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Abstract—In the global precipitation measurement (GPM) era,
the integrated multisatellite retrievals for GPM (IMERG) stands
as a pivotal precipitation algorithm. This study aims to evaluate
the accuracy of IMERG in capturing precipitation frequency and
volume in the Yellow River Basin, China. Four satellite-based
precipitation estimates (SPEs) from three algorithmic versions of
IMERG were analyzed on an hourly scale using gauge observations.
An improved error component procedure was employed to iden-
tify error sources. Results showed that all four IMERG products
effectively captured the spatial distribution patterns and seasonal
changes of precipitation, IMERG_F demonstrated the best overall
performance, followed by IMERG_L, while IMERG_E performed
the worst. However, they tended to overestimate precipitation.
IMERG_F_Cal performed the best for precipitation frequency
detection, with the highest probability of detection (POD= 52.7%)
and the lowest missed events (MIS = 47.3%). Error component
analysis highlights false bias as the main source of error, followed
by missed bias. In winter, missed bias was the primary error source.
Notably, a significant overestimation of precipitation was observed
along the Yellow River. In detail, false bias dominated IMERG_E,
IMERG_L, and IMERG_F_UnCal below 800 m in spring, summer,
and autumn. However, in winter, missed bias became the primary
error source for these three products at elevations above 200m and
for IMERG_F_Cal above 500 m. IMERG_F_Cal exhibited false
bias as the primary error source in all seasons. Suggested algorithm
developers focus on improving IMERG SPEs’ identification capa-
bilities for light precipitation events and rainstorms. Findings can
provide a reference for improving the IMERG product algorithms
and enhancing users’ understanding of the error characteristics
and sources of IMERG products.
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I. INTRODUCTION

PRECIPITATION is a crucial component of the Earth’s wa-
ter cycle, with significant implications for the atmosphere,

hydrosphere, and biosphere [1], [2], [3]. Accurate and timely
information about the distribution of precipitation in terms of
space and time is essential for various applications, such as
water resource assessment and management, flood warnings,
and the study of extreme precipitation events. Satellite remote
sensing technology, along with onboard sensing equipment, has
rapidly advanced and improved, enabling the development of
multisatellite precipitation products. These products address the
limitations and drawbacks of ground-based rain gauges and
radar systems and have become the primary technology for ob-
taining high-resolution precipitation information at both spatial
and temporal scales [4]. Integrated Multi-Satellite Retrievals
for GPM (IMERG) represents the latest generation of multi-
satellite integrated precipitation data designed for the Global
Precipitation Measurement (GPM) mission [5]. The IMERG
data production system consists of three processing stages. In the
real-time phase, the system runs the forward propagation algo-
rithm, known as the cloud-moving vector propagation algorithm,
to generate early data (IMERG_E). Subsequently, the system
runs again, incorporating the backward propagation algorithm
to generate late data (IMERG_L). Finally, the system performs
another run to produce final data (IMERG_F) by including the
monthly scale surface precipitation data for correction [6]. These
three processing stages cater to the diverse needs of different data
users. However, the accuracy of the inversion process in IMERG
has been a subject of interest for numerous researchers [3], [7],
[8], [9].

In recent years, numerous scholars have conducted prelimi-
nary evaluations of the error characteristics of IMERG. Research
findings have demonstrated the strong performance of IMERG
across various time scales [1], [10], [11], [12]. Based on exten-
sive comparisons, the previous studies proved that it is important
to acknowledge that the sources of precipitation retrieval errors
are complex and diverse. The accuracy of precipitation retrieval
is influenced by various factors, including sensors, algorithms,
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geographical features, climatic conditions, and precipitation
characteristics. For example, Bulovic et al. [13] found that the
choice of sensor sources or algorithms is an important error
source in satellite-based precipitation retrieval [3], [6]. A study
conducted by Kim et al. [14] found that the IMERG Final product
and the tropical rainfall measuring mission (TRMM) 3B42V7
exhibited high uncertainties from the orographic convection and
land–ocean classification algorithm. In addition, the presence of
complex terrain and intricate precipitation patterns can introduce
significant uncertainties for satellite data evaluation [15].

The GPM core observatory satellite is equipped with the dual-
frequency phased array precipitation radar and the multichannel
GPM microwave imager, which offers potentially enhanced
capabilities for estimating light precipitation and snow [16].
There has been a particular focus on the evaluation of IMERG’s
capability in retrieving light rainfall among researchers. It is
found that IMERG exhibits inconsistent performance in detect-
ing light precipitation [1], [9], [13]. For example, Tang et al.
[1] found GPM has satisfactory performance in capturing light
precipitation events over Mainland China, while Chen et al.
[9] proved IMERG has limited capability in estimating light
precipitation. Furthermore, passive microwave (PMW) sensors
were proven to have deficiencies in distinguishing precipitation
from a frozen/snow surface [6], [17], [18], [19].

The aforementioned research findings provide valuable in-
sights for both IMERG algorithm developers and data users.
Most studies commonly employ traditional evaluation methods
that entail comparing satellite-derived precipitation data with
ground-based observations, or furtherly including environmen-
tal factors, such as terrain characteristics and precipitation in-
tensity. Typically, these evaluation methods compute the total
bias using satellite precipitation estimates (SPEs) minus ground
observations, which ignore the interdependence among various
indicators [20].

To address these limitations, Tian et al. [21] proposed the
error component method, which helps identify the sources of
error in satellite precipitation data. The process of precipitation
estimation usually consists of two steps [21], [22]. The first step
is screening, which involves distinguishing rainfall pixels from
nonrainfall pixels. This step can introduce two types of errors.
Failure to detect rainfall pixels leads to missed precipitation
(i.e., missed bias), while nonrainfall pixels may be incorrectly
classified as rainfall pixels, resulting in false precipitation (i.e.,
false bias). Once the rainfall pixels are identified, the second
step is to establish the relationship between the observed bright
temperature data (from PMW or IR) and rainfall rate. Even in
cases where rainfall pixels are correctly detected, the conversion
of bright temperature data to rainfall rates is subject to error
(i.e., hit bias). By considering these error components, the error
component method provides a more comprehensive analysis of
the sources of errors in satellite precipitation data and helps
algorithm developers and data users gain a deeper understand-
ing of the error characteristics of satellite precipitation and its
generation mechanisms [20]. In the satellite inversion process of
precipitation, two types of errors are involved: event occurrence
errors and precipitation errors [23]. Event occurrence errors can
be evaluated using metrics, such as the correct detection rate

(POD), false alarm rate (FAR), and missing alarm rate (MIS).
On the other hand, the error component method decomposes the
total bias into three independent components: hit bias, false bias,
and missed bias. Based on the error-component method, Tang et
al. [24] furtherly decomposed the hit bias into both systematic
and random errors by using a multiplicative model. Systematic
errors arise from the characteristics of the remote sensing mea-
surement or inversion algorithms, and random errors arise from
the sensor sampling and design [1], [24]. This approach allows
for a more accurate quantification of uncertainty. In recent years,
the temporal scale of verification has advanced from monthly
and daily scales [25], [26] to an hourly scale [9], [18], [27], [28].
Li et al. [19], [29] analyzed the characteristics of IMERG from
the perspective of precipitation events and tracked its ability
to capture the evolution of errors throughout the precipitation
process. Chen et al. [9] conducted a comparative analysis of six
purely satellite-derived global precipitation datasets and found
that the false bias is the dominant error source for these products
in the cold season over semi-humid areas. Furthermore, studies
have indicated that over the coastal regions, IMERG tends to
overestimate heavy precipitation by approximately 25% [18].
These research findings provide guidance for applications of
IMERG. However, the aforementioned studies predominantly
focus on the evaluation of IMERG Final as a representative com-
pared to other products, or solely evaluated different IMERG
versions using traditional total-bias-based methods. There is a
limited amount of research tracing the error sources among the
three different types of IMERG (early, late, and final run) and
the comparison between corrected and uncorrected versions (Cal
and Uncal), particularly in China.

The Yellow River Basin in China is a crucial ecological region
that faces significant ecological and environmental challenges.
Among these challenges, water resource scarcity is one of the
most pressing issues, and there are considerable variations in
water resource distribution among the upstream, midstream,
and downstream areas. In addition, the Yellow River Basin
holds vital importance as a key ecological functional area in
China. SPEs served as essential data sources for meteorological
monitoring, hydrological modeling, ecological assessment, and
more. However, errors in SPEs can impact the accuracy of
various applications. Therefore, conducting studies on the error
characteristics of SPEs in the Yellow River Basin holds great
significance for these applications in the Yellow River Basin
[15], [30], [31].

Taking the Yellow River basin as the study area, this study
focuses on the trace of the error sources of IMERG products
by comparing estimates from different versions (early, late, and
final with and without error correction) and using the improved
error component analysis. In addition, the dependence of error
components on both precipitation intensity and elevation was
also included in this study. Specifically, the objectives include
the following.

1) To compare the error characteristics between IMERG
SPEs at an hourly scale from both precipitation amount
and frequency error perspectives.

2) To track the sources of errors based on an improved error
component method.
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Fig. 1. Terrain and spatial distribution of the meteorological stations in the
Yellow River Basin.

3) To investigate the influence of elevation and precipitation
intensity on the error components in IMERG SPEs.

The findings of this study could serve as valuable scientific
references for data users in data selection, potential error prop-
agation estimation when used in various applications and water
resources management in the Yellow River Basin. In addition,
the results of this study also have the potential to help algo-
rithm developers for tracing error characteristics and algorithm
development.

II. MATERIALS AND METHODS

A. Study Area

The Yellow River Basin, the second largest basin in China,
spans from the western part of the Bayan Kara Mountains to the
east coast of the Bohai Sea, north to the Yinshan Mountains, and
south to the Qinling Mountains. It covers a vast area of 7.52 ×
105 km2 (32.15°N–41.87°N, 95.87°E–119.07°E). The terrain in
the basin is complex, with a general pattern of higher elevations
in the west and lower elevations in the east. The western regions
are mountainous, while the eastern regions are relatively flat.
Precipitation exhibits low and uneven distribution patterns, with
higher amounts of rainfall in the eastern regions and on the
windward slopes of the mountain ranges, such as the northern
slopes of the Qinling Mountains. Annual precipitation in these
areas typically ranges from 700 to 1000 mm. In contrast, the
deeply inland northwestern regions receive less than 150 mm of
total annual precipitation.

The Yellow River Basin can be divided into three subbasins
based on the natural environment and hydrology of the area
through the river flows: the upper reaches, middle reaches, and
lower reaches. The upper reaches stretch from the source of
the river to the town of Toktor Hekou in Inner Mongolia. The
middle reaches extend from Toktor Hekou to the vicinity of
the Hua-yuan-kou at Taohuayu in Henan Province. Finally, the
lower reaches encompass the area from Taohuayu to the estuary
of the Yellow River. In this study, data were collected from
299 national meteorological stations within the Yellow River
Basin. The distribution of these stations is illustrated in Fig. 1.
The upper reaches of the Yellow River Basin have the most
complex topography and the largest area, spanning 386 000
km2. However, the number of meteorological stations in this
region is relatively sparse, totaling 123. In the middle reaches,
the topographical differences are reduced compared with the

upper reaches, covering a basin area of 344 000 km2. This region
has the largest number of meteorological stations, with a total of
150, primarily concentrated in the flat terrain of the low-altitude
areas. The downstream region, located in the North China Plain,
has the smallest basin area of approximately 23 000 km2 and
consists of 26 meteorological stations.

B. Datasets

1) Ground-Based Observations: Hourly ground-based basic
meteorological observations provided by the China Meteorolog-
ical Administration (CMA) were utilized as the reference data
in this study. These observations can be accessed on the CMA
website.1 Rigorous quality control measures were applied to the
precipitation observations from all meteorological stations [32].
These measures were implemented to ensure the accuracy and
reliability of the data. The ground-based observations have been
widely used as baseline data for evaluating the errors in SPEs
[33], [34], [35].

To ensure the scientific integrity and credibility of this study,
stations with missing precipitation data between September
2019 and September 2021 were excluded. Subsequently, hourly
precipitation data from 299 meteorological stations, exhibiting
100% data availability throughout the study period, were se-
lected as reference data.

2) IMERG Products: IMERG is a representative SPE pro-
vided by GPM. It offers global precipitation data with high
temporal and spatial resolution, capturing intervals of 30 minutes
in time and a spatial resolution of 0.1°× 0.1° [36]. By integrating
data from onboard microwave, infrared, rainfall radar, and other
sensors, IMERG leverages the complementary advantages of
multiple data sources.

To cater to various application needs and account for differ-
ences in data sources and latency, the IMERG system gener-
ates three algorithmic products. These include IMERG Early
Run (IMERG_E) with a latency of 4 h, IMERG Late Run
(IMERG_L) with a latency of 12 h, and IMERG Final Run
(IMERG_F) with a latency of 3.5 months. The Final algo-
rithmic product consists of two versions: IMERG_F_UnCal,
which is uncorrected, and IMERG_F_Cal, which incorporates
ground-based precipitation values using monthly-scale observa-
tions from the Global Precipitation Climatology Central (GPCC)
stations.

Given the different time latency and application scopes of
these algorithmic products (source is available online2), this ar-
ticle conducts a systematic analysis and quantification of the er-
rors associated with IMERG_E, IMERG_L, IMERG_F_UnCal
and IMERG_F_Cal. Table I presents the key characteristic pa-
rameters of these products.

C. Methods

1) Categorical Statistical Indices: To assess the ability of
SPEs to detect precipitation events and understand the sources
of errors, three categorical statistical indices are used: the

1[Online]. Available: http://data.cma.cn
2[Online]. Available: https://gpm.nasa.gov/data/directory

http://data.cma.cn
https://gpm.nasa.gov/data/directory
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TABLE I
DESCRIPTIVE SUMMARY OF SATELLITE PRECIPITATION PRODUCT USED IN THIS

STUDY

probability of detection (POD), misses (MIS), and false alarm
rate (FAR) [36]. POD measures the proportion of precipitation
events correctly detected by SPEs out of all actual precipitation
events. It indicates the ability of SPEs to accurately identify and
capture precipitation occurrences. MIS represents the proportion
of precipitation events missed by satellites, relative to the total
number of true precipitation events, and the instances where
satellites failed to identify precipitation events. FAR measures
the proportion of false precipitation events identified by satellites
relative to the total number of true precipitation events. All the
categorical indices mentioned above have values ranging from 0
to 1. To account for the temporal resolution of 1 h and minimize
the impact of light precipitation, a threshold of 0.1 mm/h is
commonly used to determine whether precipitation occurs or
not

POD(%) =
N {(Si ≥ t) and (Gi ≥ t)}

N {(Gi ≥ t)} × 100 (1)

FAR (%) =
N {(Si ≥ t) and (Gi < t)}

N {(Si ≥ t)} × 100 (2)

MIS (%) =
N {(Si < t) and (Gi ≥ t)}

N {(Gi ≥ t)} × 100. (3)

Note: where Si and Gi are the hourly precipitation estimated
by satellite-based precipitation products and gauge observations,
respectively; N means the number of hours for different condi-
tions; and t represents the hourly precipitation threshold.

2) Error Component Method: In this study, the error com-
ponent method [21] is utilized to decompose the total bias
into three distinct components: hit bias, missed bias, and false
bias (Table II in the Appendix). Hit bias occurs when both
SPEs and gauge observations detect a precipitation event, but
the estimated precipitation volume differs. Hit bias can have
either a positive or negative bias indicating an overestimation or
underestimation of precipitation, respectively. Missed bias refers
to a gauge-observed precipitation event that is not detected by
SPE. This results in missed precipitation and the missed bias
component is always negative since it represents the absence of
detected precipitation. False bias arises when SPE detects rain-
fall features that are not present in reality, leading to misdetected
precipitation [24], [37]. False bias is always positive, indicating
the presence of falsely identified precipitation

Total bias (mm) =
∑

(Si −Gi) (4)

Hit bias (mm) =
∑

(Si −Gi)

when (Si ≥ t) and (Gi ≥ t) (5)

Missed bias (mm) =
∑

(Si −Gi)

when (Si < t) and (Gi ≥ t) (6)

False bias (mm) =
∑

(Si −Gi)

when (Si ≥ t) and (Gi < t) . (7)

It is noted that these three bias components may offset each
other, resulting in a total bias that is smaller than the magnitude
of any individual component. This error decomposition scheme
is employed to evaluate the accuracy of estimating precipitation
amounts [23].

3) Multiplicative Model: To enable more precise quantifica-
tion of the error, the multiplicative model is used to further track
the systematical and random bias in the hit bias [24]. With this
approach, the error can be quantified more accurately

Si = αGb
ie

εi (8)

whereα is the offset and b is the scale parameter. The parameters
α and b together determine the systematic error. The random
error is denoted by ε, which represents the random error with
a zero mean and variance of σ2. For ease of computation, the
original equations are log-transformed as follows:

l n (Si) = α+ βln (Gi) + εi (9)

where α (α = lnα) is the offset parameter used to shift Gi PDF
to the left (α < 0) or the right (α > 0); β (β = b) refers to
the scale parameter used to enlarge (β > 1) or shrink (β < 1)
Gi PDF; and σ gives the result of the addition of the random
error uniformly enlarging the PDF. Thus, α and β can reflect
systematic errors, while σ reflects random errors. These three
parameters are calculated using (9) and ordinary least squares.
For a more detailed explanation of this multiplicative error
model, the reader is referred to Tang et al. [24].

III. RESULTS

A. Evaluation of Seasonal-Scale Precipitation Errors

Fig. 2 illustrates the spatial distribution of mean daily precip-
itation in the Yellow River Basin across different seasons. The
general pattern shows higher precipitation levels in the southeast
and lower levels in the northwest [see Fig. 2(a)]. Among the
seasons, winter and spring exhibit lower precipitation, while
summer and autumn experience more abundant precipitation.
IMERG_E, IMERG_L, IMERG_F_UnCal, and IMERG_F_Cal
can effectively capture the seasonal variations in precipitation in
the Yellow River Basin. The spatial distributions of these SPEs
align closely with the observed data from gauge observations.
This demonstrates the notable advantage of IMERG SPEs in
accurately representing the spatial distribution pattern of pre-
cipitation. However, it is important to acknowledge that there
are variations in the accuracy of precipitation estimation among
different IMERG SPEs. While they generally reflect the spatial
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Fig. 2. Spatial distribution of annual average precipitation and seasonal daily mean precipitation in the Yellow River Basin for observed station data (column 1)
and four IMERG SPEs (columns 2 to 5) from 2019 to 2021. The seasons are defined as follows: March to May (spring), June to August (summer), September to
November (autumn), and December to February (winter). The four IMERG SPEs are as follows: IMERG_E (b, g, l, q, v), IMERG_L (c, h, m, r, w), IMERG_F_UnCal
(d, i, n, s, x), and IMERG_F_Cal (e, j, o, t, y).

distribution pattern well, there may be differences in their ability
to precisely invert the accuracy of precipitation.

Based on the combined analysis of the spatial distribution (see
Fig. 2) and density scatterplot (see Fig. 3), several observations
can be made. All four IMERG SPEs tend to overestimate pre-
cipitation in spring, summer, autumn, and winter. Among them,
IMERG_F_Cal exhibits the highest inversion accuracy, showing
the best agreement with gauge observations, especially in terms
of CC and RMSE [see Fig. 3(m)–(p)]. In spring, IMERG_E and
IMERG_L have different degrees of precipitation underestima-
tion in areas on both sides of the upper Yellow River [see Fig. 2(g)
and (h)], while IMERG_F_UnCal does not exhibit this issue
[see Fig. 2(i)]. Despite a more substantial overestimation error,
IMERG_F_Cal, after gauge correction, demonstrates better data
accuracy than the other three IMERG products as evidenced by
CC, RMSE, and the degree of data fit [see Figs. 2(j) and 3(m)].
During summer, all four SPEs show a tendency to overestimate
precipitation [see Fig. 2(k)–(o)], with IMERG_F_Cal also over-
estimating downstream precipitation [see Fig. 3(n)]. In autumn,
IMERG_F_Cal displays the highest correlation coefficient (CC
= 0.71), the lowest root mean square error (RMSE= 4.12 mm/d)
[see Fig. 3(o)], and the best agreement with gauge observations.
In winter, all four SPEs suffer from underestimation of upstream
precipitation and overestimation of downstream precipitation
[see Fig. 2(u)–(y)].

Based on the spatial distribution shown in Fig. 2, notable
overestimation and underestimation of precipitation can be ob-
served in specific areas of the Yellow River Basin across the four
IMERG SPEs. To further analyze the error characteristics during
the summer season, three representative areas were selected for
in-depth examination. These areas include the northern part of

the Yellow River Basin, the southwestern part of the source area
of the Yellow River, and the southeastern part—the northern
slope of the Qinling Mountains and the three areas are denoted
as I, II, and III in Fig. 11 in the Appendix.

In Area I, there is a significant overestimation of precipita-
tion by IMERG_E, IMERG_L, and IMERG_F_UnCal, with
an average overestimation error of approximately 2.0 mm/d.
However, IMERG_F_Cal, after being corrected using the GPCC
dataset, aligns closely with the gauge observations, effectively
addressing the overestimation issues. Conversely, in Area II,
the three IMERG SPEs tend to underestimate precipitation,
while IMERG_F_Cal demonstrates better agreement with the
observed data for this region. However, in Area III (see Fig. 11
in the Appendix), IMERG_F_Cal exhibits a significant over-
estimation of precipitation, averaging an error of 2.17 mm/d.
This phenomenon may be caused by the uncertainties from
the gauge correction algorithms, such as the overestimation of
the GPCC, which is used in the generation of IMERG_F_Cal
[38]. Interestingly, all four IMERG SPEs consistently exhibit
substantial overestimation of seasonal precipitation near the
Yellow River. This overestimation pattern persists across all
four seasons (see Fig. 2), with the highest magnitude observed
during the summer season, and this overestimation error over the
inland water bodies is caused by the deficiencies of PMW-based
retrievals for emissivity characterization [37] (see Fig. 11 in the
Appendix).

The observed phenomenon can be attributed to the following
reasons.

1) Sparse and uneven distribution of surface observation
stations in the Inner Mongolia Plateau region may lead
to significant deviations between the precipitation data
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Fig. 3. Scatter density plots depicting the seasonal mean daily precipitation in the Yellow River Basin from 2019 to 2021, comparing the observed station with the
four IMERG SPEs. The plots include fitted lines (shown in red) representing the relationship between the four SPEs and observed stations. Continuous statistical
indicators (RB, CC, and RMSE) are provided. The colored bands within the plots represent the scatter densities of the data points.

measured by the SPEs and gauge observations. These
stations have limited coverage and lack representativeness.

2) The presence of overestimation of precipitation over in-
land pixels containing small water bodies, such as rivers,
lakes, and reservoirs. These anomalies are caused by the
poor characterization of the differences in emissivity and
temperature of water surfaces in the PMW frequencies
used by the retrievals. The PMW retrievals are known to be
sensitive to land surface heterogeneity, including contrasts
in temperature and emissivity [23], [37], [39].

3) For regions with high altitudes and complex terrain,
data evaluation contains considerable uncertainty result-
ing from the biases of ground observations and the errors
in the resampling and interpolation algorithms [15], [40],
[41], [42].

4) During the production process of IMERG_F_Cal, the
gauge correction algorithms or the overestimation of
GPCC may introduce overcorrection issues in localized
areas, leading to the observed discrepancies.

All four SPEs of IMERG can effectively capture the spatial
distribution and seasonal characteristics of precipitation in the
Yellow River Basin. They depict low precipitation in winter and

spring, and high precipitation in summer and autumn. However,
these SPEs exhibit varying degrees of precipitation inversion
bias in different seasons, generally tending to overestimate
precipitation. Among them, IMERG_F_Cal demonstrates the
highest accuracy and stability in precipitation reversion. While
there are overestimation errors in certain regions with complex
terrain, further algorithm refinement can enhance the accuracy
of precipitation inversion in these areas. It is worth noting that
IMERG_E and IMERG_L exhibit significant overestimation
issues at the two stations in the southern part of the middle
reaches of the Yellow River Basin [see Fig. 2(g)–(h)]. However,
this overestimation problem is not present in IMERG_F_Uncal
and IMERG_F_Cal [see Fig. 2(i)–(j)]. This discrepancy may be
attributed to the observation correction procedure included in
the IMERG_F algorithm, which effectively corrects the overes-
timation error in this region [see Fig. 2(i)–(j)].

B. Occurrence Analysis

The ability to accurately detect precipitation events is a crucial
factor in the inversion of precipitation using SPEs. In this section,
the detection capability of four selected IMERG SPEs was
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Fig. 4. Spatial distribution of each categorical statistical index (POD, MIS, FAR) at the hourly scale of IMERG SPEs. IMERG_E (a, b, c); IMERG_L (d, e, f);
IMERG_F_UnCal (g, h, i); IMERG_F_Cal (j, k, l), respectively. It should be noted that the 0.1 mm/h rain/no rain threshold is used here.

Fig. 5. Spatial distribution of error components at hourly scales for IMERG SPEs.

evaluated on an hourly time scale. Three metrics, namely POD,
FAR and MIS are utilized to evaluate their performance.

Fig. 4 illustrates the spatial distribution of categorical sta-
tistical indicators for the four IMERG SPEs, highlighting no-
table differences in their capabilities for precipitation events.
Among the four SPEs, IMERG_F_Cal exhibits the best overall
performance, with the highest regional average pod rate (POD

= 52.7%) and the lowest miss rate (MIS = 47.3%). However, it
is worth noting that IMERG_F_Cal also displays a high false
alarm rate (FAR = 59.2%), corresponding to the aforemen-
tioned overestimation of precipitation by IMERG_F_Cal [see
Fig. 2(e)]. On the other hand, IMERG_F_UnCal demonstrates
the lowest average false alarm rate (FAR = 58.1%). IMERG_L
ranks second after IMERG_F_Cal in detecting precipitation
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Fig. 6. Schematic representation of total bias and error components with elevation for IMERG SPEs in (a)–(d) spring, (e)–(h) summer, (i)–(l) autumn, (m)–(p)
and winter.

Fig. 7. Classification indicators of hourly precipitation for the IMERG SPEs over the Yellow River Basin with different intensities. Note that different y axis
limits are used in Fig. 7.

events, while IMERG_E exhibits the poorest performance with
the lowest mean POD (48.7%), the highest mean MIS (51.3%),
and the highest mean FAR (60.0%) among all the SPEs.

In the lower reaches of the Yellow River Basin, the four
IMERG SPEs consistently exhibit a high regional mean POD
ranging from 54.6% to 58.8% and a low regional mean MIS
ranging from 41.2% to 45.4%. These favorable results can be
attributed to the flat terrain in the lower reaches, where precip-
itation is less affected by topography and geomorphology. On
the contrary, the upstream area situated on the Tibetan Plateau
is characterized by complex terrain, and perennial snow cover
in the local mountainous areas, precipitation in this region may
be largely affected by subsurface conditions and topography.

Consequently, the detection accuracy of satellite sensors in
this region is greatly disturbed. In the upstream area, all four
SPEs exhibit low POD values ranging from 42.7% to 46.6%,
high MIS values ranging from 53.4% to 57.3%, and high FAR
values ranging from 60.0% to 61.7%. Among the four SPEs,
IMERG_F_Cal demonstrates the best overall performance, ex-
hibiting the highest ability to detect precipitation events in all
areas.

The ability of IMERG SPEs to detect precipitation events
exhibits distinct seasonal characteristics. During the summer
season, which is characterized by heavy and concentrated pre-
cipitation (see Fig. 13 in the Appendix), the four IMERG SPEs
demonstrate different detection capabilities compared to the
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Fig. 8. Spatial distribution of the scale parameter α for IMERG SPEs in the four seasonal error models for spring (column 1) summer (column 2) autumn (column
3) and winter (column 4). The closer the value of the scale parameter α is to zero, the smaller the offset error is. Blank parts of the stations represent areas of
missing data.

Fig. 9. Spatial distribution of the scale parameter β for IMERG SPEs in the four seasonal error models for spring (column 1) summer, (column 2) autumn,
(column 3), and winter (column 4). The closer the value of the scale parameter β is to 1, the lower the shape error. Blank parts of the stations represent areas with
missing data.

spring season (see Fig. 12 in the Appendix). In terms of POD and
MIS, both products of the IMERG_F algorithm exhibit notable
advantages, particularly the remarkable correction effect ob-
served in IMERG_F_Cal. In the midstream area, IMERG_F_Cal
achieves a high POD value of 67.3%. During autumn (see
Fig. 14 in the Appendix), IMERG_F continues to exhibit a

clear advantage, particularly in the southern part of the middle
reaches of the Yellow River Basin and throughout the lower
reaches, resulting in a decrease in the mean MIS value from
52.9% to approximately 39.0%. However, the performance of
IMERG precipitation products is the poorest during the winter
season (see Fig. 15 in the Appendix). The four SPEs exhibit
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Fig. 10. Spatial distribution of the random error parameter σ, which represents the standard deviation of the random error (mm/h), in the four seasonal error
models of IMERG SPEs for spring (column 1), summer (column 2), autumn (column 3), and winter (column 4). A lower value of the random error parameter σ
represents a smaller random error. Blank parts of the stations represent areas with missing data.

low POD, high MIS, and high FAR values. In the upstream
region, the regional average POD for the four SPEs remains
low ranging from 4.61% to 7.05%. Notably, IMERG_F_UnCal
performs poorly in monitoring winter precipitation, with high
FAR and MIS values reaching 60% to 100%. This may be due
to the fact that winter precipitation often occurs in solid form,
such as snow or ice particles, and therefore the accuracy of PMW
retrieval of precipitation is hampered. This finding aligns with
the results reported by Moazami and Najafi [18], Wu et al. [43],
and other researchers [17], [21], [44].

In summary, the four SPEs exhibit significant variations
in their ability to detect precipitation events. IMERG_F_Cal
demonstrates the best overall performance, followed by
IMERG_L, while IMERG_E performs the worst. Moreover,
the detection capabilities of the four IMERG SPEs vary across
different regions of the Yellow River Basin. The downstream
region shows the highest detection capability, followed by the
midstream region, while the upstream region exhibits relatively
lower effectiveness. The precipitation frequency error also plays
a crucial role in the overall precipitation error. In addition,
there are seasonal differences in the performance of the IMERG
algorithm in monitoring precipitation events, followed by spring
and autumn, while its performance is the least accurate during
winter.

C. Error Components Analysis

In the previous part of the error evaluation, we identified the
precipitation frequency error as a significant factor contributing
to the overall precipitation volume error. To gain further insights

into the sources of precipitation errors related to different mon-
itoring occasions, we adopt the error component method. This
method allows us to break down the total bias into three error
components: hit bias, missed bias, and false bias. Fig. 5 displays
the spatial distribution of the total bias and these three error
components.

As can be seen from Fig. 5(a), (e), (i), and (m), the values of
total bias in all cases are relatively small, ranging from 0.006
to 0.018 mm/h. These values are significantly smaller than the
sum of the three error components. This can be attributed to
the presence of both positive and negative error components,
which can offset each other. It highlights the importance of con-
sidering precipitation events and analyzing precipitation error
components rather than relying solely on the traditional total
bias for evaluating SPEs [3], [45].

The spatial distribution of total bias across the four IMERG
SPEs is similar. Fig. 5(m) illustrates that IMERG_F_Cal demon-
strates a more stable overall performance. Its total bias val-
ues show no significant variation among the three sub-basins
of the Yellow River Basin and remain within the range of
0–0.02 mm. On the other hand, IMERG_E, IMERG_L and
IMERG_F_UnCal exhibit lower total bias values in the Yellow
River source area. However, their individual error components
are larger, indicating a less consistent performance.

The spatial distribution of missed bias showed little overall
difference in all four SPEs. In the upper and middle reaches, the
missed bias remained relatively constant, ranging from −0.5
to −0.6 mm. However, in the lower reaches, the missed bias
increased significantly to around −0.8 mm. It is worth noting
that missed bias emerges as the primary source of error during
winter for all four SPEs (see Fig. 16 in the Appendix). This may
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be related to the challenges of using PMW measurements to
accurately estimate snow or precipitation on snow or ice-covered
surfaces. In addition, winter precipitation in these regions may
be associated with low levels of cloudiness and warm rain
processes that may not involve significant ice particles. These
factors contribute to the higher missed bias values observed
during winter. The variations in missed bias among the four SPEs
could be attributed to differences in their screening strategies for
terrestrial pixels [21]. These strategies play a role in determining
which pixels are classified as precipitation events and which are
not, affecting the accuracy of precipitation detection.

The values of the three error components can have positive or
negative values that can potentially cancel each other out [21].
Missed bias is negative, false bias is positive, and hit bias values
can be positive or negative. In this study, most of the hit bias
predominantly exhibits negative values. Despite the negative
values of missed bias and hit bias, the total bias of all four SPEs
shows an overestimation of precipitation. This suggests that false
bias plays a dominant role in the overall precipitation error. Fur-
thermore, differences in the spatial distribution of false bias are
observed among the four SPEs. Specifically, the IMERG_F_Cal
exhibits the lowest false bias values in the northern part of the
Yellow River Basin but has higher false bias in the Yellow River
source area, as well as in most of the middle and lower reaches
[see Fig. 5(d), (h), (l), and (p)]. On the other hand, IMERG_E,
IMERG_L, and IMERG_F_UnCal show high hit bias in the
northeastern part of the upper Yellow River Basin and along the
Yellow River [see Fig. 5(b), (f), and (g)], deviating from the
actual precipitation. However, IMERG_F_Cal does not exhibit
this pattern. Although IMERG_F_Cal performs better in terms
of hit bias and missed bias, its larger false bias contributes to its
predominantly overestimated total bias. This finding effectively
explains the previously observed precipitation overestimation
errors (see Fig. 2) for the four IMERG SPEs in the vicinity of
the Yellow River, mainly attributed to false bias and hit bias.

D. Elevation-Dependent Bias Analysis

In this subsection, the degree of elevation dependence of the
error components is further assessed. The elevation-dependent
bias analysis was conducted at seasonal scales (see Fig. 6).

The results from Fig. 6 indicate that the total bias and error
components of the four SPEs exhibit clear topographic depen-
dence, with the magnitude of the error components varying
with the elevation. However, the absolute values of total bias
are relatively smaller compared to the absolute values of the
three error components. The sum of absolute values of the three
components is significantly higher than the absolute total bias
due to the presence of positive and negative error components
that can cancel each other out. This finding is consistent with
the observations from the spatial distribution of the error com-
ponents in the previous section (see Fig. 5). Once again, this
phenomenon emphasizes the importance of not relying solely
on total bias for evaluating the error characteristics of SPEs, as
it may lead to an evaluation that is more favorable than the actual
performance.

Based on the analysis of the seasonal cumulative error com-
ponents and their dependence on topography [Fig. 6(a)–(p)],
it is observed that the elevation dependence of the error com-
ponents for the four SPEs exhibits a distinct seasonal pattern
(see Fig. 6). The total bias exhibits a tendency to underestimate
the precipitation occurrence in high elevations and overestimate
precipitation in low elevations, which is consistent with the
findings of Hong et al.’s [46] study. In spring, the absolute values
of missed bias for all SPEs [see Fig. 6(e)–(h)] increase with
higher elevation. In addition, the absolute values of total bias and
hit bias for IMERG_E, IMERG_L and IMERG_F_UnCal show
a decreasing trend followed by an increasing trend as elevation
increases. Notably, these values change from positive to negative
within the elevation range of 800–1000 m. On the other hand,
the false bias of IMERG_E, IMERG_L, and IMERG_F_UnCal
decreases with increasing elevation. In contrast, the False Bias
of IMERG_F_Cal remains relatively stable with minimal fluc-
tuation overall.

In the summer season, the absolute values of the error com-
ponents are significantly higher compared with the spring. This
can be attributed to the higher amount of precipitation during the
summer, which is consistent with the precipitation distribution
shown in Fig. 2(k)–(o). The Hit Bias is consistently negative for
all four SPEs. IMERG_F_Cal tends to predominantly overes-
timate precipitation during the summer months. On the other
hand, IMERG_E, IMERG_L, and IMERG_F_UnCal tend to
predominantly overestimate precipitation in the elevation range
of 0–800 m, and underestimate precipitation in elevation ranges
greater than 800 m.

In the autumn season, the absolute values of each error
component are reduced compared with the summer season,
typically ranging between −50 and 100 mm. The four SPEs
transition from overestimating to underestimating precipitation
in the elevation range of 800–1000 m. Similar to the summer
season, the Hit Bias for four SPEs remains overwhelmingly
negative. It can be inferred that False Bias dominates the error
components of the four SPEs when the elevation is below 800 m.

In winter, the absolute values of Missed Bias decrease with
increasing elevation. The total bias and hit bias of IMERG_E,
IMERG_L and IMERG_F_UnCal are positive in the elevation
range of 0–200 m and then change from positive to negative after
the elevation exceeds 200 m. Since the absolute value of missed
bias is greater than the absolute value of hit bias, it can be inferred
that missed bias is the primary source of error for IMERG_E,
IMERG_L, and IMERG_F_UnCal during winter at elevations
above 200 m. In addition, Fig. 6(p) indicates that missed bias is
also the main source of error for IMERG_F_Cal in winter when
the elevation is above 500 m.

In summary, the analysis reveals that the total bias and error
components of the four SPEs exhibit significant elevation depen-
dence. False bias is identified as the dominant error component
for IMERG_F_Cal. The specific characteristics of the four error
components vary across different seasons. In spring, summer,
and autumn seasons at elevations below 800 m, false bias is
identified as the main source of error for IMERG_E, IMERG_L,
and IMERG_F_UnCal. However, during winter, the primary
source of error for these three SPEs at elevations above 200
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m shifts to missed bias. Similarly, for IMERG_F_Cal in winter,
missed bias becomes the main source of error at elevations over
500 m. We note that the failed detection of precipitation in winter,
presumably snowfall, is mostly due to the intrinsic inability
to retrieve precipitation with PMW when the underlying land
surface is covered by snow or ice [21].

In light of these findings, we recommend that future research
endeavors prioritize the reduction of false bias, integration of
snowfall retrievals, and advancement of methods for merging
gauge and satellite precipitation data. Enhanced snowfall de-
tection capabilities in these products will also hold paramount
importance for land surface hydrological studies concerning
snowpack accumulation and melting.

E. Intensity-Dependent Detection Error Analysis Precipitation

In the previous section, we observed variations in error com-
ponents for IMERG SPEs across different seasons. We specu-
lated that these differences might be influenced by precipitation
intensity. Therefore, precipitation this section, we evaluate the
impact of different precipitation intensities on the identification
of precipitation events by IMERG SPEs in four seasons, as il-
lustrated in Fig. 7. We classify precipitation into four thresholds,
corresponding to light, moderate, heavy and storm precipitation
[47]. It is important to note that the determination of precipi-
tation intensity thresholds relies on ground-based precipitation
observations. As a result, the calculation of FAR (false alarms
of IMERG SPEs when ground-based site observed no precipita-
tion event) for different precipitation intensities is not feasible.
Therefore, this section focuses solely on the analysis of POD
and MIS.

In general, there is a strong correlation between the ability of
IMERG SPEs to capture precipitation events and precipitation
intensity. Except for the winter season, under the same precip-
itation threshold, the IMERG SPEs exhibit high consistency
in capturing precipitation events [see Fig. 7(a)–(d)]. The POD
values of IMERG SPEs are generally below 40%, with the high-
est values observed during the summer season [see Fig. 7(b)],
while the winter season shows the least ideal performance [see
Fig. 7(d)]. As precipitation intensity increases, there is a general
downward trend in POD. Among the four IMERG SPEs, they
exhibit the poorest performance in capturing heavy and storm
precipitation events, which aligns with the findings of Gan et
al [47]. The low POD values (10%) indicate IMERG SPEs
have relatively high incidences of misjudgment in capturing the
intensity of precipitation, even though they could effectively
detect of precipitation events (see Fig. 4). It is worth noting
that this could be partially attributed to the limited sample size
of intense precipitation events. In the case of light precipita-
tion, IMERG SPEs exhibit the highest POD, indicating their
relatively better ability to identify and detect light precipitation
events [1], [14]. Among the four IMERG SPEs, IMERG_F_Cal
demonstrates the highest overall POD, particularly during the
summer and autumn seasons, indicating its superior capability
in capturing precipitation events. This finding aligns with the
previous analysis (see Figs. 13 and 14 in the Appendix).

IMERG SPEs exhibit the lowest MIS values (<35%) in sum-
mer while highest MIS values (>90%) in winter [see Fig. 7(e)–
(h)]. This phenomenon can be attributed to the deficiency of
PMW sensor and lower capability of IR sensor in accurate
retrieving precipitation events on ice/snow surfaces [19], [48].
The high MIS values in winter could provide direct explana-
tion for the previously mentioned phenomenon that the miss
bias is the primary source of error during the winter season
[see Fig. 16(c), (g), (k), and (o)]. In addition, IMERG SPEs
also exhibit relatively higher MIS for light precipitation events
during the spring, summer, and autumn seasons. Consequently,
these misdetection of light precipitation events may lead to the
underestimation of the amount of light precipitation events by
IMERG SPEs [18].

Among the four IMERG SPEs, IMERG_E exhibits the highest
overall missed detection rate, while IMERG_F demonstrates the
lowest. Furthermore, the performance of IMERG_F_Cal (red
line) and IMERG_F_UnCal (orange line) is almost indistin-
guishable, indicating that the GPCC bias correction procedure
in the IMERG_F_Cal algorithm has limited effectiveness in rec-
tifying missed detections of precipitation events in IMERG_F.

F. Multiplicative Model Analysis of Hit Bias

To quantitatively assess the Hit Bias, three parameters of
the multiplicative model were evaluated in this section. The
evaluation process considered only precipitation events with
intensities exceeding 0.1 mm/h to avoid being influenced by
trace amounts of precipitation. It is important to note that the
challenging and variable terrain, high altitude, and harsh climatic
conditions of the Tibetan Plateau resulted in null values for the
three parameters α, β, and σ in the upper Yellow River basin
during winter.

Fig. 8 provides the spatial distribution of parameter alpha
(α) for the SPEs in spring, summer, autumn, and winter. A
value of α closer to zero indicates a smaller systematic er-
ror. The figure demonstrates a clear seasonal variation in the
spatial distribution of α, with the best performance observed
during summer and autumn (α = −0.15), followed by spring
(α = −0.23), and the worst performance occurring in win-
ter (α = −0.29). In spring, for most of the middle reaches
of the Yellow River Basin, IMERG_E and IMERG_L exhibit
predominantly negative α values, with values lower than −0.5.
IMERG_F, on the other hand, has α values between −0.2 and
0, indicating a significantly better systematic error compared
with IMERG_E and IMERG_L. Furthermore, the α values for
IMERG_E, IMERG_L, and IMERG_F_UnCal exceed 0.5 at
the Yellow River in the upper reaches of the basin. However,
after being corrected by the ground stations, IMERG_F_Cal
has α values ranging from 0 to 0.3, resulting in a substantial
reduction in systematic error [see Fig. 8(a), (e), (i), and (m)]. In
summer, the systematic errors of IMERG_F_Cal in the source
area of the Yellow River and the middle reaches transition from
positive to negative values, indicating an overall reduction in
systematic errors [see Fig. 8(b), (f), (j), and (n)]. During the
winter season [see Fig. 8(d), (h), (l), and (p)], although the
α values for the four SPEs are not stable, it can be observed
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that IMERG_F_Cal consistently exhibits the lowest and most
stable systematic error. The overall comparison of the four SPEs
suggests that IMERG_F_Cal demonstrates the most stable α
value, followed by IMERG_F_UnCal, indicating that IMERG_F
is relatively less affected by systematic errors.

Fig. 9 illustrates the spatial distribution of beta (β) for the
SPEs during the four seasons. Beta along with alpha (α), repre-
sents the systematic error, where an optimal value of 1 indicates
that the SPEs and the reference data have the same dynamic
range. Based on the spatial distribution ofβ, summer and autumn
exhibit consistent and stable performance, with autumn showing
the best results (β = 0.37) [see Fig. 9(c), (g), (k), and (o)], while
winter demonstrates the least favorable results (β = 0.20) [see
Fig. 9(d), (h), (l), and (p)]. Among the four seasons, the SPEs in
the middle reaches, particularly in the southern part, exhibit the
closest match to the dynamic range of the reference data. This
suggests that the hit bias in the middle reaches of the basin is
less affected by systematic errors. In contrast, in the high-altitude
areas in the upper reaches of the basin, especially during spring
[see Fig. 9(a), (e), (i), and (m)], the β values are lower. This
observation may be related to the snow accumulation in the
Tibetan Plateau region, where IMERG is influenced by snow
during the precipitation inversion process. Therefore, accurately
measuring solid precipitation in complex terrain areas remains
a challenge for satellite precipitation inversion. As expected,
among the four SPEs, IMERG_F_Cal demonstrates the most
robust performance, further validating the previous conclusion
that IMERG_F_Cal is least affected by systematic errors. The
supeirority of IMERG_F_Cal can be attributed to both the
improvement of Final algorithm and the effect of bias-correction
procedures in the process of generating IMERG_F_Cal. On
the one hand, the 3.5-month time lag in the Final algorithm is
primarily to incorporate more PMW estimates, which serve as a
standard for calibrating IR and generating movement vectors
for precipitation retrieval [48], [49], [50]. While PMW esti-
mates for IMERG_E (delayed by about 4 h) and IMERG_L
(delayed by about 12 h) are relatively rare, as these products
aim to provide timely precipitation estimates. On the other
hand, IMERG_F_Cal is produced by anchoring the precipitation
estimates using the monthly analysis satellite–gauge product
(1.0°/monthly, 1979 to the present, delayed by about 3.5 months)
from the GPCC [38].

The spatial distribution of the random error σ is shown in
Fig. 10. Lower values of σ indicate better performance. Overall,
the winter season exhibits the lowest σ values, which can be
attributed to the absence of σ values due to the presence of snow
cover and reduced liquid precipitation in the upper reaches of
the Yellow River Basin. While IMERG_E and IMERG_L show
lowσ values (σ <−0.1) in certain parts of the winter season [see
Fig. 9(d) and (h)], their performance is not consistently stable
and includes some significant outliers. Fortunately, the GPCC-
corrected IMERG_F_Cal addresses this issue [see Fig. 10(p)].
In the summer, although IMERG_F_Cal shows relatively large
random errors compared to other SPEs, with a regional average
σ of 1.13 [see Fig. 10(n)], it still performs the best in terms
of random error in both the spring (regional mean σ = 1.0)
and autumn (regional mean σ = 1.02) seasons. IMERG_F_Cal

consistently exhibits the lowest σ values among the four SPEs
[see Fig. 10(m) and (o)].

In summary, IMERG_F_Cal demonstrates the most consistent
performance among the four SPEs, with the smallest random
error. It performs well in terms of random error during the winter
season, and despite larger random errors in the summer season, it
still outperforms the other SPEs in terms of random error during
the spring and autumn seasons.

IV. DISCUSSION

A. Possible Explanations for Different Error Characteristics
of IMERG

In this study, a systematic evaluation of the error charac-
teristics of three versions of four IMERG SPEs (IMERG_E,
IMERG_L, IMERG_F_Uncal, and IMERG_F_Cal) at the
hourly scale was conducted based on ground station observations
in the Yellow River Basin of China. In addition, an improved
error component method was employed to trace the sources of
these errors. The results indicated that IMERG is generally able
to capture the spatial distribution patterns and temporal varia-
tions of rainfall. However, it still exhibits various errors, which
differ significantly across different regions, seasons, rainfall in-
tensities, and terrain conditions. In this context, we compared our
findings with previous studies to explore the potential reasons
behind these errors.

First, our findings indicate that different versions of IMERG
SPEs exhibit seasonal variations in performance (see Figs. 3, 6,
and 7). Overall, the worst performance is observed during winter,
followed by summer, while spring and autumn show better
performance. This seasonal difference is most pronounced in the
IMERG_F products (IMERG_F_Uncal and IMERG_F_Cal).
This seasonal variation has been observed in previous studies [1],
[18], [43]. The variation is mainly attributed to the differences in
precipitation intensity across seasons. However, the poor perfor-
mance during winter can also be attributed to factors, such as the
presence of solid precipitation phases and frozen surfaces, which
will be discussed in detail later. Spring, summer, and autumn
are generally characterized by liquid-phase precipitation, i.e.,
rainfall. Our study findings reveal a significant overestimation
of total precipitation by IMERG during summer in the Yellow
River Basin, although this overestimation is partially offset by
the positive and negative biases of missed bias and false bias (see
Fig. 6). The poor performance in summer precipitation could
be related to the presence of more convective rainfall during
this season, and the PMW and IR sensors have limitations in
accurately retrieving convective precipitation [7].

We found that in the Yellow River Basin, IMERG SPEs are
significantly influenced by terrain (see Fig. 6). For example,
the absolute values of total bias and hit bias for IMERG_E,
IMERG_L, and IMERG_F_Uncal show a decreasing trend fol-
lowed by an increasing trend as elevation increases. In aD-
Dition, in spring, the absolute values of missed bias for all
SPEs show an increase with higher elevation [see Fig. 6(e)–(h)].
Numerous studies have found that complex terrain can affect
the precipitation monitoring capability of SPEs [22], [51], [52].
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Complex terrain can influence local climate and generate oro-
graphic precipitation. Due to factors, such as beam blockage,
overshooting, broadening, and ground clutter, PWM and IR
sensors face challenges in capturing such precipitation events
[52].

During the error characteristic analysis of IMERG SPEs, we
aim to assess the monitoring capability of IMERG precipitation
frequency by using the error-component method. For example,
we found a significant number of false alarms in IMERG SPEs
during all four seasons (see Figs. 12–15). This directly con-
tributes to the false bias observed in IMERG SPEs throughout
the seasons (see Fig. 16). In addition to inadequate monitoring
of hourly precipitation events, the capability of IMERG SPEs
to detect different intensity precipitation events is also limited.
Based on our comparisons (see Fig. 7), we observed a clear
dependence between the precipitation event detection capability
of IMERG SPEs and precipitation intensity, which was also
noted by Chen et al. [9]. In previous studies, the general over-
estimation of light precipitation and underestimation of heavy
precipitation in SPEs has been a common finding [18], [34], [53].
Insufficient capture of different intensity precipitation events
directly impacts the accurate estimation of precipitation amounts
[54].

As mentioned earlier, IMERG SPEs perform poorly during
winter, exhibiting low POD, high false alarm rate (FAR), and
very high missed detection (MIS). The subpar performance of
IMERG SPEs during winter can be attributed to the follow-
ing factors. First, the current microwave precipitation retrieval
techniques face challenges in distinguishing between the ra-
diation signals of precipitation and strong scattering signals
from land surfaces [55]. Therefore, when the winter surface
consists of frozen surfaces, such as snow or ice, the PMW sen-
sors provide limited information about effective precipitation.
Second, the near-infrared sensors also have limited capability
to monitor the infrared signals of winter precipitation [56].
This phenomenon has also been observed in other regions [23],
[52].

During the analysis of error characteristics, we identified a
notable overestimation of precipitation in the vicinity of the
Yellow River channel in IMERG SPEs. Upon comparing the
data, it became evident that this issue could be attributed to
the presence of the river channel and small water bodies on the
surface (see Fig. 11 in the Appendix). This phenomenon is likely
caused by the contamination of corresponding pixels due to the
presence of small water bodies or the river channel, leading to
the formation of mixed pixels. The current PMW frequencies
are inadequate for accurately characterizing the discrepancies
in emissivity and land surface brightness temperature between
water surfaces [39], [57].

B. Uncertainties

Ground-based precipitation observations are often considered
to be the most reliable. However, there are still various potential
errors in the error evaluation based on station observations.
Firstly, station observations reflect the precipitation measure-
ments at the specific location of the station, while the SPEs

represent the estimated average precipitation at the pixel scale.
Therefore, there is an issue of spatial scale mismatch [9]. As the
station density becomes sparser, the error due to spatial scale
mismatch increases. Thus, both station density and distribution
uniformity affect the accuracy of precipitation product evalua-
tion [58]. In fact, in high-altitude mountainous areas and regions
with complex terrain, the availability of station observations is
limited, and the ground-based observations may not be as “truth-
ful” as expected. Moreover, the station observations themselves
may contain errors and uncertainties.

In this study, strict screening criteria were applied to the
station data used, and only SPE grids containing at least one
station were considered to minimize the uncertainties introduced
by station observations. However, the following uncertainties
may exist: 1) the uneven distribution and limited coverage of
meteorological stations may affect the evaluation results. In
the Yellow River Basin, for example, the density of meteoro-
logical stations is higher in the middle and lower reaches, but
lower in the upper reaches. 2) In addition, the ground-based
observations reflect the precipitation at the monitoring location,
while the IMERG SPEs represent the average precipitation
within a spatial area of 0.1° × 0.1°. This spatial mismatch
is a common issue in the current quantitative evaluation of
SPEs, which we did not consider and can affect the evaluation
results.

V. CONCLUSION

In this study, we conducted a systematic evaluation of the
four IMERG SPEs from three algorithm version against ground
observations over the Yellow River Basin using an improved er-
ror component decomposition method precipitation. The major
conclusions can be summarized as follows.

1) IMERG SPEs have general capability in capturing pre-
cipitation patterns, but exhibit obvious spatial hetero-
geneity and seasonal uncertainties. IMERG_F_Cal has
the highest accuracy (CC = 0.72; RMSE = 1.23 mm/d)
and most stable performance with best event detection
capability (POD= 52.7%; MIS= 47.3%; FAR= 59.2%).
IMERG_F outperforms IMERG_E and IMERG_L. False
bias is the main error component, followed by missed
bias.

2) IMERG SPE errors are dependent on elevation. False bias
is the main error source at elevations below 800 m in
spring, summer, and autumn. While missed bias dominate
the performance of IMERG SPEs due to the misdetection
of precipitation events in winter.

3) IMERG SPEs’ ability to capture precipitation events is
strongly correlated with precipitation intensity. Except for
winter, IMERG SPEs exhibit high POD and MIS values
for light precipitation events. However, during winter,
their performance is poor for both light precipitation and
rainstorms.

4) IMERG_F_Cal has the lowest systematic and random
errors, followed by IMERG_F_UnCal. IMERG_F is less
affected by these errors than IMERG_E and IMERG_L.
The gauge correction in IMERG_F_Cal reduces errors.
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APPENDIX

TABLE II
DEFINITION OF HIT, FALSE, AND MISSED

Fig. 11. Spatial distribution of gauge observations (k) and four IMERG SPEs (l)–(o) summer mean daily precipitation in the Yellow River Basin, 2019–2021.

Fig. 12. IMERG SPEs spatial distribution of categorical metrics for POD, MIS and FAR in spring. IMERG_E (a)–(c); IMERG_L (d)–(f); IMERG_F_UnCal
(g)–(i); IMERG_F_Cal (j)–(l), respectively. It should be noted that the 0.1mm/h rain/no rain threshold is used here.
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Fig. 13. IMERG SPEs spatial distribution of categorical metrics for POD, MIS and FAR in summer. IMERG_E (a)–(c); IMERG_L (d)–(f); IMERG_F_UnCal
(g)–(i); IMERG_F_Cal (j)–(l), respectively. It should be noted that the 0.1 mm/h rain/no rain threshold is used here.

Fig. 14. IMERG SPEs spatial distribution of categorical metrics for POD, MIS and FAR in autumn. IMERG_E (a)–(c); IMERG_L (d)–(f); IMERG_F_UnCal
(g)–(i); IMERG_F_Cal (j)–(l), respectively. It should be noted that the 0.1 mm/h rain/no rain threshold is used here.
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Fig. 15. IMERG SPEs spatial distribution of categorical metrics for POD, MIS and FAR in winter. IMERG_E (a)–(c); IMERG_L (d)–(f); IMERG_F_UnCal
(g)–(i); IMERG_F_Cal (j)–(l), respectively. It should be noted that the 0.1 mm/h rain/no rain threshold is used here.

Fig. 16. Spatial distribution of the value of IMERG SPEs for total bias, hit bias, missed bias, and false bias at the hourly scale in winter. IMERG_E (a)–(d);
IMERG_L (e)–(h); IMERG_F_UnCal (i)–(l); IMERG_F_Cal (m)–(p), respectively.
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