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P2RNet: Fast Maritime Object Detection From Key
Points to Region Proposals in Large-Scale

Remote Sensing Images
Yantong Chen , Jialiang Wang , Yanyan Zhang , Yang Liu , and Junsheng Wang

Abstract—Due to the long distance and large-scale of satellite
imaging, and the high complexity of depth convolutional neural
network, common detectors cannot be directly applied to large-
scale remote sensing images. Therefore, this article proposes a
two-phase object detection network from key points to region
proposals, namely P2RNet. In the first phase, the key points of
all suspected objects are obtained through the key point extraction
network, and then these key points are divided into multiple re-
gion proposals using the region proposal generator. In the second
phase, these region proposals are input into the lightweight object
detection network to achieve fast and accurate maritime object
detection. The lightweight object detection network is improved
based on YOLOv5. To significantly reduce the number of param-
eters and computation of the network, the improved MobileNetv2
constructed by the grouped sandglass block is used as the backbone
to extract sufficient feature information. To effectively improve the
detection accuracy of the network, the simple attention module is
embedded in the feature fusion network to strengthen the feature
fusion process, and the oriented spatial pyramid pooling-fast is
proposed to capture long-distance dependencies. The experimental
results on the DOTA Ship dataset show that the average precision
and frames per second of the lightweight object detection network
reached 80.59% and 112, respectively, achieving a good balance.
Moreover, the overall object detection network achieved excellent
detection results on large-scale remote sensing images.

Index Terms—Key point extraction, large-scale remote sensing
images, lightweight network, maritime object detection.

I. INTRODUCTION

W ITH the rapid development of optical remote sensing
technology and computer vision, the study of remote

sensing images has received widespread attention. As the most
typical maritime objects, ships are the main transportation car-
riers and important monitoring objects of maritime trade. In the
field of ocean remote sensing, ship detection can be used for
dynamic harbor monitoring, maritime traffic management, mar-
itime rescue and combating illegal fishing, which has important
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Fig. 1. Example of ship detection in satellite remote sensing images.

research value. The example of ship detection in satellite remote
sensing images is shown in Fig. 1. The ocean remote sensing
images taken by satellite are processed on board and transmitted
to the ground receiving station, which can assist maritime traffic
safety management through real-time ship detection. Currently,
many ship detection methods have been proposed in remote
sensing images, which is still a challenging task due to the
complexity of the scene and the multiscale of the ship, as well
as the large-scale of the image.

Traditional ship detection method is divided into three steps.
First, the sea–land segmentation is performed to eliminate the
interference of the land part [1]. Then, region proposals are
generated to locate the areas suspected to contain ships [2].
Finally, feature extraction algorithm is used to extract and
classify region proposals to identify ships [3]. Traditional ship
detection methods rely on a large amount of prior knowledge for
feature design, with high computational complexity and poor
performance in complex scenes.

With the wide application of deep learning technology in ob-
ject detection, arbitrary-oriented ship detection in remote sens-
ing images has been paid more and more attention. Nie et al. [4]
improved the mask R-CNN and obtained a ship detection and
segmentation network with better detection effect, which uses
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spatial and channel attention mechanisms to adjust the weights
of each pixel and channel, respectively. Therefore, the object
features can obtain better response in the feature map. In or-
der to improve the detection performance in complex scenes,
Ren et al. [5] proposed a ship detection network assisted by
saliency information, in which the feature-enhanced structure
can accurately obtain the features of foreground objects, and the
salient screening mechanism is used to increase the number of
positive samples. Qin et al. [6] proposed an arbitrary-oriented
ship detection network suitable for offshore scenes, which intro-
duced a context location module in the backbone and a global
channel module in the neck to enhance the network’s distinction
between ships and background interference. Han et al. [7] de-
signed a two-way dense feature fusion network to maximize the
use of multilayer features. By refining the fused features through
the dual mask attention module, the detection performance of
the network in dense scenes has been improved. To reduce the
cost of manual annotation, Li et al. [8] constructed a remote
sensing object detection network based on weakly supervised
learning. It introduces point labels to guide the mining of region
proposals and utilizes a progressive mining strategy to improve
detection performance.

The above-mentioned deep learning-based ship detection
methods all perform detection on small or medium-scale remote
sensing images, which is not applicable to large-scale remote
sensing images. However, the size of remote sensing images
captured by satellites in real situations is large, and common
object detection networks cannot directly process them due to
their high complexity. At present, there are two main types
of methods to perform object detection for large-scale remote
sensing images. One type of method is to reduce the image
size before performing object detection. Su et al. [9] designed
a new feature extraction network based on YOLO by reduc-
ing parameters and adding deformable convolutions. Thanks
to the advantages of fully convolutional lightweight network,
ship detection on large-scale remote sensing images has been
basically achieved. Wang et al. [10] proposed a single-shot
multiclass object detection method for large-scale remote sens-
ing images, which uses feature pyramid and multiple dilated
rates to fuse the context information in multiscale features. In
addition, this method defines an area-weighted loss function to
pay more attention to small objects during training. This type
of methods will further narrow down small objects, seriously
affecting detection performance. Another type of method is to
first obtain a large number of image blocks from large-scale
images using the sliding window method, and then perform
block object detection. Yu et al. [11] developed a cascade ship
detection network aided by rotating anchor, which uses the data
preprocessing module to determine whether the cropped image
block contains ships. After the image block containing ships
passes through the basic detector and the cascade refinement
module, the final detection results are obtained. Shen et al. [12]
proposed a fast multiclass remote sensing object detection
method, which applies the manhattan-distance intersection of
union loss function to YOLOv4 to improve detection accuracy.
Moreover, this method utilizes the truncated nonmaximum sup-
pression (NMS) algorithm to filter out duplicate and incorrect

detection boxes from the concatenated detection results. This
type of methods will generate many overlapping areas during
the sliding window process, resulting in a significant decrease in
detection efficiency. Although the above-mentioned two meth-
ods can partially solve the problems faced by large-scale remote
sensing images, they do not take into account the large amount
of remote sensing image data, let alone build a lightweight
object detection network. In summary, there is currently almost
no lightweight ship detection network that can simultaneously
balance detection performance and efficiency for large-scale
remote sensing images.

In response to the problems of low detection performance and
efficiency in large-scale remote sensing image ship detection, as
well as the difficulties in lightweight network design, this article
proposes a two-phase object detection network P2RNet from key
points to region proposals for large-scale remote sensing image
ship detection. Specifically, the main work and contributions of
this article are as follows.

1) An innovative two-phase detection strategy is proposed for
large-scale remote sensing images, which is key to achieve
efficient ship detection. In the first phase, the key points
of objects are obtained from the heatmap generated by the
key point extraction network, and then region proposals
are divided based on these key points. In the second phase,
these region proposals are input into the lightweight object
detection network based on improved YOLOv5 for fast
and accurate ship detection.

2) To reduce the number of parameters and computation of
the overall network, ResNet18 is selected as the backbone
of the key point extraction network, and the improved
MobileNetv2 constructed by the grouped sandglass block
(G-SB) is used as the backbone of the lightweight object
detection network.

3) To improve the detection accuracy of the lightweight
network, the simple attention module (SimAM) is first
embedded in the feature fusion network to strengthen the
feature fusion process and enhance the feature represen-
tation of ships. The oriented spatial pyramid pooling-fast
(O-SPPF) is then used to capture long-distance dependen-
cies and local context information.

The rest of this article is organized as follows. Section II
introduces the related works of remote sensing image object
detection and lightweight network. Section III describes the
details of the proposed ship detection network P2RNet. The
experimental results are reported and analyzed in Section IV.
Finally, Section V concludes this article.

II. RELATED WORK

A. Object Detection in Remote Sensing Images

Deep learning technology mines distributed feature repre-
sentation of input data by learning a deep nonlinear network
structure. It combines low-level features to form abstract deep
representations, that is, attribute classes or features. Depend-
ing on whether region proposals are generated or not, deep
learning-based object detection methods can be divided into
two types: two-stage and single-stage detection methods. The
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two-stage detection method first extracts the region of interest
(RoI), and then detects each region. The typical method is faster
R-CNN [13]. The single-stage detection method simultaneously
predicts the bounding box and class of the object, with typical
methods represented by YOLO [14] and SSD [15]. According
to the characteristics of remote sensing images, researchers
have proposed many improvement strategies for universal object
detection networks, which promote the development of deep
learning in the field of remote sensing image object detection.

To achieve accurate detection of dense remote sensing objects,
Wu et al. [16] proposed a feature fusion module that can aggre-
gate global context with low-level and high-level features, and a
feature refinement module that combines multiple branches with
different receptive fields. Shi et al. [17] proposed a geometric
transformation module to solve the problem of object direction
change. Moreover, a global context feature fusion module is
designed to learn the association between different locations and
obtain the global context information by using spatial attention
mechanism. Zhang et al. [18] replaced the residual blocks in
the backbone of YOLOv3 with contextual transformer blocks to
enhance the visual representation of small objects. Meanwhile,
subpixel convolution upsampling is adopted to optimize the fea-
ture fusion process. Zhu et al. [19] proposed an arbitrary-oriented
ship detection network based on RetinaNet, which utilizes ro-
tating anchors and skew NMS to detect rotating objects. In
order to improve detection accuracy, It additionally introduces
the feature alignment module and the intersection over union
(IoU) constant factor. In view of the mismatch between the RoI
and the object, Ding et al. [20] proposed an RoI transformer,
which extracts rotation-invariant features through the spatial
transformation of RoI. Li et al. [21] developed a single-stage
rotating object detector, in which the rotation feature selection
module is used to dynamically adjust the receptive field of
neurons, and the rotation feature align module can adaptively
align features according to the shape and direction of features.
Liu et al. [22] constructed an adaptive balanced network, which
adds a context enhancement module and uses an enhanced
effective channel attention mechanism. The former is used to
extract rich semantic information, while the latter can enhance
the feature representation of the object.

B. Lightweight Networks

Lightweight network aims to further reduce the parameters
and complexity of the model while maintaining accuracy. It
has gradually become a research hotspot of computer vision. In
terms of lightweight feature extraction network, Xception [23]
uses depthwise separable convolution to improve Inception V3,
which consists of entry flow, middle flow, and exit flow. Under
the condition of equivalent number of parameters, it achieves
higher precision. SqueezeNet [24] designs a fire module con-
sisting of a squeeze layer and an expand layer, which is com-
pressed between convolutional layers. This network substan-
tially reduces the model size while maintaining accuracy. As an
improved network of MobileNet, MobileNetv2 [25] proposes
an inverted residual block with linear bottleneck structure to

avoid information loss caused by nonlinear transformations,
which significantly improves the accuracy and speed of image
classification. To address the computationally intensive problem
of pointwise convolution, ShuffleNet [26] adopts two operations
of pointwise group convolution and channel shuffle to build
an efficient lightweight mobile terminal network. By analyzing
the redundancy of feature maps, GhostNet [27] uses a series of
low-cost linear operations to generate a large number of feature
maps containing existing feature information.

In terms of lightweight object detection network, to achieve
a balance between resources and accuracy, Tiny-DSOD [28]
designs a novel lightweight feature pyramid network, as well
as a depthwise dense block combining depthwise separable
convolution and DenseNet. CSL-YOLO [29] proposes a cross-
stage lightweight module with two-branch structure where the
first branch generates redundant features through linear op-
erations, and the second branch generates necessary features
through lightweight operations. ThunderNet [30] is a two-stage
lightweight detector that enables real-time object detection
thanks to the efficient backbone and detection head. Further-
more, a context enhancement module is designed to enhance the
feature representation of the object. LightDet [31] uses detail-
preserving modules that can capture more low-level features
to build the backbone. In order to optimize the feature fusion
network, it introduces a lightweight feature-preserving and re-
finement module. SlimYOLOv4 [32] takes MobileNetv2 as the
feature extraction network. Meanwhile, conventional convolu-
tion is replaced by more suitable depthwise overparameterized
depthwise convolution, which improves network performance
while reducing the computation.

III. PROPOSED METHOD

This section describes the structure of P2RNet in detail.
P2RNet adopts a two-phase detection strategy from key points
to region proposals. In the first phase, the large-scale remote
sensing image is input into the key point extraction network to
obtain the heatmap containing the rough position information
of the object, and all possible key points in the heatmap are
extracted. Further, these key points are input into the region
proposal generator to obtain multiple region proposals. In the
second phase, considering the lightweight requirements in prac-
tical applications, these region proposals are successively input
into the lightweight object detection network to achieve fast and
accurate ship detection. The architecture of P2RNet is shown in
Fig. 2.

A. Key Point Guided Region Proposal Generation

For large-scale remote sensing images, if the ship detection
is carried out after reducing the size, the detection performance
will be reduced. If the sliding window method is used for ship
detection, the detection efficiency will be reduced. To solve
the above-mentioned problems, this article uses key points to
guide the generation of region proposals in the first phase to
effectively improve the detection performance and efficiency.
Specifically, all possible key points in the heatmap are obtained
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Fig. 2. Architecture of P2RNet. In the first phase, the key points of all suspected objects are obtained through the key point extraction network, and multiple
region proposals are delineated using the region proposal generator. In the second phase, these regions are fed into the lightweight object detection network for
high-performance object detection.

Fig. 3. Architecture of key point extraction network. Its backbone adopts ResNet18, and the upsampling method is deconvolution. The obtained heatmap is used
to predict the key points of the object.

through the key point extraction network, and then these key
points are divided into multiple region proposals using the region
proposal generator. Although the key point extraction network
has lightweight characteristics, the feature extraction capability
is sufficient. Furthermore, the computational complexity of the
region proposal generator is low. The above-mentioned two
components together ensure the performance and efficiency
advantages of the first phase.

1) Key Point Extraction Network: Inspired by Center-
Net [33], this article proposes a key point extraction network,
whose architecture is shown in Fig. 3. Considering the relatively
small size of ships in large-scale remote sensing images, the
low dependence on deep semantic features, and the need for
lightweight in practical applications, this article selects the shal-
low residual network ResNet18 [34] as the backbone. For the
input image I ∈ R3×H×W , whereH andW represent the height
and width of the image, respectively. After feature extraction
and deconvolution upsampling of I , the prediction heatmap
Ŷ ∈ [0, 1]C×H/4×W/4 is obtained, where C denotes the number
of classes. There is only one ship class in this article, so C = 1
is set. Ŷ is used to predict the key point of the object, namely the
center point, where the value indicates the confidence that the
point is the center point of the object. To ensure that all ships are
recalled, the confidence threshold is set to a lower value of 0.25.
By looking for local peak points in Ŷ , all peak points larger than
the threshold are selected as the prediction key points.

For each ground truth key point p ∈ R2 in I , its correspond-
ing position after 4× downsampling is p̂ = [p4 ]. The Gaus-

sian kernel Yxyc = exp(− (x−p̂x)
2+(y−p̂y)

2

2σ2
p

) is used to map all

the ground truth key points to the ground truth heatmap Y ∈
[0, 1]C×H/4×W/4, where σp indicates the size-adaptive standard
deviation of the object. As the only loss function of the key point
extraction network, the key point loss Lk is used to locate the
key point to the center of the object, which is a pixelwise logistic
regression with focal loss

Lk =
−1

N

∑
xyc⎧⎨

⎩
(
1− Ŷxyc

)α

log
(
Ŷxyc

)
if Yxyc = 1

(1− Yxyc)
β
(
Ŷxyc

)α

log
(
1− Ŷxyc

)
otherwise

(1)

where α and β are the hyperparameters of focal loss. In this
article, α = 2 and β = 4 are set by default. N is the number of
key points in I , which is used to normalize all positive focal loss
instances to 1.

2) Region Proposal Generator: After obtaining the key
points based on heatmap from the key point extraction network,
the region proposal generator is used to divide all the key points
into regions for accurate ship detection in the second phase. This
article uses K-means algorithm based on Euclidean distance to
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divide n key points into k regions. The specific division process
is as follows.

1) Randomly select k out of n key points as the clustering
centers for the initial regions.

2) Calculate the Euclidean distance from the other n− k
key points to each clustering center, and divide them into
corresponding regions according to the nearest distance
criterion.

3) Calculate the average position of all key points in each
region to obtain a new clustering center.

4) If the clustering centers of all regions remain unchanged,
output the clustering results. Otherwise, repeat step 2.

The time and space complexity of K-means algorithm are
both O(n), and the consumption of computing resources is low.
To determine the clustering number k, we calculate the contour
coefficient of each key point

si =
bi − ai

max(ai, bi)
(2)

where ai is the average Euclidean distance from key point i
to other key points in the same cluster. bi is the minimum
average Euclidean distance from key point i to key points in
different clusters. si ∈ [−1, 1], and the closer it is to 1, the more
reasonable the clustering of key point i is. The average of contour
coefficients of all key points is calculated to obtain the contour
coefficients of clustering results. Considering the distribution
characteristics of overall dispersion and local aggregation of
ships, we reasonably set k ∈ [2, 8]. The value of k corresponding
to the maximum contour coefficient is taken as the optimal
clustering number.

By using the above-mentioned method, k region propos-
als containing suspected ships are obtained. Fig. 4 shows an
example of region proposal generation guided by key points.
The red boxes in Fig. 4(a) are the ground truth bounding boxes
of ships, and the green dots are the key points predicted by the
key point extraction network. The blue boxes in Fig. 4(b) are
the region proposals output by the region proposal generator.
Fig. 4(c) shows the region proposals generated in the first phase,
which will be used for accurate ship detection in the second
phase.

B. Lightweight Object Detection Network

Common object detection networks use conventional convo-
lution to extract deep semantic features, which leads to complex
network structure and high resource consumption. Since multi-
ple image blocks generated in the first phase will greatly increase
the amount of data, it is necessary to carry out lightweight design
for the object detection network. However, common lightweight
object detection networks have weak feature extraction ability,
low detection accuracy, and poor robustness in complex scenes.
To solve the above-mentioned problems, this article proposes
a lightweight object detection network with both speed and
precision in the second phase. The region proposals generated
in the first phase are input into the lightweight object detection
network to achieve high-precision detection of ships.

Fig. 4. Example of region proposal generation guided by key points. (a)
Prediction results of the key point extraction network. (b) Output process of
the region proposal generator. (c) Region proposals obtained in the first phase.

YOLOv5 [35] is a fast single-stage object detection network,
which adopts adaptive anchor box, pixel aggregation networks
(PAN) [36], and multiscale detection to obtain high detection
accuracy. Thanks to the effective feature fusion method and
powerful multiscale detection ability, YOLOv5 can still achieve
fast and accurate ship detection even in remote sensing images
that are susceptible to noise interference, low resolution, and
complex scenes. Therefore, the lightweight object detection
network is improved on the basis of YOLOv5, and its structure
is shown in Fig. 5. In order to achieve the lightweight design
of object detection network, the backbone uses the improved
MobileNetv2 built by G-SB to greatly reduce the number of
parameters and computation of the network. It should be noted
that the ConvBNSiLU module is obtained by connecting Conv,
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Fig. 5. Architecture of lightweight object detection network. It is designed based on YOLOv5 and consists of a backbone, neck and head. The basic module of
the backbone is G-SB, the neck is a PAN constructed by ConvBNSiLU, S-C3 and O-SPPF, and the head contains three detection layers of different scales.

batch normalization (BN), and SiLU in turn. Among them, BN
has the function of accelerating convergence speed and prevent-
ing overfitting. SiLU is a differentiable activation function that
can stabilize the gradient calculation during backpropagation. To
ensure the detection accuracy of the lightweight object detection
network, SimAM is embedded in the C3 module of PAN to
obtain the S-C3 module to enhance the feature representation
of ships. Moreover, spatial pyramid pooling-fast (SPPF) and
oriented pooling are combined to obtain O-SPPF to capture
long-distance dependencies.

1) Grouped Sandglass Block: The basic idea of MobileNet
is to use depthwise separable convolution instead of conven-
tional convolution. It uses depthwise convolution for feature
extraction and pointwise convolution for feature combination,
which reduces the number of parameters and computation. As
an improved version of MobileNet, the core structure of Mo-
bileNetv2 is the inverted residual block, which adopts a channel
structure with narrow side and wide middle. The structure of
the inverted residual block is shown in Fig. 6(a). First, the
input features are extended using 1× 1 convolution to map the
low-dimensional features to the high-dimensional space. Then,
3 × 3 depthwise convolution is used for the high-dimensional
features. Finally, the high-dimensional features are restored to
the low-dimensional space using 1× 1 convolution. Specifi-
cally, ReLU6 [37] connected after depthwise convolution is a
function with sparse activation characteristics, and its activation

range is limited, which can effectively reduce the computational
complexity of the network.

For the inverted residual block, the dimension of the input
features is low (fewer channels), which results in insufficient
feature information being provided. To solve this problem and
further reduce the number of parameters and computation of the
network, this article uses G-SB to replace the inverted residual
block to obtain an improved MobileNetv2. When the number of
channels of input and output features are the same, the structure
of G-SB is shown in Fig. 6(b). Specifically, the input features are
divided into two branches after channel splitting. The secondary
branch is the residual connection used to mitigate the gradient
disappearance, and the primary branch is the bottleneck structure
used to reduce the number of parameters. In the primary branch,
two 3 × 3 depthwise convolutional layers are used to preserve
the spatial dimension of the features, and two consecutive 1 × 1
convolutional layers are used to compress and expand the num-
ber of channels of the features. The primary and secondary
branches are concatenated, and the output features are obtained
after channel shuffling. When the number of channels of input
and output features are different, the structure of G-SB is shown
in Fig. 6(c). In this case, channel splitting and shuffling are not
required.

Unlike the inverted residual block, the channel structure of
G-SB is hourglass-shaped, which ensures sufficient feature ex-
traction. In addition, G-SB has a wider network structure (more
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Fig. 6. Comparison between the inverted residual block and G-SB. (a) Struc-
ture of the inverted residual block. (b) Structure of G-SB when the number of
input and output channels is the same. (c) Structure of G-SB when the number
of input and output channels is different.

channels for input and output features), which helps to alleviate
gradient confusion. The two major advantages of G-SB are the
key to effectively improving network performance.

2) Simple Attention Module: Unlike common attention mod-
ules that simply connect spatial and channel attention in series
or parallel, SimAM uses an energy function to explore the
importance of each neuron, that is, to calculate the attention
weights. Compared to other attention modules, SimAM can
better focus on object features without introducing additional
parameters to meet the lightweight requirements of the network.

Activated neurons in the visual nerve produce spatial in-
hibition of peripheral neurons, and neurons with this effect
have a higher priority in visual processing. Therefore, linear
separability is used to define the energy function

et (wt, bt,y, xi) =
1

M − 1

M−1∑
i=1

(−1− (wtxi + bt))
2

+ (1− (wtt+ bt))
2

+ λw2
t (3)

where t and xi are the object neuron and other neurons in a
single channel of the input feature X ∈ RC×H×W , respectively.
wtxi + bt and wtt+ bt are the linear transformations of t and
xi, respectively. M is the number of neurons in a single channel.
According to the mean and variance of all neurons in a single
channel, the closed-form solutions of weight wt and bias bt are

Fig. 7. Structure of S-C3 module. It contains three ConvBNSiLUs, one
SimAM, and n BottleNecks, with SimAM located before BottleNeck.

calculated to obtain the minimum energy function

e∗t =
4
(
σ̂2 + λ

)
(t− μ̂)2 + 2σ̂2 + 2λ

(4)

where μ̂ = 1
M

∑M
i=1 xi and σ̂2 = 1

M

∑M
i=1 (xi − μ̂)2. The

above-mentioned equation shows that the lower the energy e∗t ,
the object neuron t is more distinctive from surround neurons,
and more important for visual processing. Inspired by the gain
effect on neuron responses, we use the scaling operator for
feature refinement. By applying SimAM, the output feature
X̃ ∈ RC×H×W is given as

X̃ = Sigmoid

(
1

E

)
�X (5)

where E groups all e∗t across channel and spatial dimensions.
Sigmoid means a nonlinear activation function, which is used
to restrict too large value in E to avoid affecting the relative
importance of each neuron.

To strengthen the multiscale feature fusion process and en-
hance the network’s attention to ships, SimAM is embedded in
the C3 module to effectively improve detection accuracy. As
shown in Fig. 7, SimAM is added before BottleNeck to obtain
the S-C3 module.

3) Oriented Spatial Pyramid Pooling-Fast: Spatial pooling
can effectively capture long-distance contextual information
in object detection tasks. Spatial pyramid pooling (SPP) [38]
expands the receptive field of the network by combining pooling
layers with different kernel sizes to provide global information
for images. Constrained by the square pooling kernel, SPP
lacks the ability to capture directional contextual information.
Considering the importance of directional information for ship
detection, Oriented Pooling is proposed in this article to capture
long-distance dependencies more effectively. Compared with
global pooling, oriented pooling has the following advantages.

1) It deploys striped pooling kernels along a spatial dimen-
sion to capture long-distance relationships in isolated re-
gions.

2) It has narrow pooling kernels in other spatial dimensions to
capture local context information and prevent interference
from irrelevant regions.

The structure of oriented pooling is shown in Fig. 8. For the
input feature map X ∈ RC×H×W , where C denotes the number
of channels of the feature map. H and W represent the height
and width of the feature map, respectively. The spatial range of
the striped pooling kernel is (H, 1) or (1,W ), and it averages
all feature values in rows or columns. First, we input X into
two parallel paths and perform horizontal and vertical pooling,
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Fig. 8. Structure of oriented pooling. It utilizes striped pooling kernels in the
spatial dimension to capture long-distance dependencies.

Fig. 9. Comparison between SPP and O-SPPF. (a) Structure of SPP. (b)
Structure of O-SPPF.

respectively

Y h
c,i =

1

W

∑
0≤j<W

Xc,i,j (6)

Y v
c,j =

1

H

∑
0≤i<H

Xc,i,j (7)

where Y h
c ∈ R1×H and Y v

c ∈ R1×W . Then, Y h and Y v are
modulated by 3× 3 1-D convolution to the current position and
its adjacent features. Furthermore, the output feature maps of
the two paths are added to obtain a feature map containing more
useful global priors. The above-mentioned operations can be
expressed as

Yc = Conv1D
3×3

(
Y h
c

)
+Conv1D

3×3
(Y v

c ) (8)

where Yc ∈ RH×W , and Conv1D
3×3

denotes 3× 3 1-D convolu-
tion. Finally, we successively perform 1× 1 convolution and
Sigmoid normalization on Yc to obtain the output feature map

Z = Sigmoid (Conv1×1(Y )) (9)

whereZ ∈ RC×H×W , andConv1×1 denotes 1× 1 convolution.
The structure of SPP is shown in Fig. 9(a), which connects

three pooling layers with kernel sizes of 5 × 5, 9 × 9, and
13 × 13 in parallel. Unlike SPP, SPPF connects three pooling
layers with kernel size 5 × 5 in series to improve detection speed
while maintaining the same detection accuracy. It is worth noting
that all 5 × 5 max pooling stride is 1 and padding is 2, which
guarantees that the input and output feature maps are the same

size. For regions where semantic information is densely dis-
tributed, SPPF is a necessary condition for capturing local con-
text information. Oriented pooling makes it possible to connect
dispersed regions and encode striped regions, which are used to
capture long-distance dependencies between different locations.
For object detection tasks, long-distance dependencies [39] are
intended to establish associations between isolated regions in
an image, helping to capture relationships between objects. To
effectively improve the detection accuracy, this article combines
SPPF and oriented pooling to propose O-SPPF, whose structure
is shown in Fig. 9(b).

IV. EXPERIMENTS

A. Datasets and Evaluation Metrics

In our experiments, we evaluate the performance of P2RNet
on two optical remote sensing datasets, the public DOTA Ship
and the self-built GE-JL1.

1) DOTA Ship: DOTA [40] is a large-scale dataset for remote
sensing object detection, which includes 2806 images with 15
object classes. A total of 434 images containing 37 028 ship
objects are selected from DOTA to construct a new remote
sensing ship dataset DOTA Ship. These images are randomly
divided to obtain a training set and a test set including 326 and
108 images, respectively. Considering that the original image in
DOTA is too large, we crop it to the size of 1024× 1024 and set
the overlap to 25%. The cropped DOTA Ship contains a total of
80 222 ship objects, among which the training set and test set
include 1983 and 641 images, respectively.

2) GE-JL1: Based on Google Earth1 and Jilin-1 satellite,2

a high-quality remote sensing ship dataset GE-JL1 was estab-
lished. The remote sensing images of Google Earth integrate two
data sources, satellite images and aerial images. The cumulative
coverage area of the Jilin-1 satellite constellation has reached
133 million square kilometers, and 138 satellites are expected
to be networked in the future, of which the spatial resolution of
Gaofen 03D satellite image is better than 0.75 m. We collected a
total of 2840 offshore and nearshore remote sensing images with
a size of 1024 × 1024 containing ships, of which 1904 images
are from Google Earth and 936 images are from Jilin-1 satellite.
Moreover, 80% of these remote sensing images are used for
training and 20% for testing. The sample images in GE-JL1 are
shown in Fig. 10, where the first and second rows of images are
from Google Earth and Jilin-1 satellite, respectively.

In our experiments, we adopt the authoritative evaluation
metric average precision (AP) to evaluate the performance of
different ship detection methods. Precision and recall are defined
as follows:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

1[Online]. Available: https://earth.google.com/
2[Online]. Available: https://www.jl1mall.com/

https://earth.google.com/
https://www.jl1mall.com/
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Fig. 10. Sample images in the GE-JL1 dataset.

where TP, FP, and FN represent the number of true positive,
false positive, and false negative samples, respectively. For
the discrimination standard of TP, when the IoU between the
prediction box and the ground truth box exceeds 0.5, the object
is considered to be correctly detected. AP can be calculated as

AP =

∫ 1

0

P (R)dR (12)

where P (·) and R represent precision and recall, respectively.
In addition, we use the number of parameters (Params) and

floating-point operations per second (FLOPs) to evaluate the
complexity of the network, and the frames per second as an
evaluation metric of detection speed.

B. Implementation Details

We implement the proposed P2RNet in the Pytorch frame-
work on Ubuntu v20.04 system. All experiments are evaluated
on a high-performance computer with Intel Core i7 10700F
CPU, NVIDIA GeForce RTX 3070 GPU, and 32-GB memory.

For the training of key point extraction network, we initialize
the backbone network with ResNet18 pretrained on ImageNet.
The Adam optimizer [41] is adopted for network training, and the
momentum and weight decay are set to 0.9 and 0, respectively.
We train the network 120 epochs in total, and the initial learning
rate is set to 0.0005. The input image size is set to 1024 × 1024,
and the batch size is set to 2.

For the training of lightweight object detection network,
SGD [42] is selected as the optimizer, and the momentum and
weight attenuation are set to 0.937 and 0.0005, respectively. We
train the network 240 epochs in total using the warmup learning
rate adjustment strategy, and the initial learning rate was set to
0.01. The input image size is set to 1024 × 1024, and the batch

Fig. 11. Loss curves during training of key point extraction network. The
validation loss tends to stable after 100 epochs.

size is set to 8. Furthermore, random scaling, random flipping,
and Mosaic are used for data augmentation.

C. Ablation Studies

The key point extraction network is trained on DOTA Ship,
and the loss curves during training are shown in Fig. 11. The
red and blue curves represent training and validation losses,
respectively. The fitting process of validation loss is stable and
the convergence effect is good. After 100 epochs, it gradually
tends to be stable.

The lightweight object detection network is trained on DOTA
Ship, and the loss curves during training are shown in Fig. 12.
The red and blue curves represent training and validation losses,
respectively. Fig. 12(a) shows the bounding box regression loss,
where the validation loss gradually stabilizes after 160 epochs.
Fig. 12(a) shows the confidence loss, where the validation loss
gradually stabilizes after 180 epochs. Fig. 12(c) shows the angle
classification loss, where the validation loss gradually stabilizes
after 200 epochs.

In order to fully evaluate the contribution of each module in
the lightweight object detection network, we performed ablation
studies on DOTA Ship. It should be noted that all experiments
adopt the same training and data augmentation strategies, and
the research results are shown in Table I. The bold data in this
table indicates the maximum value. In this article, the Baseline is
YOLOv5-O with MobileNetv2 as the backbone and BCE Loss
as the angle classification loss.

There is only 75.96% AP at Baseline, while FLOPs and
Params reach 7.75 G and 6.3 M, respectively. G-SB uses chan-
nel splitting and shuffling operations, as well as a bottleneck
structure to reduce the number of parameters and computation
of the network. After replacing the inverted residual block in the
backbone of Baseline with G-SB, FPS increases from 108 to 116,
FLOPs and Params decrease to 5.01 G and 5.1 M, respectively,
while AP decreases by only 0.15%.
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Fig. 12. Loss curves during training of lightweight object detection network. (a) Bounding box regression loss. (b) Confidence loss. (c) Angle classification loss.
The validation losses of bounding box regression, confidence and angle classification tend to stabilize after 160, 180, and 200 epochs, respectively.

TABLE I
ABLATION STUDIES OF EACH MODULE ON THE DOTA SHIP DATASET

Fig. 13. Heatmap visualization after adding SimAM. (a) Original image. (b)
Baseline. (c) Baseline+SimAM.

SimAM uses an energy function to calculate attention weights
to enhance the network’s attention to ships. After only embed-
ding SimAM in the C3 module of Baseline, AP increases by
2.80%, while FPS decreases by only 5 and FLOPs increase by
only 1.02 G, and Params remain unchanged. After adding G-SB
and SimAM simultaneously in Baseline, AP and FPS reach
78.38% and 113, respectively, indicating good compatibility
between the two. Furthermore, we visually verified the effective-
ness of SimAM. Fig. 13 shows the heatmap visualization after
adding SimAM. Fig. 13(a) shows the original image, Fig. 13(b)

shows the heatmap visualization of Baseline, and Fig. 13(c)
shows the heatmap visualization of Baseline+SimAM. Com-
pared with Baseline, Baseline+SimAM can greatly suppress
noise interference and better focus on ship features.

O-SPPF combines oriented pooling and SPPF to capture
long-distance dependencies and local context information. After
only replacing the SPPF in the backbone of neck with O-SPPF,
AP increases by 1.67%, while FPS decreases by only 2, and
FLOPs and Params remain almost unchanged. After adding
G-SB, SimAM, and O-SPPF simultaneously in Baseline, AP and
FPS reach 80.59% and 112, respectively, indicating that the three
can work together effectively. Furthermore, we visually verified
the effectiveness of O-SPPF. Fig. 14 shows the visualization of
detection results after adding O-SPPF. Fig. 14(a) shows ground
truth image, Fig. 14(b) shows the detection results of Baseline,
and Fig. 14(c) shows the detection results of Baseline+O-SPPF.
It is obvious that Baseline missed several inconspicuous small
ships, and most of the detection boxes have a poor fit. Compared
with Baseline, Baseline+O-SPPF can effectively capture the
long-distance dependencies between densely distributed ships,
as well as between the bow and stern of a ship. Therefore, it
shows better detection performance in complex scenes.

In summary, by adding G-SB, SimAM, and O-SPPF, the
lightweight object detection network achieves high AP and FPS
while maintaining low FLOPs and Params. Ablation studies
fully demonstrate the effectiveness of G-SB for reducing the
number of parameters and computation, as well as the im-
portance of SimAM and O-SPPF for improving the detection
accuracy.
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT DETECTION METHODS ON THE DOTA SHIP DATASET

Fig. 14. Visualization of detection results after adding O-SPPF. (a) Ground
truth image. (b) Baseline. (c) Baseline+O-SPPF.

D. Comparison With Other Methods

To fully verify the validity of the lightweight object detec-
tion network, we compared it with ten representative object
detection methods on DOTA Ship, including faster R-CNN,
YOLOv3 [43], YOLOv4-Tiny [44], DETR [45], YOLOv7 [46],
RRPN [47], RRD [48], RoI-Trans, oriented RepPoint [49], and
YOLOv5-O. The performance comparison of different detection
methods on DOTA Ship is shown in Table II. The bold data in
this table indicates the maximum value, and the underlined data
indicates the sub-maximum value.

Our proposed method achieves 80.59% AP and 112 FPS,
respectively, while FLOPs are only 6.17 G and Params are
only 5.2 M. Compared with faster R-CNN, YOLOv3, DETR,
YOLOv7, RRPN, and RRD, our proposed method achieves the
highest AP and the fastest FPS, and its FLOPs and Params
are also the lowest. Compared with advanced RoI-Trans and
oriented RepPoint, our proposed method has slightly lower AP,
but FPS, FLOPs, and Params are substantially ahead. Our pro-
posed method sacrifices a small amount of detection accuracy,
but saves a lot of computational resources. Compared with
YOLOv4-Tiny, the AP of our proposed method increases by

3.75%, FLOPs and Params decrease by 0.79 G and 0.9 M,
respectively, while FPS decreases by only 1.5. Compared with
the baseline model YOLOv5-O, the evaluation metrics of the
proposed method are leading across the board. In conclusion,
our proposed method achieves a good balance between detection
accuracy and speed, meeting the lightweight requirements of the
network.

To visually compare the performance of different object detec-
tion methods, we visualized the detection results. Fig. 15 shows
the comparison of detection results of different methods on
DOTA Ship. Fig. 15(a)–(e) shows the detection results of faster
R-CNN, YOLOv3, RRPN, RRD, and our proposed method,
respectively. Faster R-CNN and YOLOv3 use horizontal boxes
for labeling, while RRPN, RRD, and our proposed method use
rotating boxes for labeling. Because the horizontal box will
contain a large amount of background information, the detection
results of faster R-CNN and YOLOv3 are poor in dense scenes.
Obviously, both of them have missed detections (labeled with
a red box), and the fit between the detection box and the ship
is poor. The detection results of RRPN and RRD are relatively
good, but there are false detections in complex scenes. Compared
with the above-mentioned three methods, our proposed method
can identify and locate objects more accurately, no matter small
or dense ships in complex scenes.

We further validate the robustness of the lightweight object
detection network on GE-JL1. Specifically, it is compared with
seven classic object detection methods, Libra R-CNN [50],
SSD, YOLOv8, R2CNN [51], SCRDet [52], R3Det [53], and
YOLOv5-O. The performance comparison of different detection
methods on GE-JL1 is shown in Table III. The bold and under-
lined data in this table indicate the maximum and sub-maximum
values, respectively.

Our proposed method achieves 82.62% AP and 112 FPS,
respectively. Compared with Libra R-CNN, SSD, and R2CNN,
the AP of our proposed method increases by 15.08%, 12.9%, and
9.23%, respectively. Meanwhile, its FPS, FLOPs, and Params
are several times better than the above-mentioned three methods.
Compared with YOLOv8, the AP and FPS of our proposed
method increase by 0.91% and 15.5, respectively, and FLOPs
and Params are more advantageous. Compared with the latest
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Fig. 15. Comparison of detection results of different methods on the DOTA Ship dataset. (a) Faster R-CNN. (b) YOLOv3. (c) RRPN. (d) RRD. (e) Ours.

TABLE III
PERFORMANCE COMPARISON OF DIFFERENT DETECTION METHODS ON THE

GE-JL1 DATASET

SCRDet and R3Det, the AP of our proposed method decreases
by only 2.05% and 2.41%, respectively, while FPS, FLOPs and
Params are completely superior. Compared with the lightweight

YOLOv5-O, the AP of the proposed method is improved by
4.99%, and other evaluation metrics are also more advantageous.
Obviously, our proposed method is robust on GE-JL1.

In order to verify the feasibility of P2RNet, we visualized
its detection results on large-scale remote sensing images. The
detection results of P2RNet on the uncropped original DOTA
Ship are shown in Fig. 16. Thanks to the two-phase detection
strategy from key points to region proposals, P2RNet achieves
good detection results in different scenes while maintaining
lightweight. Since the region proposals are generated by the
guidance of key points, the recall can be greatly guaranteed to
avoid missed detection. In addition, SimAM and O-SPPF in the
lightweight object detection network can effectively improve
the detection accuracy and avoid false detection. In conclusion,
for small and dense ships in complex scenes in large-scale
remote sensing images, P2RNet efficiently realize accurate ship
detection while maintaining very low missed and false detection
rates.
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Fig. 16. Detection results of P2RNet on the original DOTA Ship dataset. It can quickly and accurately detect dense small ships in various scenes.

V. CONCLUSION

In this article, a two-phase object detection network P2RNet
from key points to region proposals is proposed to achieve
efficient maritime object detection on large-scale remote sensing
images. In the first phase, the position information of suspected
objects, namely key points, is obtained through the key point
extraction network, and then region proposals are divided us-
ing the region proposal generator. In the second phase, these
region proposals are input into the lightweight object detec-
tion network to achieve real-time and high-precision ship de-
tection. The lightweight object detection network is based on
YOLOv5 for multiscale ship detection. To reduce the number
of parameters and computation, G-SB is used to construct a
new lightweight backbone to extract sufficient feature infor-
mation. To improve the detection accuracy, SimAM is em-
bedded in the feature fusion network to strengthen the feature
fusion process, and O-SPPF is proposed to capture long-distance
dependencies.

In this article, the detection performance of P2RNet is veri-
fied on the DOTA Ship and GE-JL1 datasets. Ablation studies
fully prove the effectiveness of G-SB, SimAM, and O-SPPF in
the lightweight object detection network. Comparative exper-
iments on the DOTA Ship dataset show that the lightweight
object detection network reaches 80.59% AP and 112 FPS,
respectively, while maintaining low FLOPs and Params, meeting
the lightweight requirements of the network. In addition, the
lightweight object detection network achieves 82.62% AP on
the GE-JL1 dataset, indicating that its robustness has been fully
demonstrated. Finally, the detection results on the original large-
scale remote sensing images fully demonstrate the feasibility of
P2RNet.
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