

Tables V and VI show the results of TAFD and the compared
methods in terms of accuracy when DS is GID5 and DT is
WHDLD; Fig. 7 shows some segmentation results of different
methods. There are six categories in DT, where building and
water are the common categories and bare soil, pavement, road,
and vegetation are the private categories of DT.

It can be seen from Tables V and VI that the proposed method
surpasses the compared methods in terms of accuracy (mIoU,
mean F1, and OA) when shot is five or ten. Specifically, the
proposed method surpasses the suboptimal method by 6.57%,
6.56%, and 7.71% of mIoU, mean F1, and OA when shot is
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TABLE VI
RESULTS OF DIFFERENT METHODS WHEN DS IS GID5, DT IS WHDLD, AND SHOT IS TEN

Fig. 7. Qualitative results of different methods when DS is GID5, DT is WHDLD, and shot is five.

five, and by 9.40%, 9.07%, and 13.09% of mIoU, mean F1, and
OA when shot is ten, respectively. In terms of each category’s
IoU, all of the best results are achieved by TAFD. It can be
concluded from Fig. 7 that TAFD enhances the generalizability
of the model; therefore, TAFD provides more satisfied segmen-
tation results in most categories than the compared methods.
For the private categories of DT (bare soil, pavement, road, and
vegetation), the results are also relatively satisfactory.

From the above experiments, significant accuracy
improvements are observed with the proposed method on
both backbones. The main reason is that we propose the idea of
TAFD, while other methods are not exploring ways to enhance
the generalization capability of the model. In addition, the graph
network provides the intrinsic structure information of data
through the similarity matrix; more useful information further
improves the segmentation accuracy. We can also see that for
the backbones, ResNet50 is generally better than VGG16.

E. Ablation Experiments

To explore the effect of task augmentation, feature disen-
tanglement, and graph network on segmentation, we conduct

ablation experiments. Here, the backbones for all the methods
are ResNet50. Tables VII and VIII show the ablation experiment
results when DS is WHDLD, DT is GID5, and DS is GID5, DT

is WHDLD, respectively, in which “M” refers to only using the
metric method without label propagation, feature disentangle-
ment, and task augmentation, which is equivalent to PANet at
the superpixel level, “P” means label propagation, “T ” denotes
task augmentation, “D” indicates feature disentanglement, and
“E ” represents the traditional data augmentation method (adding
noise and random clipping). We conclude the meaning of various
combinations in Table IX.

From the above results, we have the following.
1) “M+P” is higher than “M” in terms of accuracy (mIoU,

mean F1, and OA). “M” does not consider relationship
information between regions on an image or regions across
images. Besides, “M” computes the category prototypes
only using the support set, ignoring the gap between the
support set and the query set. “M+P” uses the local or
long-range relationships between regions and uses label
propagation to predict labels for some regions in the query
set. In metric prediction, both the support set and the
predicted part of the query set are used to calculate the
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TABLE VII
RESULTS OF DIFFERENT METHODS WHEN DS IS WHDLD, DT IS GID5, AND SHOT IS FIVE

TABLE VIII
RESULTS OF DIFFERENT METHODS WHEN DS IS GID5, DT IS WHDLD, AND SHOT IS FIVE

TABLE IX
MEANING OF DIFFERENT METHODS IN THE ABLATION EXPERIMENT

prototypes, narrowing the gap between the support set
and the query set, thus further improving the segmentation
accuracy.

2) Compared with “M+P,” “M+P+T” obtains higher accu-
racy, indicating that through augmentation of tasks, the
generalization performance of the model can be improved.
However, the accuracy of “M+P+D” is even lower than
that of “M+P,” and we do some more analysis to explain
it. Fig. 8 gives the accuracy of “M+P+D” on the support
set and the query set. We find that “M+P+D” achieves
high accuracy on the support set but greatly degrades on
the query set. This model overfitting phenomenon may be
ascribed to the absence of task augmentation and too less
training data from DT.

3) The results of “M+P+E” and “M+P+T” indicate that
the proposed task augmentation method is superior to

Fig. 8. Accuracy (mIoU, mean F1, and OA) of “M+P+D” on the support set
and the query set.

the traditional data augmentation method (adding noise
and random clipping); this is because the traditional
data augmentation is unable to effectively expand the
distribution space of data and cannot achieve good
results in cross-domain segmentation tasks, while in task
augmentation, training data will change in each iteration
and become harder to classify during the training process.
This implies that the distribution space of the training data
is expanded, so that the generalization of the model can
be improved. In addition, the labeled samples of DT are
also changing in each iteration, which further improves
the accuracy of segmentation.

4) The proposed TAFD achieves the highest accuracy in
the experiments. Task augmentation, feature disentangle-
ment, and label propagation contribute to the significant
performance improvement together. By task augmenta-
tion, the K-labeled training samples from DT will change
in each iteration, which is equivalent to increasing the
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Fig. 9. Feature dispersion of three cases: no disentangled features, domain-
specific features, and domain-irrelevant features.

number of training samples and can avoid the occurrence
of overfitting to some extent; by feature disentangling,
domain-irrelevant features are extracted, which reduces
the impact of interdomain discrepancies. Moreover, la-
bel propagation leverages local and long-range relational
information in prediction, which further improves the
accuracy. The three measures together result in a signifi-
cant increase in performance.

To explore the feature distribution before and after feature
disentanglement, we calculate the feature dispersion [52] in
three cases: features before disentanglement, domain-specific
features, and domain-irrelevant features. Feature dispersion is
defined as follows:

α =
1

N

N∑
i=1

Si

d̂2i
(24)

where Si denotes the intracategory variance of category i,
d̂idenotes the nearest neighbor category distance, and N denotes
the number of categories.

Generally, the smaller the feature dispersion, the easier the
samples are to be classified. It can be seen from Fig. 9 that
after feature disentanglement, domain-irrelevant features have
the lowest feature dispersion, indicating that feature disentan-
glement is beneficial to obtain cross-domain invariance features.
By feature disentanglement, the influence of domain-specific
features on cross-domain data is reduced, thus improving the
segmentation accuracy and generalization of the model.

F. Experiments on the Tibetan Plateau Dataset

The data in our research project have few labels; we carry
on the research of few-shot segmentation to apply it in the
study area’s land cover classification. Thus, we also test the
proposed method on the collected Tibetan Plateau dataset. In this
experiment, the backbones for all the methods are ResNet50. We
take the public dataset WHDLD as DS, and the collected Tibetan
Plateau dataset is DT. There are eight categories in the Tibetan
Plateau dataset: Road, Farmland, Snow, Construction Land,
Building, Vegetation, Bare Soil, and Water, among which five
categories (Road, Building, Vegetation, Bare Soil, and Water)

are the same as in WHDLD. The experimental results are shown
in Tables X and XI, and some segmentation results are given in
Fig. 10.

Similar to the above results on the public dataset, TAFD
produces better results on the Tibetan Plateau dataset than the
comparison methods PANet, ASGNet∗, SSP∗, and CAPL in
terms of accuracy mIoU, mean F1, and OA. Specifically, the
proposed method surpasses the suboptimal method by 5.08%,
5.61%, and 20.72% of mIoU, mean F1, and OA when shot
is five, and by 10.20%, 12.10%, 21.93% of mIoU, mean F1,
and OA when shot is ten, respectively. For each category’s IoU,
TAFD achieves the highest IoU on most categories and closes to
the best results on the remaining categories. In addition, the
categories with larger sample proportion will generate more
training data in task augmentation; therefore, TAFD is likely to
achieve significantly higher accuracy than the compared meth-
ods on such categories (such as bare soil), while the performance
improvement for the categories with a small sample proportion
is relatively limited.

Based on the results depicted in Fig. 10, our proposed method
demonstrates superior segmentation outcomes for bare soil,
water, construction land, vegetation, and snow in comparison to
alternative approaches. Furthermore, it yields relatively satisfac-
tory segmentation results for other categories. This experiment
effectively illustrates that our proposed method outperforms
existing techniques, achieving the most accurate segmentation
results for the Tibetan Plateau dataset.

V. DISCUSSION

We propose a cross-domain few-shot segmentation method
for RSIs. In this section, we discuss the advantages and limita-
tions of the proposed method and provide prospects for future
work. Compared to previous studies, the advantages of TAFD
mainly manifest in the following three aspects.

1) The existing few-shot segmentation methods overlook
the domain discrepancies between datasets. However, in
RSIs, domain discrepancies often arise due to variations in
sensors, shooting angles, capture times, etc., and hinder the
model’s performance. TAFD mitigates the negative impact
of domain discrepancies from both the data and feature
levels. At the data level, task augmentation is employed
to generate more diverse and challenging training samples
to enhance model generalization. At the feature level, fea-
tures are disentangled to extract domain-invariant features,
thereby enhancing the transferability of the model.

2) Prevalent few-shot segmentation and cross-domain few-
shot segmentation methods mainly rely on CNNs for
feature extraction; they often do not capture relationship
information among regions in different images or within
the same image. Such information is implicit in the data
and helps to improve segmentation performance. TAFD
models the relationship among image regions by graph
and provides more useful information for segmentation
by mining such implicit information.

3) Limited by the setting of current few-shot segmentation
methods, they primarily focus on binary segmentation
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TABLE X
RESULTS OF DIFFERENT METHODS WHEN DS IS WHDLD, DT IS TIBETAN PLATEAU, AND SHOT IS FIVE

TABLE XI
RESULTS OF DIFFERENT METHODS WHEN DS IS WHDLD, DT IS TIBETAN PLATEAU, AND SHOT IS TEN

Fig. 10. Qualitative results of different methods when DS is WHDLD, DT is Tibetan Plateau, and shot is five.

tasks (i.e., foreground and background). However, RS
applications often involve multicategory segmentation;
implementing by binary segmentation methods is rela-
tively cumbersome. In contrast, TAFD predicts all cate-
gories’ labels directly by the label propagation algorithm
on graphs, providing convenience for the practical RS
applications.

The proposed method improves the transferability and gener-
alization of the model and achieves better segmentation accuracy
compared with the comparison methods. The average results
of three cross-domain few-shot segmentation experiments show
that the proposed method outperforms the suboptimal method
by 5.99%, 6.12%, and 11.34% in terms of mIoU, mean F1, and
OA when the labeled samples are five, and by 8.97%, 9.04%,
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and 14.29% in mIoU, mean F1, and OA for ten labeled samples,
respectively.

However, the segmentation accuracy is low for categories with
fewer samples. Furthermore, only domain–independent features
are used for prediction, but those domain-related features that
may contain information conducive to the segmentation of pri-
vate categories are not used. In future studies, we will attempt
to solve the problem of sample imbalance and incorporate
domain-related features in the segmentation of private categories
to further improve the segmentation accuracy.

VI. CONCLUSION

In this article, we propose a novel method for the task of cross-
domain few-shot segmentation in RS land cover. To improve the
segmentation accuracy of the model on the target dataset, TAFD
strategies are proposed. At the data level, task augmentation
is proposed to generate more diverse and challenging training
data in each iteration, expanding the distribution of training data,
thus further enhancing the generalization ability of the model; at
the feature level, feature disentanglement is proposed to extract
domain-irrelevant features for segmentation, which reduces the
negative impact of interdomain discrepancy on target domain
segmentation brought by domain-specific features. Moreover, a
graph is utilized to model and represent the intrinsic structural
features of data, which provides more information for seg-
mentation, and label propagation provides another convenient
approach for predicting nodes’ labels on the graph. Experimen-
tal results demonstrate that the proposed method significantly
improves the few-shot segmentation accuracy (mIoU, mean F1,
and OA) in cross-domain land cover tasks compared with the
existing methods. In the future, we will focus on the problem
brought by sample imbalance.
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