IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

6253

MSB-Net: An End-to-End Network for Extracting
Building from High-Resolution
Remote Sensing Imagery

Guiwen Lan, Jia Wei

Abstract—Extracting buildings from high-resolution remote
sensing imagery (HRSI) is of great significance to emergency man-
agement, land resource utilization, and analysis, as well as city plan-
ning and construction. However, due to the complex backgrounds
and diverse appearances and different sizes of buildings in HRSI,
most existing methods for automatic building extraction are diffi-
cult to obtain strong building feature representation from low-level
and high-level features. Furthermore, existing research mainly
focused on regional accuracy, whereas less attention was paid to
the description of building boundaries. In this article, MSB-Net,
an end-to-end neural network, is proposed to address these issues.
A multiscale feature fusion module (MSFFM) is designed to capture
and fuse multiscale features. A local branch (LB) constructed by
the MSFFM and position attention, is used to obtain long range
of context information between different positions and extract the
essential features of buildings (e.g., shapes, edges) from low-level
features. And a global branch (GB) is designed to use the MSFFM
and channel attention to enhance high-level features. Therefore,
our method can not only obtain information on building-related
attribute categories, but also capture the rich context information in
channel dimensions. The boundary enhancement and completion
module take the output of the GB and LB as input to search for the
missing parts and details of buildings to improve the segmentation
accuracy and boundary quality. Our method is tested on two public
building datasets and achieves superior classification performance.

Index Terms—Boundary enhancement, building extraction,
multiscale feature fusion.

1. INTRODUCTION

XTRACTING buildings from high-resolution remote
E sensing imagery (HRSI) can be of great help in various
fields, including emergency management, land resource utiliza-
tion, city planning and construction [1], [2], [3], and so on.
With the improvement of HRSI data quality and availability,
automatic building extraction from HRSI has become a hot
research topic. However, there are still many challenges in
building extraction for the following reasons. For example, high-
resolution remote sensing images often exhibit small interclass
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discrimination and high intraclass variance, such as buildings
with varying colors, textures, and sizes. In addition, buildings
are frequently sheltered by trees and/or obscured by shadows. It
is still necessary to design more effective methods for building
extraction from HRSI.

Traditionally, building extraction mainly relies on feature op-
erators designed by using features such as the spectra [4], texture
[5], geometry [6], edges [7], and shadows [8] of buildings.
Some algorithms in common use [9], [10], [11] utilized building
features as auxiliary information to extract buildings. However,
the abovementioned methods heavily rely on prior knowledge
and handcrafted features, so it is difficult for them to achieve high
recognition accuracy, and these methods are typically applicable
to specific tasks.

Fully convolutional networks (FCNs) can be regarded as a
groundbreaking work in image semantic segmentation [12]. By
replacing the last fully connected layer of CNN with a transposed
convolutional layer, FCN can conduct pixelwise prediction.
Many semantic segmentation methods based on FCN were pro-
posed, such as SegNet [13], PSPnet [14], Deeplab [15], and UNet
[16], [17], [18] series, which achieve promising performance
on some challenging datasets. Some FCN-based methods were
then modified and improved to extract buildings from remote
sensing images. At the same time, a lot of methods for building
artificial neural networks, such as residual connection [19],
spatial pyramid pooling [20], capsule feature pyramid network
[21], multipath hybrid dilated convolution (HDC) [22], and so
on, are applied to fuse or obtain multiscale features among
different layers, and exchange information across channels, in
order to improve the accuracy of segmentation and extraction.
In [19], the features of spatial detail information of the buildings
are highlighted with spatial attention units and residual learning,
and the contextual information is captured with global features
information awareness modules, then the features of different
levels are aggregated with cross level feature recalibration mod-
ules to bridge the semantic gap between low- and high-level
features. CapFPN by Yu et al. [21] uses a set of capsule layers
instead of ordinary convolutional layers in its feature pyramid
network, in order to represent the relationships between features
at different positions. Multipath hybrid attention network [22]
adopts a multipath HDC framework to capture building features
with varying sizes and styles.

Furthermore, some studies have introduced attention mech-
anisms to fuse multilevel features, e.g., scene-driven multitask
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parallel attention [23] and attention block [24]. In [23] scene-
driven multitask parallel attention is proposed to improve the
image interpretation based on the scene prior, so as to extract
buildings in large areas that cover different scenes. In [24], a
multiloss neural network is designed by improving the sensi-
tivity of the model with the attention block and suppress the
background effects in irrelevant feature regions.

With the successful application of transformer to computer
vision tasks, transformer-based building extraction has attracted
a lot of attention, e.g., [25] and [26]. In [25] Swin (shifted
windows) transformer is taken as the backbone for building
extraction and inserted into a SOTA structure. In [26], a dual-
pathway transformer structure is designed to learn the long-term
dependency of tokens in both their spatial and channel dimen-
sions. To reduce the computational complexity, buildings are
represented as a set of “sparse” feature vectors, based on the as-
sumption that single buildings in remote sensing images usually
only occupy a very small part of the image pixels. Especially,
the transformer-based segment anything model (SAM) [27] is
regarded as a foundational model for image segmentation for
its powerful generalization capabilities. However, SAM heavily
relies on prior manual guidance, in [28] RSPrompter is proposed
for learning how to generate appropriate prompts for SAM so
as to produce semantically discernible segmentation results for
remote sensing images. With a lightweight feature enhancer to
collect features from various intermediate layers of the SAM
ViT backbone, RSPrompter can generate prompts with semantic
categories to enable SAM to generate multiple instance-level
masks with category labels. Comparatively speaking, RingMo
[29] is specifically designed as a foundation model develop-
ing framework for remote sensing image interpretation, which
aims to obtain the foundation models trained in a generative
self-supervised manner. The training method has an encoder—
decoder structure, which takes ViT and Swin Transformer to
extract latent representations of masked images and reconstruct-
ing the original images with L1 loss function. The pretraining
foundation models can then be used in different downstream
tasks, such as object detection and image segmentation. Ob-
viously, transformer-based methods have been proven to be
promising in this field, but they usually require a large volume
of labeled training samples and computing resources, so it is
not suitable to design lightweight building extraction algorithms
with transformer. The FCN-based methods are still appealing in
downstream tasks such as building extraction from HSRI.

Although the FCN-based approaches mentioned earlier have
achieved significant advancements in building extraction, there
are still some issues that need to be addressed. First, the buildings
in HRSTI have different sizes, diverse textures, and varied colors,
which makes it difficult for most FCN-based networks to obtain
the strong building feature representation. Second, boundaries
can effectively describe the morphology and shape of buildings.
The abovementioned FCN-based methods primarily focus on
regional accuracy while frequently simplifying the description
of building boundaries, so that they usually produce blurry
boundaries in the extraction results and are unable to preserve the
basic morphology and shape of the buildings. Therefore, some
postprocessing methods [30], [31] or probability graph models
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[32] are widely adopted to improve boundaries of building
segmentation.

In this article, an end-to-end network, MSB-Net, is designed
to tackle the aforementioned issues. Different from the afore-
mentioned approaches, our method enhances both low-level
features and high-level features to obtain strong representation of
building features, and reverse attention (RA) [38] is introduced
to maintain the morphological shapes of the buildings, so as to
improve boundary quality and regional segmentation accuracy.
The main contributions are as follows.

1) A multiscale feature fusion module (MSFFM) is designed

to effectively capture multiscale features. It is used as
a decoder and encoder in the local branch (LB) and the
global branch (GB). The LB can highlight detailed infor-
mation (shape, edges, etc.) about buildings in low-level
feature and establish long distance dependency between
different positions by using position attention [33]. In the
GB, channel attention [33] is used to suppress nonbuilding
features in the high-level features and extract semantically
strong features for building extraction.

2) A boundary enhancement and completion module
(BECM) is designed to rectify the inconsistent predictions,
and improve the completeness segmented regions and the
clarity of building boundaries, by establishing the relation-
ship between regions and boundary cues with RA [34].

3) We compared and tested our method and other methods on
the WHU aerial building dataset and INRIA Aerial Image
Labeling dataset. We have achieved optimal results and
our method can extract buildings of different scales and
retain clear boundary.

The rest of this article is organized as follows. In Section II,
the methodology of MSB-Net is introduced in detail. The ex-
periment settings and the datasets are introduced in Section III.
Section IV covers the comparative experiments, ablation exper-
iments, and the discussion. Finally, Section V concludes this
article.

II. METHODOLOGY

Fig. 1 presents the structure of MSB-Net. It adopts ResNet50
[35] as the backbone network. ResNet50 is divided into four
stages, each of which reduces the spatial resolution of the image
by 1/2. The images are fed into ResNet50 to obtain four stages
of feature maps. The low-level features, namely, Features 1
and 2, are input into the local branches to capture essential
features of the building, such as shape and edges. Moreover,
the high-level features, namely, Features 3 and 4, are utilized
in the GBs to integrate the semantic information of buildings
and obtain attribute information. Thereafter, we employ an ag-
gregation module (AM) to aggregate the feature maps from the
two branches, resulting in a global feature map. To further refine
the boundary information of buildings and enhance the overall
integrity of the extracted outputs, this global feature map, along
with the individual feature maps from the two branches, is fed
into the BECM. This module employs high-level feature maps
as guidance regions to rectify the inconsistent predictions in the
lower level feature maps.
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Fig. 1. Framework of MSB-Net.

A. Multiscale Feature Fusion Module

The ordinary 3 x 3 convolution operation is widely
used in CNNs for feature learning. However, it requires
stacking a lot standard 3 X 3 convolution layers to capture
the multiscale features of the objects. On the contrary,
the dilated convolution method [36] can increase the
receptive field while keeping the size of the feature map
unchanged. In this article, we design a MSFFM to capture
and aggregate multiscale context information. By stacking
dilated convolutions with different dilation rates and ordinary
convolutions and then concatenating feature maps with different
receptive fields, MSFFM can capture and fuse multiscale
features.

MSFFM is designed as a parallel structure with five branches,
as shown in Fig. 3, Feature A denotes the input feature maps.
To reduce the number of channels of the feature maps, a 1 x
1 convolution layer is used in each branch except branch 1. In
branch 1, two 3 x 3 convolutions are stacked. At the same time,
to obtain the multiscale feature of the building, branches 2, 3,
and 4 add a 3 x 3 dilated convolution layer [dilation rate is
2(k-1)] after the 1 x 1 convolution layer (k is the corresponding
branch number) and branch 5 add a 1 x 1 convolution layer. To
aggregate multiscale feature, the results of the last four branches
are concatenated. After an addition operation between the result
of the above 1 x 1 convolution and Feature A, the output of
Branch 1 is connected to the addition result to complement and
fuse multiscale feature.
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Fig. 2. Reverse attention module and AM.

B. Dual-Branch Structure

The dual-branch structure, which consists of the GB and the
LB, is a standard encoder—decoder architecture that enables the
acquisition of multilevel feature maps. It exploits skip connec-
tions to complement spatial information and facilitate the fusion
of deep and shallow features. To capture multiscale building
features, MSFFM is used as the encoder and decoder of both the
GB and the LB.

1) Local Branch: Though low-level features have more de-
tailed information (color, outline, texture, etc.), they contain a lot
of noise and lack of semantic information, which could lead to
misclassification of objects. As the position attention can encode
a wider range of contextual information into low-level features
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[33], the LB is designed as a combination of the MSFFM and
the position attention module to enhance the representation ca-
pability of low-level features and highlight detailed information
(shape, edges, etc.) about buildings.

The LB is shown in Fig. 4. First, the feature maps are pro-
cessed with four encoders with a downsampling stride of 2.
Let {F} € RO HixWi | ¢ {1,2,3,4}} denote feature maps
generated from the encoder, which are sorted in ascending order
from top to bottom of the encoder network. Here K = 4. Second,
F} is fed into a position attention module to compute position
attention map to obtain the strength of the feature correlation
between pixels. The position attention map is then added to F.{*,
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resulting in S(F}) which is to capture long-range information
between the locations of each building. Finally, S(F}) is passed
through four decoders by setting the upsampling factor is 2
to increase the size of the feature maps and obtain multiscale
building features and more semantic information from low-level
features.

The input of the LB consists of Feature 1 (C = 256 channels,
H, W = 128 x 128) and Feature 2 (C = 512 channels, H, W =
64 x 64). Here, C means channels, and H, W means feature map
size. The outputs are denoted as f; and f5 (f; and f5 serve as
inputs to the AM and BECM). Before being input into the LB,
the following operations are performed on the input. Feature 2 is
firstly upsampled to match the size of Feature 1. Then, to reduce
the computational complexity, a 3 x 3 convolutional layer is
used for both Features 1 and 2 to reduce the number of channels
to 64.

2) Global Branch: High-level features contain rich semantic
information and are very useful and significant for classification.
However, due to the potentially complex texture of buildings
and background in HRSI, it is necessary to highlight building
features and suppress nonbuilding features for effective building
extraction. As the channel attention mechanism [33] can empha-
size interdependent channel maps by integrating related features
between all channel maps, to this end, the GB is designed as a
combination of the MSFFM and the channel attention module.

The structure of the GB and the LB is exactly the same,
except that the positional attention mechanism is used in the LB,
whereas the channel attention mechanism is used in GB. First,
the feature maps are processed with four encoders with a down-
sampling stride of 2. Let { ¢ € RCx>*HexWi | e 1.2 3 4}}
be four feature maps obtained by the encoder from top to bottom.
And then, F{ is fed into a channel attention module to compute
channel attention map to obtain the strength of the feature
correlation between channels. The channel attention map is then
added to F, resulting in C'(F{), which highlights the building
features and clusters rich context information. Finally, C'(F{?) is
passed through four decoders with the up-sampling factor is 2 to
increase the size of the feature maps and explore the semantically
strong features related to buildings in the high-level features.

The input of the GB consists of Feature 3 (C = 1024 channels,
H, W =32 x 32) and Feature 4 (C =2048,H, W =16 x 16). The
outputs are denoted as f3 and f, (f3 and f4 serve as inputs to the
AM and BECM). Before being input into the LB, the following
operations are performed on the input features. Feature 4 is firstly
upsampled to match the size of Feature 3. Then, to reduce the
computational complexity, both feature maps are passed through
a1 x I convolution layer to reset the number of channels to 64.

C. Boundary Enhancement and Completion Module

The BECM is designed to refine the boundaries of buildings
and maintain their regional integrity. As it is well known, high-
level semantic information (such as the coarse spatial locations
and shapes) of objects is encoded in the high-level features,
whereas low-level semantic information (such as the details of
the boundaries) is encoded in the low-level ones. Many studies
have shown RA [34] is effective in refining the shapes and the
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Fig. 5. 'WHU Building dataset.
boundaries of detected objects, by taking deep-level features as
guidance for shallow-level features to rectify the inconsistent
predictions. In this article RA is used as a component of the
BECM, to establish relationships between regions and bound-
aries, to improve boundary quality and regional segmentation
accuracy.
In the BECM, shown in Fig. 1, we design four branches
to fully use the input feature maps from the GB and LB by
establishing relationships between regions and boundaries in
top—down manner to rectify the inconsistent predictions. This
goal is to improve the boundaries of buildings and explore
the missing parts of the target. The purpose of the AM is to
aggregate feature maps into higher level layers, resulting in a
global feature map that acts as the initial guidance region. The
feature map M (32 channels, the size 128 x 128) is obtained
by passing {f;,i € {1,2,3,4}} through the AM. As shown in
Fig. 2, initially let i = 4, AM is executed as the following steps:
1) The feature f; and M is fed into the RA module to compute
the RA feature map R;;

2) An addition is performed in R, and M and obtain the
rectified feature map F;;

3) Let M = P;, theni=i-1, repeat steps 1) and 2), until i =
1, to obtain the final corrected feature map.

III. EXPERIMENTS

To evaluate the ability of MSB-Net to extract buildings from
HRSI, we trained and tested our model on the WHU building
dataset and the INRIA Aerial Image Labeling dataset, where
the binary cross-entropy loss function [37] is the loss function.
We used evaluation metrics such as precision accuracy (PA),
precision (PC), intersection over union (IOU), F1 score (F1),
Recall, as well as visualizing the results to assess and analyze
the performance of MSB-Net.

A. Dataset

WHU Building dataset (WHU dataset) [38] comprises un-
manned aerial vehicle and satellite images with a resolution
ranging from 0.0075 m to 0.3 m. The dataset was divided into a
training set, validation set, and test set, including 4736, 1036, and
2416 images, respectively, with a size of 512 x 512 pixels. We
followed the official settings in our experiments. Some images
and ground truth of the dataset are presented in Fig. 5.

There are 360 remote sensing images in the INRIA Aerial
Image Labeling dataset (InriaAIL dataset) [39], with a spatial

Fig. 6.

InriaAIL dataset.

resolution of 0.3 m/pixel and a size of 5000 x 5000 pixels. The
dataset includes a training set and a test set, each containing 180
images that cover a range of different areas. Only image labels
(ground truth) are provided in the training set, whereas they are
not provided in the test set. We divided the training set according
to the guidelines in [39], selecting the first five images of each
region as the test set, and the remaining images as the training set
and verification set. We have opted to crop the original images
into 512 x 512 pixels with an overlap of 104 pixels, due to
the limitation of GPU memory. To ensure effective training, we
removed images without buildings. Fig. 6 shows some samples
from the dataset.

B. Experimental Details

In our experiments, all the models were implemented to the
PyTorch framework on an NVIDIA Quadro RTX 5000 GPU (16
G). The Adam optimizer [40] was used with an initial learning
rate of 2e—4 and a batch size of 12. An initial learning rate
was subsequently reduced by 0.95 after every 1 epoch. We set
weight decay to le—4 and adopted data augmentation strategies
to prevent overfitting. Data augmentation strategies consist of
random rotations in increments of 90° from 0° to 270° along both
horizontal and vertical directions, random vertical and horizontal
flip. Our model was trained for 100 epochs on the GPU.

IV. RESULTS AND DISCUSSION
A. Experiments on WHU Building Dataset

We conduct a comparison with seven other methods on the
WHU dataset to validate the effectiveness of the proposed
method. These methods included three classic semantic segmen-
tation methods and three recent works, namely, U-Net, Link-Net
[41],DeepLabV3+-[42], SST [26], and HRNet [43] on the WHU
dataset, where U-Net and DeepLabV3+ used ResNet50 as their
feature extractor. We used the same settings in the InriaAIL
dataset. We also cite recent work to validate the effectiveness of
our method, namely, CFENet [44]. Due to the limitation of GPU
memory, we chose SST (RS18, S4) and HRNet-w30.

We quantitatively evaluated the performance of these seven
methods, and their performances are presented in Table I. In
terms of all evaluation metrics, our method surpasses other
methods. In the comparison with classic semantic segmentation
methods, SST performs the best in building extraction tasks.
Compared with SST, our method improves by 0.25% on PA,
1.22% on PC, 1.1% on F1, 0.97% on Recall, and 1.94% on IOU.
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TABLE I
PERFORMANCE OF SEVEN METHODS ON THE WHU DATASET
Method PA (%) PC (%) F1(%) Recall (%) 10U (%)
U-Net 98.21 91.85 91.97 92.09 85.13
DeepLabV3+ 98.00 91.76 90.94 83.99 83.39
Link-Net 97.99 90.09 91.05 92.03 83.57
HRNet 98.18 91.72 91.84 91.96 84.91
SST 98.47 92.79 93.15 93.52 87.19
CEFNet 98.71 91.09 92.62 - 87.22
MSB-Net 98.72 94.01 94.25 94.49 89.13
“-” Indicates that the data item was not provided in the original literature.
The bold values indicate the best-performing numerical values for each evaluation indicator.
TABLE II
PERFORMANCE OF SIX METHODS ON THE INRIAAIL DATASET
Method PA (%) PC (%) F1(%) Recall (%) 10U (%)
U-Net 96.36 87.46 86.68 85.92 76.49
DeepLabV3+ 95.90 85.94 84.96 83.99 73.85
Link-Net 95.91 86.98 84.79 82.71 73.60
HRNet 96.11 86.97 85.67 84.40 74.39
SST 96.31 87.40 86.47 85.56 76.16
MSB-Net 96.63 87.67 87.81 87.94 78.26

The bold values indicate the best-performing numerical values for each evaluation indicator.

Compared with recent work, our method also demonstrates good
performance.

As shown in Fig. 7, we qualitatively evaluated the building
extraction ability of six methods. Compared with these meth-
ods, better visual results in building extraction are obtained
by MSB-Net. U-Net can identify most of the building pixels
but cannot maintain the shape of the building. Link-Net cannot
effectively recognize and overcome the influence of background
with similar spectra (row 5). The main problem of DeepLabV3+
is that the boundary of the extraction result is jagged and not
smooth enough, and it cannot effectively overcome the influence
of building shadows and tree occlusion. HRNet is unable to
fully recognize large buildings (row 6). Aside from our method,
SST performs best in terms of visual effect. And our method
outperforms SST in overcoming shadow and tree occlusion. (row
4 and row 7).

Rows 1-4 correspond to the extraction of small-scale build-
ings, our method extracted buildings quite well even for
very small buildings (row 1 and 2), whereas other methods
either did not recognize them or only partially recognized
them. Among them, U-Net recognized most of the build-
ings but failed to maintain their basic shape (row 1). SST
identifies fewer correct pixels than our methods (row 2).
Regarding the extraction of densely packed small buildings,
our method overcame the influence of building shadows and
tree occlusion, extracting buildings while also ensuring clear
boundaries. Regarding portions heavily covered by trees, our
method extracts majority of the buildings (row 4). Rows 5-7 rep-
resent the result of multiscale building extraction. Our method

can successfully achieve clear boundaries of large buildings
(rows 6-8) with complex boundaries. It effectively overcame the
influence of the background environment and complex building
texture. In row 6, U-Net and SST recognized most of the build-
ings but with unclear boundaries. Rows 5 and 8 show building
extraction results at different scales, and our method almost
perfectly eliminates the adhesion problem of adjacent buildings,
ensuring the integrity and clear boundaries of small buildings
with complex boundaries.

B. Experiments on InriaAIL Dataset

We conduct a comparison with six methods on the InriaAIL
dataset to further validate the performance of our method.
Table II presents the experimental results of different methods.
Our model outperformed other models in all evaluation metrics.
Fig. 8 presents the visual extraction results of MSB-Net and five
other methods.

For buildings with complex boundaries, the results of rows 1
and 2 indicate that our method can extract complete buildings
with clear boundaries. With respect to buildings with complex
textures, the results of the rows 7 and 8 demonstrate that we
effectively overcome the influence of complex textures on build-
ing extraction results, basically ensuring the integrity of build-
ings. Although U-Net can overcome the influence of complex
textures, it cannot ensure the basic shape of buildings relative
to our method. The results in rows 3—-6 demonstrate that our
method successfully mitigates the impact of building shadows
and extracts large and small buildings effectively, solving the
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HRNet MSB-Net

Performance of six methods on the WHU dataset. White, green, and red pixels on the map denote true positive, false positive, and false negative predictions,

respectively. The area in red box shows the regions where the comparative impact is more obvious.

adhesion phenomenon of small dense buildings. Other methods
cannot distinguish objects with similar building features well
(row 6).

According to the above visualization results and evaluation
metric analysis, it can be deduced that MSB-Net effectively
enhances the capturing of multiscale features of buildings, ag-
gregates context information, and enhances boundary informa-
tion. Therefore, MSB-Net demonstrated superior visual extrac-
tion capabilities on both datasets, particularly for small-scale,
large-scale, and buildings with complex shape. It successfully
overcomes the challenges caused by tree occlusion and building
shadows.

C. Ablation Experiment

We conducted validation of the three modules in MSB-Net
using the WHU dataset, taking FCN (ResNet50) as the baseline

model. FCNx* denotes the utilization of 3 x 3 convolutions to
decrease the channel dimensions of feature maps from all four
stages of ResNet50 to 16 individually. Then, we perform 3 x
3 convolution to aggregate these feature maps and obtain the
final resulting map. The effectiveness of the three modules was
quantitatively evaluated using F1 score and IOU, as shown in
Table III. Compared with FCN, FCNx improved F1 and IOU by
14.36% and 22.25%, respectively. It can be inferred from this re-
sult that the utilization of both high-level and low-level features
can make a significant improvement in building segmentation
results.

Compared with the baseline network, each individually added
module in the experiments has yielded good results. In partic-
ular, the addition of LB achieved the best results, with the F1
score and IOU increasing from 79.98% and 65.26% to 93.84%
and 88.40%, respectively. The reason for this improvement is
that LB, when processing low-level features, not only extracts
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the semantic information of buildings but also emphasizes the
spatial information of the buildings, whereas GB primarily
emphasize semantic information and the results of BECM are
largely dependent on the accuracy of the predicted results of
the input feature maps. It can be inferred from this result that
spatial information contained in low-level features is crucial
for building recognition. Furthermore, the incorporation of both
the LB and GB modules further enhanced F1 score and IOU
by 14.86% and 23.44%, respectively, illustrating the improved
feature extraction ability achieved by leveraging high-level and
low-level features based on their respective characteristics.
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HRNet

MSB-Net

Results of different methods on the InriaAIL dataset. The area in red box indicates the areas where the comparative effects are more pronounced.

When all three modules are used in MSB-Net, F1 and IOU
are 94.25% and 89.13%, respectively. In summary, the ab-
lation experiments conducted for each module demonstrated
the effectiveness of LB, GB, and BECM in improving model
performance. Importantly, each component is essential to obtain
the best building extraction results. From Table III, it can be
observed that the utilization of high-level features is not as
effective as that of low-level features. In future work, without
compromising the model’s runtime, the focus of improvement
will be on further exploring and exploiting high-level feature
information.
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TABLE III
RESULT OF THE ABLATION STUDY

Method BaseNet Unit F1(%) I0U(%)
LB GB BECM
FCN ResNet50 78.98 65.26
FCN* ResNet50 93.34 87.51
MSB-Net ResNet50 \ 93.84 88.40
MSB-Net ResNet50 \ 90.85 83.24
MSB-Net ResNet50 \ 91.31 84.02
MSB-Net ResNet50 v \ 94.01 88.70
MSB-Net ResNet50 v \ v 94.25 89.13

ResNet-50 Output Ground Truth

Fig. 9. Heatmaps of different images. ResNet-50 Output is the feature map generated by Res-Net-50, whereas MSB-Net Output is the feature map outputted by
MSB-Net.

D. Discussion with fewer parameters and floating-point operations (FLOPs)
tend to offer faster training and inference speeds. Therefore,

1) Model Complexity Comparison: The practical application  models with lower complexity are more suitable for practical
of a model is significantly influenced by its complexity. In the  applications. To provide an objective assessment of the com-
context of building extraction tasks using CNN methods, models  plexity of each method , we calculated the number of parameters
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and GFLOPs of several methods separately, as shown in Fig. 10.
GFLOPs were computed from a tensor with dimensions of 1 x
3 x 512 x 512. Although MSB-Net has a relatively large model
parameter (71.8 M), its GFLOPs are slightly larger than those of
U-Net and Deeplabv3+ by 0.98 G and 4.75 G, respectively. This
result shows that our model demands a relatively larger storage
capacity in comparison to the other five approaches, while
attaining faster inference speed. Notably, our method exhibits the
highest F1 score and IOU among all four methods, indicating its
superiority in terms of segmentation outcomes. In addition, the
SST achieves good results with relatively low GFLOPs. Hence,
it is important for future research to effectively make a tradeoff
between computational complexity and precision.

2) Effectiveness of MSB-Net Modules is Verified by
Heatmaps: We conduct a heatmap analysis on the feature map
of test images to further verify the efficacy of the proposed
modules. The heatmap visualizations of these feature maps
are shown in Fig. 9. The varying levels of brightness indicate
the model’s different levels of attention to building features.
We compared the feature maps outputted by ResNet50 and
MSB-Net. While ResNet50 struggles to effectively suppress
background interference and only provides a rough identification
of building information, it also faces challenges when it comes to
accurately identifying building boundaries. As a result, there is
a higher likelihood for misidentification of objects with similar
spectra as buildings. In the feature heatmap of MSB-Net build-
ings are depicted as red, and background is depicted as blue. The
result shows that MSB-Net can effectively recognize buildings,
and overcome noise interference such as tree obstruction and
building shadows. This indicates that our proposed GB, local
branch, and BECM can effectively extract buildings of different
sizes and make that the extraction results have clear boundaries
and complete regions. As shown in the red box in Fig. 10, our
method still struggles to accurately identify objects that bear a
striking resemblance to the appearance of buildings. Therefore,
we will further investigate this issue in our future research.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

3) Verification of Boundary Shape Learning: To assess the
efficacy of this method in learning boundary shapes, we used
two boundary metrics to quantitatively evaluate its performance,
including Hausdorff distance (HD) [45] and structural similarity
(SSIM) [46].

In total, 95% HD means multiplying HD by 95% to eliminate
the influence of very small outlier clusters. The smaller the
distance, the more similar the predicted shape is to the shape
of the real label. In this article, the ground truth for nonbuilding
areas is 0, and the predicted results that do not contain buildings
have a 95% HD value of 0. SSIM ranges from —1 to 1. The
SSIM is set to 1 when the two images are the same.

The evaluation metrics of the two datasets are shown in
Table IV. Our proposed method achieved the highest values in
F1, IOU, and SSIM, and the lowest value in 95% HD, for both
the InriaAIL dataset and the WHU dataset. This indicates that
MSB-Net exhibit the highest shape similarity and resemblance
to the ground truth values. This result demonstrates the advan-
tage of our method in learning building boundaries and yields
the overall best segmentation results.

4) Generalization Ability of MSB-Net: The Satellite dataset
I (global cities) from WHU Building Dataset [WHU (global
cities)] was selected to evaluate the generalization ability of our
model. This dataset comprises 204 images (512 x 512 tiles)
and encompasses remote sensing images of ten cities, namely,
Wuhan, Taiwan, New York, Santiago, Milan, Venice, Los An-
geles, Ottawa, Cairo, and Cordoba. The images have varying
resolutions ranging from 0.3 m to 2.5 m, and they exhibit diverse
architectural styles and distribution patterns. Hence, this dataset
is highly suitable for validating the generalization capability of
our model.

We conduct transfer learning to validate the generalization
ability of MSB-Net. The training results on the WHU dataset
were tested on the InriaAIL dataset and WHU (global cities),
with results presented in Table V. Similarly, the training results
on the InriaAIL dataset were tested on the WHU Building
Dataset and WHU (global cities), with results shown in Table VI.
Table V shows that our network achieved the best results on the
InriaAIL dataset and Link-Net performed well in WHU (global
cities). Table VI shows that all methods performed well with
transfer learning on the WHU Dataset and WHU (global cities),
however, SST achieved the best results in both datasets.

We observed that methods performing well on the InriaAIL
dataset exhibit relatively poorer performance on the WHU
(global city) dataset. By comparing Tables V and VI, we can
observe that the features learned by various methods on the
InriaAIL dataset are better suited for the WHU (global city)
dataset. This is because compared with the WHU building
dataset, the INRIA dataset contains a greater variety of building
types.

Overall, our approach has demonstrated relatively stable on
different datasets compared with other methods, suggesting a fa-
vorable generalizability of our approach. Itis noteworthy that the
SST, a transformer-based lightweight building extraction model,
exhibited excellent performance in the transfer experiments,
except for the transfer experiments on the WHU dataset and
WHU (global cities) dataset. In future work, we should consider
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TABLE IV
PERFORMANCE OF VARIOUS APPROACHES ON THE WHU DATASET AND THE INRIAAIL DATASET IN TERMS OF F1, 10U, 95% HD, AND SSIM

Method WHU dataset InriaAIL dataset
F1(%) 10U(%) 95%HD SSIM(%) F1(%) 10U(%) 95%HD SSIM(%)

U-Net 91.97 85.13 29.00 94.19 86.68 76.49 49.65 91.42
DeepLabV3+ 90.94 83.39 35.26 93.72 84.96 73.85 55.94 90.84
Link-Net 91.05 83.57 33.15 94.38 84.79 73.60 55.38 90.84
HRNet 91.84 84.91 38.30 94.62 85.67 74.39 59.49 91.26
SST 93.15 87.19 32.17 95.11 86.47 76.16 58.51 91.49
MSB-Net 94.25 89.13 28.33 95.59 87.81 78.26 47.42 92.00

The bold values indicate the best-performing numerical values for each evaluation indicator.

TABLE V
RESULT OF TRANSFER LEARNING BY SIX METHODS ON THE INRIAAIL DATASET AND WHU (GLOBAL CITIES)

Method WHU dataset Transfer to InriaAIL dataset Transfer to WHU (global cities)
F1(%) 10U(%) F1(%) 10U(%) F1(%) 10U(%)

U-Net 91.97 85.13 67.89 51.39 37.90 23.38
DeepLabV3+ 90.94 83.39 53.56 36.58 44.35 28.49
Link-Net 91.05 83.57 57.07 39.93 50.57 33.85
HRNet 91.84 84.91 50.41 33.70 44.99 29.02
SST 93.15 87.19 68.14 51.68 38.33 23.71
MSB-Net 94.25 89.13 68.18 51.72 43.69 27.95

The bold values indicate the best-performing numerical values for each evaluation indicator.

TABLE VI
RESULT OF TRANSFER LEARNING BY S1x METHODS ON THE WHU DATASET AND WHU (GLOBAL CITIES)

Method InriaAIL dataset Transfer to InriaAIL dataset Transfer to WHU (global cities)
F1(%) 10U(%) F1(%) 10U(%) F1(%) 10U(%)

U-Net 86.68 76.49 73.58 58.21 53.68 36.69
DeepLabV3+ 84.96 73.85 78.42 64.50 53.87 36.86
Link-Net 84.79 73.60 79.67 66.21 54.46 37.42
HRNet 85.67 74.39 79.71 66.72 54.38 37.34
SST 86.47 76.16 81.65 68.99 56.70 39.56
MSB-Net 87.81 78.26 75.96 61.24 49.56 33.03

The bold values indicate the best-performing numerical values for each evaluation indicator.

collecting more diverse types of building data to enhance model
generalization. One of the directions for model improvement is
to explore the application of transformers in the model without
compromising its operational efficiency.

V. CONCLUSION

In this article, we propose a new method (MSB-Net) on ex-
tracting buildings from high-resolution remote sensing images.
First, MSB-Net utilizes LB and GB to enhance low-level and
high-level features, and obtains rich contextual information and
multiscale features of buildings within the remote sensing im-
ages. Second, MSB-Net uses BECM to further improve the seg-
mentation accuracy and enhance building boundary information.
We test MSB-Net in the WHU dataset and the InriaAlIL dataset,
achieving IOU scores of 89.13% and 78.26%, respectively. By

comparing with five existing methods, the superiority of MSB-
Net in accurately extracting building footprints was confirmed.
In addition, our method achieved the best scores for boundary
accuracy, as indicated by HD and SSIM metrics. This indicates
that 1) MSB-Net is an effective and accurate building extraction
model, capable of accurately extracting building boundaries,
getting a good result in buildings of different scales, and over-
coming the impact of building shadows and tree occlusions. 2)
MSB-Net exhibits an advantage in learning boundary shapes.
There are several potential avenues for further exploration and
improvement of our method. 1) The model is limited in situations
where there is severe tree shading and shadows. In future work,
we will consider paying more attention to auxiliary information
to solve these problems. 2) The model is highly dependent
on annotated data. In future work, the semisupervised learning
will be considered to reduce the reliance on annotated data and
improve data diversity.
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