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GCFC: Graph Convolutional Fusion CNN Network
for Cross-Domain Zero-Shot Extraction of Winter

Wheat Map
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Baishun Su, and Xingwang Li , Senior Member, IEEE

Abstract—Accurate extraction of winter wheat and its planted
area holds significance for agricultural research and government
real-time food monitoring. Traditional machine learning methods
often demand extensive data and corresponding labels for training
in cross-domain classification problems. The heterogeneity of land
cover types causes an uneven distribution of samples, leading to
unsatisfactory results when these methods are applied directly to
other regions. This article introduces a two-branch Graph Con-
volutional Fusion CNN network incorporating dynamic weighted
stratified loss to address these challenges. To reduce the weight of
losses generated by easily classified pixels, this loss function adds
task masks and category dynamic weights to the cross-entropy loss.
Dual branching merges global insights from graph convolutional
networks with local emphasis from convolutional neural networks.
It enhances the handling of cross-domain classification problems.
The first branch introduces an adaptive mechanism and applies it to
the graph’s adjacency matrix to enhance the model’s adaptability
to different domain graph structures. The second branch alleviates
the oversmoothing problem of edge clustering caused by graph
convolution and handles multiscale and spectral information more
efficiently. The experimental results showed that the proposed
method achieved 99.98% accuracy and good classification results
on the Zhoukou dataset. The zero-shot cross-domain prediction
on the Suixian dataset achieved 96.11% accuracy. Ultimately, the
entire winter wheat planting area of Shangqiu City was extracted
with an accuracy of 91.92%. Numerous experiments and practical
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applications confirm that the proposed method is feasible and
effective for winter wheat cross-domain extraction.

Index Terms—Cross-domain, graph convolution, oversmooth-
ing, winter wheat.

I. INTRODUCTION

FOOD constitutes the fundamental foundation for human
survival and development. Winter wheat occupies a promi-

nent position within the spectrum of major grains in China [1],
[2]. Winter wheat plays a crucial role in China’s agricultural
production, with its output intricately connected to the nation’s
import and export trade policies [3]. Furthermore, the precise
delineation of winter wheat planting areas is of immense signifi-
cance for China’s food security and economic prosperity [4], [5].
Consequently, meticulously examining methods for accurately
extracting winter wheat acreage becomes imperative.

Conventional crop harvesting methods rely on sampling,
counting, and reporting, necessitating extensive field visits by
managers [6]. However, these methods exhibit inherent draw-
backs, including high subjectivity, substantial errors, time-
intensive procedures, slow update rates, and a lack of spatial
distribution [7]. To overcome these limitations, integrating re-
mote sensing techniques into the extraction of feature areas
has emerged as a viable solution for delineating crop cropping
structures [8], [9].

Due to the early limitations of computer hardware and soft-
ware, machine learning-based methods have been used for re-
mote sensing image classification for finite region extraction
applications. Commonly employed approaches included neural
networks [10], [11], support vector machines (SVMs) [12],
[13], decision trees [14], [15], and random forests [16], [17].
Moustakidis et al. [18] introduced a fuzzy decision tree that
utilizes a binary SVM for node discrimination. This approach
demonstrates superior classification performance compared to
traditional SVM and other methods. Liu et al. [19] innovatively
extracted maize drought areas by constructing a vegetation
index time series curve, achieving an extraction with 90.03%
accuracy. Huang et al. [20] introduced a rule-set-based remote
sensing classification method, attaining commendable results in
extracting and estimating date palm plantation areas in the study
region. Zhao et al. [21] employed an enhanced composite kernel
to augment the SVM method, enhancing not only the kernel’s
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generalization ability and learning efficacy but also achieving
high accuracy in remote sensing image classification. While
these methods effectively extract features, it is essential to note
that the extracted features are single-pixel features, and several
drawbacks and shortcomings persist. Challenges include high
data requirements, difficulty in feature extraction, algorithmic
complexity, limited model generalization ability, and sensitivity
to parameter tuning.

With the advancement of deep learning, there is a growing
trend in the semantic segmentation of remote-sensing images us-
ing deep learning techniques [22], [23], [24]. Unlike traditional
machine learning algorithms, deep learning semantic networks
provide a complete pipeline for feature extraction. They use
convolutional operations to maximize the utilization of spatial
information, capturing local structures and relationships in im-
ages. Chen et al. [25] applied high-resolution remote sensing
images for end-to-end segmentation using full convolutional
networks, enabling efficient pixel-level prediction and more
precise segmentation results. In a notable contribution, Zhang
et al. [26] introduced an enhanced segmentation network that
integrates attention with U-Net, achieving superior results in
distinguishing between Amazonian rainforest and nonrainforest
areas. Le et al. [27] used the SegNet architecture for the semantic
segmentation of multichannel airborne images. In addition, Li
et al. [28] proposed reducing the complexity of the dot product
attention mechanism to O(N) core attention. A multiscale at-
tention network is devised to conduct semantic segmentation of
high-resolution remote sensing images, consistently delivering
optimal classification performance with the highest accuracy.
Liu et al. [29] presented multitask pixels end-to-end CNN
RoadNet capable of simultaneously predicting road surface,
edges, and centerline. This work introduces a user interaction
operation, effectively addressing shadows and occlusions in the
road region. Zhao et al. [30] proposed a new spatial attention
pyramid convergence module. Combining the attention mecha-
nism and the multiscale module improves the accuracy of high-
resolution aerial image labeling. Despite their robust feature
representation capabilities, there is a noted underutilization and
under-recognition of features that impact their full potential. The
demanding requirement for a substantial amount of labeled data
for training poses a challenge, considering the time-consuming
and expensive nature of data labeling and sample acquisition.
This challenge is particularly pronounced in the context of winter
wheat sample acquisition, which necessitates availability within
critical cycles. Further investigations are needed to explore
methods that involve reduced data labeling and more suitable
modeling approaches.

Bengio et al. [31] employed a pretraining model using a task-
specific source database to tackle the abovementioned issue.
This approach links an extensive set of labeled source data with
a limited quantity of unlabeled target data, thereby advancing
research in computer vision in visual transfer adaptive learning.
You et al. [32] proposed a generalized domain adaptive approach
that tackles the disparity between the training and testing fields.
Tian et al. [33] introduced a multisource subdomain adaptive
transfer learning method to transfer multisource knowledge
to cross-domain knowledge. The method uses a multibranch

network structure to match the feature space distribution of
each source and target domain. It employs the local maximum
mean difference for a detailed local comparison of subdomain
distributions within different domains of the same category. Zhu
et al. [34] successfully solved the problem that there may be
too little labeled data to construct a good classifier by utiliz-
ing a large amount of unlabeled data and a small amount of
labeled data. Marfurt et al. [35] introduced the application of
deep transfer learning in remote sensing scene classification.
It discussed the advantages and challenges of deep transfer
learning methods in addressing high data demand and insuf-
ficient model generalization capability. Mehmood et al. [36]
summarized how transfer learning is applied in remote sensing
image classification. It discussed the advantages and limita-
tions of transfer learning methods in addressing issues related
to sample scarcity and feature extraction difficulties. Zhang
et al. [37] proposed a novel meta-transfer learning approach
called MetraSAR for recognizing synthetic aperture radar (SAR)
targets across tasks and domains. This method enhances the
effectiveness of transferring knowledge across different tasks
and domains. Knowledge transfer is usually applied between
similar tasks. In remote sensing data, due to climatic reasons,
the remote sensing images of the same feature over different
periods are more different, and there are also phenomena of the
same feature. While transfer learning has made strides in remote
sensing image classification, misclassification remains common
when classifying across geographic regions due to variations in
spectral reflectance and differences in similar features between
different geographic areas.

Compared to the mentioned structures, a graph convolutional
network has proven more effective in establishing correlations
among various land covers [38], [39]. This capability facilitates
the transfer of learned knowledge for application in diverse
domains. First proposed in 2005, it was initially intended to solve
some strictly graph-theoretic problems. The most widely used
GCN, initially proposed by Bruna in 2013 (a student of LeCun),
relies on two classification methods: one in the frequency do-
main (Spectral domain) and another in the spatial domain (Spa-
tial domain) [40]. Zhang et al. [41] proposed a superpixel-based
framework for graphical model categorization. The framework
adopts the superpixel as the fundamental unit of the graphical
model, allowing it to capture contextual information and spatial
dependencies among the superpixel. Ma et al. [42] introduced
a new attention graph convolutional network for effective su-
perpixel segmentation in extensive SAR image datasets. This
model enhances segmentation algorithm efficiency and graph
convolutional network performance by incorporating an atten-
tion layer. Qi et al. [43] proposed a 3-D graphical neural network
designed for constructing k-nearest neighbor graphs on 3-D
point clouds. The network demonstrates proficiency in capturing
long-distance dependencies in images, which poses a challenge
for traditional methods to model. Tian et al. [44] proposed a
novel EGAN-LSTM framework for multiclass geospatial object
detection in HSRI. This framework involves parameterizing and
embedding graph-structured data extracted from image data into
the network for joint learning and model optimization. Liu et al.
[45] introduced CNN-enhanced GCNs for heterogeneous deep
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Fig. 1. Zhoukou dataset. (a) RGB-color map. (b) Ground-truth map.

Fig. 2. Suixian dataset. (a) RGB-color map. (b) Ground-truth map.

networks. Integrating graph encoding into the network addresses
the structural incompatibility between Euclidean data-oriented
CNNs and non-Euclidean data-oriented GCNs. In addition, this
integration enhances the learning of node features, leading to
improved adaptability of graphs to HSI content. Yu et al. [46]
proposed the ConGCN algorithm for HSI classification, incor-
porating an adaptive graph enhancement technique to improve
contrast learning performance by integrating spectral-spatial
prior. While the graph structure enables more accurate feature
extraction, challenges like poor edge effects persist. The method
proposed in the study aims to address issues like pixel ratio
imbalance and the unsatisfactory direct application of the model
across regions in the winter wheat classification task. The pri-
mary contributions of the research are as follows.

1) Aiming at the challenge of information transfer in het-
erogeneous graphs within the cross-domain winter wheat
extraction task, the study proposed the adaptive graph
convolutional network (AGCN), innovatively enhancing
the traditional graph convolutional network. Before con-
structing the adjacency matrix, an adaptive mechanism
is incorporated to weight the edges in the graph dynam-
ically. This enhancement allows the AGCN network to
adjust edge weights based on the input data’s features and
context, enhancing the model’s flexibility in accommo-
dating heterogeneous graph structures. Consequently, the
adaptive mechanism significantly improves the model’s
generalization ability.

2) The study proposed that the PCSNet network tackle the
edge clustering issue arising from graph convolution tech-
niques. Various image regions receive dynamic attention
for feature processing by integrating a spatial channel
attention module (CAM). A spatial spectrum separation
convolution (SSON) [47] module is also introduced to
perceptively analyze features in different frequency bands.
The synergy of the two modules enables the PCSNet
network to capture the multiscale and spectral information
of winter wheat in the image, effectively improving the
grasp of edge information.

3) To further enhance the performance of the cross-domain
extraction task for winter wheat images, the study opti-
mized the PCSNet network by introducing an encoder-
decoder structure to better learn and express the key in-
formation in the images. The optimization boosts perfor-
mance in the cross-domain extraction task and strengthens
the network’s ability to extract features.

4) The study proposed the dynamic weighted stratified loss
(DWSL) algorithm to address sample category imbalance
and enhance segmentation ability for challenging samples
in winter wheat extraction. The algorithm, refined using
the cross-entropy loss function, incorporates task masks
and category dynamic weights to focus the model on
crucial categories and difficult samples. The approach
effectively resolves sample imbalance issues.

II. MATERIALS

A. Dataset

The datasets used in the study were obtained through Sentinel-
2 and retrieved from the Google Earth Engine platform. The
Zhoukou dataset was constructed by selecting the Zhoukou
region at a size of 700 pixels × 500 pixels. The Suixian dataset
was constructed by selecting the Suixian County area at a size of
1000 pixels by 1000 pixels. Figs. 1 and 2 display the RGB color
map and the ground truth of the images. Each time series dataset
contains only one image with 28 spectral bands and a spatial
resolution of 10 m. The data captures a wealth of information
about the surface in a multiband format and includes images
from a total of four periods. Images for each period consisted of
red, green, blue, near infrared, normalized difference vegetation
index, normalized difference built-up index, and normalized
difference water index. Real color images use a combination of
red, green, and blue bands to simulate the colors the human eye
sees, creating realistic ground colors. Different combinations of
red and near-infrared bands are used to reflect the state of the
vegetation more accurately when assessing vegetation health
and growth.

The datasets were categorized into five distinct feature types:
winter wheat, forest, buildings, water, and other land, presented
in a specified order. About 6% of the Zhoukou dataset (350 000
pixels in total, with 32 392 labeled pixels) was annotated. Ap-
proximately 2% of the Suixian dataset (1 000 000 pixels in total,
with 24 997 labeled pixels) was annotated. The training and test
samples of the datasets are distributed in a 7:3 ratio, with the
validation set including 1% randomly selected samples from the
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Fig. 3. Flowchart of winter wheat extraction.

TABLE I
NUMBER OF PIXELS IN THE TRAINING, VALIDATION, AND TEST SETS FOR EACH

CATEGORY ON THE ZHOUKOU DATASET

Class Name Training Validation Test

Winter Wheat 6273 268 2688

Forest 1629 69 698

Buildings 3901 167 1672

Water 5941 254 2546

Other Land 4938 211 2112

Total 969 9716

TABLE II
NUMBER OF PIXELS IN THE TRAINING, VALIDATION, AND TEST SETS FOR EACH

CATEGORY ON THE SUIXIAN DATASET

Class Name Training Validation Test

Winter Wheat 3508 150 1503

Forest 3539 152 1517

Buildings 3714 159 1592

Water 3526 151 1511

Other Land 3211 138 1376

Total 750 7499

overall test set for validation purposes. Tables I and II show the
detailed categorization of the dataset partitions.

III. METHODS

Fig. 3 shows the flowchart of the winter wheat extraction
method. First, the image is normalized. Next, the model is trained
and validated using 70% of the image data and labels. Finally,
the remaining 30% of the image data and labels are fed into
the trained network to obtain the prediction map. DWSL is
presented in Section III-A. The proposed Graph Convolutional
Fusion CNN (GCFC) network is given in Section III-B. The
forward propagation process of GCFC is given in Algorithm 1.
The training process of GCFC is given in Algorithm 2.

A. Dynamic Weighted Stratified Loss

There is an imbalance in the ratio of each category within the
dataset in the study, with the distribution of categories in the
Zhoukou dataset used for training approximately being address
6:2:4:6:5. In addressing these issues, the study proposed the

Algorithm 1: GCFC Algorithm Forward Propagation Pro-
cess.
Input: Input feature XεRH×W×B; SLIC() is the

superpixel segmentation algorithm with a segmentation
scale of d; Encoder −Decoder() consists of multiple
convolutional layers, normalization layers, batch
operations; σ is a nonlinear function.

Output: The prediction map F
1 M ← SLIC(X)
2 M̂ is obtained by normalizing M
3 The undirected graph node V is obtained from (7)
4 The reduced network feature X∗ is obtained from (8)
5 F1 ← σ(X∗)
6 X1 is obtained from (12)
7 X2 is obtained from (13)
8 X3 is obtained from (14)
9 X4 ← Encoder −Decoder(X3)
10 F2 ← σ(X4)
11 F ← σ(Concat(F1, F2))

DWSL method. DWSL adopts a comprehensive strategy to
sample imbalances in remote sensing images. The model adapts
weights dynamically in real time by incorporating cross-entropy
loss, sample weights, and dynamic weight adjustment. This
strategic adjustment ensures heightened attention to categories
characterized by fewer samples, significantly enhancing the
model’s overall performance The cross-entropy loss denoted as
LCEij

served as a metric to quantify the disparity between the
model output and the actual label. To ensure numerical stability,
incorporate a minor constant (10−15) to prevent the potential
emergence of infinite values during logarithmic computations.
The loss utilizes the true label mask to filter out areas not
considered

LCEij
=
(− yij × log

(
pij + 10−15

)) ×mij (1)

where i represents the sample index and j represents the category
index. yij signifies whether sample i belongs to category j,
displaying the information labeling one-hot coding vector. pij
denotes the model’s predicted probability for sample i belonging
to category j, and mij represents a mask whether the sample i
considered in the loss calculation.
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Algorithm 2: GCFC Algorithm Training Process.
Input: Dataset D; ground-truth gt; Optimizer Adam, the

initial learning rate is 0.0005; Dynamic Weighted
Stratified Loss (DWSL); epoch K, k, ∀k ∈ {0, . . . ,K};
best loss.

Output: Weights file
1 The gt is divided and processed to get

training_gt_onehot, training_gt_mask, val_gt_onehot,
and val_gt_mask

2 Initialize model parameters and the best loss
3 X is obtained by data preprocessing from D
4 for k = 0 … K do
5 Using the Adam gradient to zero
6 Forward propagation (Algorithm 1’s input X gets the

predicted map F )
7 Loss value← DWSL (F , training_gt_onehot,

training_gt_mask)
8 Backward propagation computes the gradient
9 Adam updates the model parameters
10 validation loss← DWSL (F , val_gt_onehot,

val_gt_mask)
11 if validation loss < best loss
12 best loss = validation loss
13 Save weights file
14 end if
15 end for

Address the sample imbalance by introducing sample weights
wij . Sample weights are computed for each category in the
training set by taking the inverse of the sample count. This
ensures greater weight in the loss calculation for samples from
the scarce category

wij =
1

1 +
∑

i

∑
j yij

×mij . (2)

The weighted loss Lwij
is the product of the sample weights

wij and the cross-entropy lossLCEij
. This helps the model focus

more on those categories with scarce samples by equalizing the
contributions of different categories

Lwij
= LCEij

× wij . (3)

Dynamic weights δij refer to learnable parameters achieved
through a Softmax operation applied to sample weights. They
ultimately result in the computation of dynamic weighted strat-
ified loss LDWSL. This loss function can effectively deal with
the sample imbalance problem, improving the model’s focus
on low-frequency categories by fully utilizing the dynamic
weighting mechanism

δij = Softmax (wij) (4)

LDWSL =
∑
i

∑
j

(
δij × Lwij

)
. (5)

Traditional multitask learning methods commonly employ a
simple weighted average strategy, overlooking the distinctions
in characteristics among various tasks. In contrast, the loss

function proposed in the study incorporates a cross-entropy
loss with a masking mechanism to assess the disparity between
predicted and actual labels. Simultaneously, sample weights
are assigned to different categories. The cross-entropy loss of
the introduced masking mechanism is weighted for each cate-
gory by multiplying it with the sample weights. The Softmax
operation on the sample weights allows the model to adap-
tively weight each category instead of just using predefined
fixed weights. Ultimately, DWSL is applied to the weighted
loss function for the dynamic weights. The proposed loss
function empowers the model to focus more on challenging
samples during training, enhancing the overall segmentation
performance.

B. Methodology for GCFC

To enhance winter wheat cross-domain extraction, the article
proposed a fusion network called GCFC. Fig. 4 shows the overall
GCFC network architecture. It uses a two-branch structure to
exploit graph convolution and convolutional neural networks
fully. The graph convolution branch has an adaptive mechanism
and a graph convolution layer based on superpixels. The CNN
branch comprises multiple hybrid modules from the PCSNet
network. Softmax realizes the information fusion to output
accurate segmentation results.

Specifically, the article will be for a 700 × 500 × 28 im-
age input network. Initially, to enhance spectral resolution, it
involves minimizing redundant information within the image
through a 3 × 3 convolution operation. Subsequently, a batch
normalization layer is applied to each feature map to ensure
a stable distribution of features. To augment the model’s non-
linear capabilities, LeakReLU [48] is chosen as the activation
function instead of the commonly used ReLU [49]. Following
this, the processed image is bifurcated into two branches leading
into the AGCN and PCSNet networks. The AGCN network
outputs a feature map F1 (700 × 500 × 14) with dimension-
ality. The PCSNet network generates a feature map F2 (700
× 500 × 14) with dimensionality. The two branches extract
feature information from the image using distinct perspectives.
Ultimately, the fine results are obtained by fusing the features
of F1 and F2 with the Softmax operation. The innovations
of the network are described in detail in the rest of the sec-
tion. AGCN and PCSNet are introduced in the following two
sections.

1) AGCN: In cross-domain scenarios, considering interdo-
main transfer learning is necessary due to distributional differ-
ences between domains. The model must exhibit sufficient gen-
eralization for efficient feature extraction in the target domain.
This section introduces a novel graph convolutional network
named AGCN. The model utilizes the superpixel method [50]
for processing the input data. To better align with the data
characteristics of different domains, the model’s computational
complexity can be varied by flexibly adjusting the size of the
superpixel scale (d). AGCN incorporates an adaptive mechanism
(SA) [51] applied to the adjacency matrix. This mechanism gives
the model greater flexibility to capture the dependencies between
nodes more accurately by assigning different weights to each
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Fig. 4. Structure of GCFC.

Fig. 5. Conversion process of pixel-to-superpixel data, where Xi means the ith pixel in the flattened image data and Vj denotes the average radiance of the pixels
contained in the superpixel Sj .

node. It enables the model to better adapt to complex infor-
mation transfer in heterogeneous graphs and improve overall
performance.

Fig. 5 shows the conversion process of pixel-to-superpixel
data. Initially, the image undergoes segmentation into multi-
ple superpixels, emphasizing spatial connectivity and spectral
similarity using the linear iterative clustering technique. Sub-
sequently, the adjacency between superpixels is established,
transforming the image into an undirected graph denoted as
G = (V, E), where V represents a node and E represents
an edge. In this case, the node’s features are the superpixel’s
average pixel features. In the representation, the pixel points in
the hyperpixel set is made to correspond to the nodes in the graph

Fig. 6. Structure of SA.

using a hyperpixel-based approach. Specifically, the image is
segmented into N superpixels through clustering, where N is
calculated as �(H ×W )/d�. H and W represent the image’s
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Fig. 7. Structure of PCSNet.
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Fig. 8. Classification accuracy of GCFC at different segmentation scales.

length and width, respectively. The parameter d (1 ≤ d) serves
as the segmentation scale, controlling the sensory field size,
range of information propagation in the graphical convolution
operation, and superpixel size. Denoting M ∈ RH×W×N , it
represents the correlation matrix between pixels and superpixels

Mi,j =

{
1, if X̄i ∈ Sj

0, if X̄i /∈ Sj
X̄ = Flatten (X) (6)

whereFlatten(·) denotes flattening image data along the spatial
dimension, Mi,j denotes the value of M at position (i, j), and
X̄i denotes the ith pixel in X̄ . The node V in the undirected
graph is then reconstructed and the feature transformation is
implemented

V = Encoder (X;M) = M̂T Flatten (X) (7)

X∗ = Decoder (V ;M) = Reshape (M × V ) (8)

where M̂ represents the normalization of M , the Encoder(; )
operation encodes the graph data into the nodes V of the undi-
rected graph based on the correlation matrix M . Reshape(·)
indicates reshaping along the spatial dimension of the reduced
data. Revert to network features X∗ using the Decoder(; )
operation.

In contrast to other methods that compute edge weights from
the original image, the article utilizes an SA for computing
attentional weights on the graph edges. More precisely, the
network can dynamically emphasize or attenuate connections
between nodes during the learning process by calculating an
attention score applied to a weighted adjacency matrix. Fig. 6
shows the SA network structure.

Assigning weights to each node in the adaptive mechanism.
For each node vi and vj , the attention score between them, i.e.,
the similarity matrix eij is computed. Use the inner product form
to express

eij = LeakyReLU (Concat (W × hi,W × hj)) (9)

Fig. 9. Classification accuracy of GCFC at different network depths.

where LeakyReLU is the activation function and W is the
learnable weight matrix.Concat denotes the splicing operation,
and hi is the feature representation of node vi.

Subsequently, the attention scores were converted into atten-
tion weights using the Softmax function

αij =
exp (eij)∑

kεNi
exp (eik)

(10)

where Ni is the set of neighboring nodes of node vi. Thus, the
node characterization can be expressed as

zij = ReLU

⎛
⎝∑

jεNi

(αij × (W × hj))

⎞
⎠ . (11)

The adaptive mechanism calculates the similarity between
nodes using the inner product form. It uses the attention mech-
anism to dynamically adjust the weights to get the weighted
internode features zij . This approach enhances flexibility in
capturing relationships between nodes, improving the overall
characterization of the model.

In summary, AGCN networks get rid of their reliance on a
fixed, predefined adjacency matrix by learning the weights of
the relationships between each node. Adaptive weight learn-
ing enhances the model’s flexibility. It enables the model to
better adapt to the characteristics of diverse tasks and data.
This further improves its modeling capabilities when handling
graph-structured data. The model can dynamically adjust the
strength of the relationship between nodes according to specific
input samples, presenting higher flexibility and adaptability.

2) PCSNet: To address the edge clustering issue in AGCNs,
the section introduces the PCSNet network. Its purpose is to en-
hance edges and minimize misclassification in winter wheat de-
tection. The PCSNet utilizes the positional and CAMs to capture
spatial and channelwise dependencies in the input feature map
[52]. It also incorporates the SSON module for spectral feature
extraction, considering both depth and spatial information. To
preserve high-level semantic information and detailed features,
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Fig. 10. Plot plan of winter wheat planting pattern in Shangqiu.

Fig. 11. Comparison results of the winter wheat statistical area and the
extracted area in Shangqiu counties and districts.

the model employs a coding–decoding structure, enhancing its
ability to effectively handle edge information. Fig. 7 illustrates
the structure of PCSNet.

The positional attention module (PAM) is used to capture
the correlation between different positions in an image. The
PAM module helps increase the network’s sensitivity to spatial
information by modeling relationships in image space. Let the
input feature map be X ∈ RH×W×B , where B is the number of
channels, H is the height, and W is the width. First, three 1× 1
convolutional layers are used to reduce the number of channels in

the input feature map to one eighth of the original. This process
produces representations for the query and key while preserving
the original number of channels for the value. The query and
key representations are derived by convolving the input, and
the attention score is computed through tensor multiplication.
Second, the attention scores are Softmax normalized to obtain
weights at each position that sum to one. The values are then
weighted and summed using normalized attention mapping to
output the results. Finally, residual crosstalk fuses the output
with the original input and introduces a learnable parameter γ
to tune the fusion. This process ultimately yields the output of
the module X1 ∈ RH×W×B

PAM (X)

= X+γ×
⎛
⎝(Softmax

(
XT

query×Xkey√
Bquery

))T

×Xvalue

⎞
⎠

(12)

where Xquery = Conv1×1 (X) is the query tensor and Xkey =
Conv1×1 (X) is the key tensor. Xvalue = Conv1×1 (X) is the
value tensor, γ is the learned scaling factor, and Bquery is the
dimensionality of the query tensor.

The CAM enhances the network’s capability of discerning
various channels. Allowing it to effectively prioritize mission-
critical information by dynamically modeling the significance
of each channel. Initially, the number of channels in the input
feature map X1 is adjusted by the adaptive parameter γ, and the
Softmax operation is initiated. The attention map is obtained
by computing the product between the channels of the input
feature map. Subsequently, the attention scores are normalized
via Softmax to derive weights for each channel. The output is
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Fig. 12. Visualization results of GCFC model ablation on the Suixian dataset. (a) Ground-truth map. (b) RGB-color map. (c) GCN. (d) GCN+SA.
(e) GCN+PCSNet. (f) GCN+SA+PCSNet. (g) GCFC.

Fig. 13. Histograms of different models F1 and Recall metrics on the Zhoukou
dataset.

obtained by summing up features for each channel with normal-
ized attention weights. Ultimately, a residual concatenation akin
to PAM is executed to produce the module output, denoted as
X2 ∈ RH×W×B

CAM (X1) = X1 + γ × (Softmax
(
X1

T ×X1

)×X1

)
.

(13)
The SSON module is primarily employed to process structural

and textural information in images. It enhances the network’s

understanding of image structure by separating image features
in spectral and spatial dimensions to extract finer-grained fea-
tures. Specifically, the input feature map X2 is normalized
to expedite convergence. Subsequently, the spatial features of
the data are captured. This is achieved by linearly combining
the input features between channels. The operation utilizes a
convolution operation with a convolution kernel size of 1 × 1.
Nonlinear mapping using the LeakyReLU activation function.
Deep convolutional operations are used to obtain independent
learning for each channel’s convolutional kernel and to capture
unique features in the channel dimension. This operation used a
convolution kernel size of 5 × 5, and the number of groupings
was configured to match the size of the channel count. Finally,
the LeakyReLU activation function is applied once more to
nonlinearly map the output of the deep convolution, resulting
in the output X3 ∈ RH×W×B

SSON (X2) = LeakyReLU(Conv5×5(

LeakyReLU (Conv1×1 (BN (X2))))) (14)

where Conv5×5 denotes a deep convolution operation with a
convolution kernel size of 5 × 5. Conv1×1 denotes a point-
by-point convolution operation with a convolution kernel size
of 1 × 1.

Compared to the traditional coding layer structure, the article
introduces a ghost channel in regular convolution instead of
employing the typical double convolution operation. In addition,
a CAM module is introduced to extract information from key
channels, contributing to the formation of a GCM module. The
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Fig. 14. Confusion matrix plots of different models on the Zhoukou dataset. (a) 2D-CNN. (b) HybridSN. (c) GCN. (d) CEGCN. (e) U-Net. (f) GCFC.

atrous spatial pyramid pooling module is introduced in the third
GCM module to obtain additional feature information from
various levels, following the introduction of two similar GCM
modules for feature extraction. The decoding layer conducts an
upsampling operation to restore the feature map size to a higher
resolution. Pixel attention (PA) module and jump connection
techniques are introduced to further improve the interaction
between high-level and low-level features. Features are extracted
through a double convolutional operation. Following similar
operations, the features are then mapped to the output channel
using a 1 × 1 convolutional layer. Finally, the final binary seg-
mentation result is obtained by applying the Sigmoid function
for activation.

Specifically, the decoding layer’s PA attention uses three
convolutional layers to calculate the query (Q), key (K), and
value (V). As illustrated in Fig. 7, consider the input feature map
denoted as Z ∈ RH×W×B . Initially, the channel dimension of
Z transforms using a 1 × 1 convolutional layer to reduce the
number of channels to one eighth of the original. Subsequently,
the second convolutional layer employs a 3 × 3 convolutional
kernel and introduces the ReLU [49] activation function for
learning more complex feature representations. Lastly, the fea-
tures are further adjusted in the channel dimension using a 1 ×

1 convolutional layer to restore the number of channels to the
original size. The PA calculation can be expressed as follows:

PA (Z)

= Conv1×1 (ReLU (Conv3×3 (ReLU (Conv1×1 (Z)))))
(15)

where Conv1×1 denotes a convolution operation with 1 × 1
convolution kernel size and Conv3×3 denotes a convolution
operation with a 3 × 3 convolution kernel size.

In summary, the proposed PCSNet incorporates the SSON
module, the spatial CAM, and the coding–decoding structure.
They effectively extract and integrate image features from dif-
ferent aspects to provide more accurate and rich information.

C. Experimental Setup

The hardware configuration environment for the study is
as follows: Intel (R) Core (TM) i3-12100F, 16 GB memory,
NVIDIA GeForce GTX1650, 64-b Windows operating system.
The PyTorch [53] version is 1.10.2. After conducting several
experiments, the hyperparameters were finalized as follows: the
initial learning rate is 0.0005, the epoch number is 300, the
number of rounds is 10, and the optimizer is Adam [54]. The
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Fig. 15. Confusion matrix plots of different models on the Suixian dataset. (a) 2D-CNN. (b) HybridSN. (c) GCN. (d) CEGCN. (e) U-Net. (f) GCFC.

superpixel segmentation scale (d) is set to 30, and the network
depth is set to 2. During training, the model did not use pretrained
weights. To ensure that the model was adequately tuned and
adapted to the dataset, we trained the model from scratch.

D. Evaluation Indicators

Extracting winter wheat from remote sensing images can be
viewed as a semantic segmentation challenge. To rigorously
assess the model’s segmentation performance in both quantita-
tive and qualitative aspects, we employ metrics including class
accuracy (CA), overall accuracy (OA), average accuracy (AA),
Kappa statistic (KPP), F1 score, and Recall

CAi =
ci
ni

(16)

OA =
C

N
=

∑k
i=1 ci∑k
i=1 ni

(17)

AA =
1

k

k∑
i = 1

ci
ni

(18)

KPP =
p0 − pe
1− pe

=
OA−∑k

i=1 ai ∗ bi
1− 1

N2

∑k
i=1 ai ∗ bi

(19)

F1i =
TPi

TPi +
TNi+FPi

2

=
2TPi

2TPi + TNi + FPi
(20)

Recalli =
TPi

TPi + FNi
(21)

where ci represents the number of correctly categorized samples
for each category (i = 1, 2 …, k), ni denotes the total number
of samples in each category, and k is the total number of
categories, set to 5 in the article. ai and bi signify the actual
and predicted quantities per category, respectively. N indicates
the total number of samples.TPi represents the count of positive
samples accurately predicted by the model to belong to class i.
FNi signifies the count of samples from the true category i that
the model erroneously predicts as belonging to other categories.
FPi denotes the count of samples genuinely belonging to cat-
egory i that the model incorrectly classifies as other categories.
TNi is the count of samples where the model accurately predicts
samples not belonging to class i as belonging to other categories.
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Fig. 16. Labeled regression results for different models on the Zhoukou dataset. (a) RGB-color map. (b) Ground-truth map. (c) 2D-CNN. (d) HybridSN.
(e) GCN. (f) CEGCN. (g) U-Net. (h) GCFC.

To measure the performance of the model in cross-domain
extraction of winter wheat area, we used the metrics WheatAcc,
root mean square error (RMSE), and coefficient of determination
(R2)

WheatAccl = 1− |yl − ŷl|
yl

(22)

RMSE =

√∑m
l=1 (yl − ŷl)

2

m
(23)

R2 = 1−
∑m

l = 1 (yl − ŷl)
2∑m

l = 1 (yl − ȳl)
2 (24)

where l stands for the area’s index (l = 1, 2 . . . ,m), and m
represents the number of districts and counties in Shangqiu City.
yl means the official statistics of winter wheat area in each district
and county of Shangqiu City and ŷl indicates the winter wheat
area in each district and county of Shangqiu City extracted by
the model across domains. ȳl denotes the mean value of the

official statistics of winter wheat area in each district and county
of Shangqiu City.

IV. RESULTS AND DISCUSSION

A. Influence of Segmentation Scale

The segmentation scale affects the GCFC segmentation re-
sults. To comprehensively investigate the impact of the segmen-
tation scale on our model, we systematically configured scales at
30, 60, 90, and 120. Subsequently, we evaluated the segmenta-
tion results on both the Zhoukou dataset and the Suixian dataset.
Fig. 8 depicts the variations in the OA index.

The choice of the segmentation scale significantly influences
the size of the constructed graph. A smaller plot produced
by a larger scale preserves larger objects and reduces noise.
Conversely, a smaller scale results in a larger graphic with more
noise and smaller objects retained. Fig. 8 shows that the model’s
accuracy on the Zhoukou dataset decreases as the scale increases.
This indicates a prevalence of smaller objects, highlighting
the need for a smaller scale to retain detailed information. In
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Fig. 17. Classification results of different models on the Zhoukou dataset. (a) RGB-color map. (b) Ground-truth map. (c) 2D-CNN. (d) HybridSN. (e) GCN.
(f) CEGCN. (g) U-Net. (h) GCFC.

Fig. 18. Histograms of different models F1 and Recall metrics on the Suixian
dataset.

contrast, the accuracy on the Suixian dataset improves with a
larger scale, indicating the presence of more large-scale objects.

We decided to keep things balanced and avoid generating ex-
cessively smooth classification maps by consistently setting the
scale at 30 for all experiments. This aims to achieve optimal
segmentation performance across diverse datasets.

B. Influence of Network Depth

Network depth serves as an important hyperparameter that
affects neural network performance. In general, increasing the
depth of the network does not always significantly improve
performance due to the gradient vanishing problem. Therefore,
choosing an appropriate network depth is crucial to improving
the stability and performance of the model. In the section, we
vary the network depths from 1 to 4 and evaluate the model’s
performance at each depth. Each experiment is replicated ten
times, employing OA as an evaluation metric.

In Fig. 9, the model performance gradually decreases as the
network depth increases on the Zhoukou dataset. This phe-
nomenon could be attributed to the inherent smoothing traits of
graph convolutional networks. As the network depth increases,
these networks tend to produce more sophisticated classifica-
tion maps. The Suixian dataset is predominantly composed of
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TABLE III
CLASSIFICATION PERFORMANCE OF GCFC WITH DIFFERENT KERNEL SIZES

ON DIFFERENT DATASETS

extensive land cover. Moderate smoothing of their classification
maps helps to suppress more noise and outliers. This aligns with
the findings presented in Section IV-A. However, the smoothing
property of graph convolutional networks might be less effective
for remote sensing images containing smaller-scale objects.
Consequently, an excessively deep network model could lead
to a degradation in performance. To address this, we maintained
a fixed network depth of 2 in all other experiments. This deci-
sion ensures optimal segmentation performance across diverse
datasets. The network depth was chosen not only to prioritize
model performance but also to achieve a balance suitable for
different datasets. In addition, the uniform network depth across
multiple datasets guarantees the generalizability of the results.

C. Influence of Kernel Size

Considering that the kernel size is directly related to the
computational cost, we set the kernel sizes of deep convolutional
operations volumes in the SSON module to (3, 3), (3, 5), (5, 3),
and (5, 5), respectively. As shown in Table III, the effect of
kernel size on the results inspired us to conduct further exper-
iments using (5, 5) kernel sizes. The two regions correspond
to the Zhoukou dataset and the Suixian dataset, respectively.
This selection achieves a balance between performance and
computational cost, as the (5, 5) kernel size effectively captures
both local and global features and performs well in handling
both Region I and Region II. This decision not only enhances the
model’s performance but also minimizes unnecessary computa-
tional overhead, thereby enhancing the efficiency and scalability
of the model.

D. Cross-Domain Extraction of Winter Wheat Area

The model cross-domain extracts the winter wheat area in nine
districts and counties throughout the Shangqiu region through
training on the Zhoukou dataset. Fig. 10 illustrates the classifi-
cation results.

In the study, we focused on winter wheat sowing areas across
all counties and districts of Shangqiu. A comparative analysis
with official statistics was conducted to assess accuracy, as
presented in Table IV. The model’s accuracy was evaluated at
both the Shangqiu as a whole, highlighting its practical viability.
Fig. 11 illustrates the comparison between statistically reported
winter wheat areas and those extracted by the model in each
county and district of Shangqiu. The results affirm the method’s
reliability. Data points closely align along the 1:1 line, resulting

TABLE IV
COMPARISON OF WINTER WHEAT PLANTING AREAS (THOUSAND HECTARES)

IN VARIOUS DISTRICTS AND COUNTIES IN SHANGQIU

TABLE V
RESULTS OF ABLATION EXPERIMENTS CONDUCTED ON THE SUIXIAN DATASET

in an R2 value of 0.9586. This provides strong evidence for the
feasibility and reliability of the proposed approach.

E. Ablation Experiments

In this section, we conduct ablation experiments on the GCFC
model structure. All tests were carried out under identical ex-
perimental conditions. In this study, the network was trained
using 70% of the Zhoukou dataset, and the model’s evaluation
indexes were obtained from the Suixian dataset. The evaluation
metrics, including OA, AA, and KPP, are employed to assess
both the segmentation performance and cross-domain capability
of various models. The results are further supported through
visualizations for cross-domain winter wheat extraction.

The section designs five sets of experiments to verify the per-
formance of the proposed SA, PCSNet, and DWSL. Specifically,
Test 1 uses GCN as the baseline model. Test 2 and Test 3 used
Test 1 as a baseline and incorporated SA and PCSNet, respec-
tively. In addition, Test 4 introduces both SA and PCSNet based
on Test 1. Test 5 introduces SA and PCSNet simultaneously,
replacing the loss function with the proposed DWSL. Table V
presents the evaluation results of the various test models, and
Fig. 12 shows the visualization results.

In Table V, comparing Test 1 and Test 2, the model intro-
ducing SA outperforms the baseline model in winter wheat
cross-domain extraction. On the Suixian dataset, the winter
wheat cross-domain extraction’s OA, AA, and KPP improved
by 7.69%, 6.97%, and 10.38%, respectively. With PCSNet
added, the model’s segmentation accuracy in winter wheat cross-
domain extraction was much higher than it was in Test 1. The
improvements were 3.09%, 2.38%, and 4.63% for OA, AA,
and KPP, respectively. The results indicate that SA helps the
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TABLE VI
COMPARATIVE EXPERIMENTAL RESULTS OF DIFFERENT MODELS ON THE ZHOUKOU DATASET

Method CA(%) OA

(%)

AA

(%)

KPP

(%)Winter Wheat Forest Buildings Water Other Land

2D-CNN [55] 95.00 15.01 95.00 99.00 66.00 85.67 72.90 81.22

HybridSN [56] 94.00 86.98 93.99 80.00 98.00 90.45 78.31 87.43

GCN [57] 92.46 99.82 97.81 99.86 96.47 97.56 97.28 96.79

CEGCN [45] 99.93 80.38 99.87 99.80 99.87 98.46 95.96 98.00

U-Net [58] 99.92 97.29 99.60 99.36 97.31 98.94 98.69 98.64

GCFC(Ours) 100 99.77 99.94 99.80 100 99.92 99.90 99.90

graph structure perform adaptive learning by adapting different
datasets for graph construction and enhancing the model’s cross-
domain capabilities. PCSNet can optimize edge information, en-
hancing the distinction between winter wheat and other vegeta-
tion, so it can also improve the model’s cross-domain capability.
Comparing Test 1, Test 2, and Test 3 to the baseline model in Test
4, the combination of SA and PCSNet performed best in terms of
winter wheat segmentation and cross-domain. This suggests that
the method aims to maximize both segmentation accuracy and
cross-domain capability, leveraging SA’s adaptability to diverse
datasets for graph construction and PCSNet’s optimization of
edge features. In addition, Test 5’s cross-domain performance
is better than Test 4. Cross-domain extraction resulted in im-
provements of 0.2%, 0.24%, and 0.25% for OA, AA, and KPP,
respectively. The findings highlight that the proposed DWSL
enhances the model’s ability to extract winter wheat across
domains by addressing sample imbalance issues.

To facilitate a more visual comparison of cross-domain per-
formance among different experiment groups, Fig. 12 illustrates
the cross-domain classification results for each experimental
set. In Fig. 12(c) and (d), Test 1’s cross-domain performance is
noticeably worse, and the image has multiple missegmentations
in addition to being overly smooth. Compared with Test 1, Test
2 can get a more accurate classification map during feature ex-
traction, but the effect map is still too smooth, and elements such
as roads, farmland, and woodland cannot be well distinguished.
Fig. 12(e) classifies a river woodland with good edge detail,
but the display appears noisy, with broken, blurred, or distorted
elements such as roads and woodland, hindering Test 3’s ability
to precisely identify and extract complete, continuous features.
Test 3 exhibits limitations in feature extraction, failing to capture
the full content and contextual information in the image.

Fig. 12(f) shows the winter wheat cross-domain segmenta-
tion map for Test 4. Compared to Fig. 12(g), which showed a
misallocation of buildings, other cultivated land, and woodland,
this contrast underscores the efficacy of the designed DWSL. In
summary, the proposed method demonstrates robust segmenta-
tion and cross-domain performance in the task of winter wheat
cross-domain extraction.

F. Comparison Experiments

The section evaluates the performance of the GCFC model in
accurate winter wheat extraction and cross-domain applications.

To assess its effectiveness, a comparison is made with five other
models using the metrics of CA, OA, AA, and KPP. The models
selected for comparison include 2D-CNN [55], HybridSN [56],
GCN [57], CEGCN [45], and U-Net [58]. The initial comparison
utilizes the Zhoukou dataset, with a 7:3 ratio for training and
testing samples. Table VI presents the evaluation metrics for the
various methods.

Table VI shows that the method proposed in this article
performs best in terms of accurate segmentation performance
in winter wheat. Notably, 2D-CNN is relatively ineffective due
to underutilized training samples. HybirdSN has a low accuracy
rate even with its strong expressive power. While GCN excels
in global feature learning, our model demonstrates a slight un-
derperformance in individual categories but outperforms GCN
by 2.36%, 2.26%, and 3.11% in terms of OA, AA, and KPP,
respectively. CEGCN enhances graph convolution by integrat-
ing CNN with feature learning for both small-scale regular
regions and large-scale irregular regions. U-Net uses encoding
and decoding structures to capture the details and contextual
information of an image to improve segmentation accuracy. In
comparison with CEGCN and U-Net, the proposed approach in
the article exhibits enhanced expressive ability and effectively
improves model accuracy. Compared with CEGCN and U-Net,
our method improves 1.46% and 0.98% in OA, 3.94% and 1.21%
in AA, and 1.90% and 1.62% in KPP, respectively.

Fig. 13 vividly illustrates our model’s extraction performance
for winter wheat on the Zhoukou dataset. In comparison to other
models, our model outperforms them both in terms of Recall
and F1 metrics. This suggests that our model has a significant
advantage in the winter wheat extraction task.

Figs. 14 and 15 present confusion matrix plots detailing
the segmentation results generated by the model proposed on
the Zhoukou dataset and the Suixian dataset. The observed
superior performance in winter wheat segmentation results
can be attributed to the extensive cultivation of winter wheat
in the Henan region. Winter wheat possesses simple spatial
characteristics and distinctive spectral features, making it less
reliant on spatial information compared to other land covers.
But other land covers, like cropland and built-up areas, with
similar spectra but complex spatial characteristics require more
spatial information to be supported. Consequently, the accu-
racy of segmentation for these areas is relatively lower. This
emphasizes the importance of enhancing models to effectively
capture spatial information, particularly when dealing with
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TABLE VII
COMPARATIVE EXPERIMENTAL RESULTS OF DIFFERENT MODELS ON THE SUIXIAN DATASET

Fig. 19. Classification results of different models on the Suixian dataset. (a) RGB-color map. (b) Ground-truth map. (c) 2D-CNN. (d) HybridSN. (e) GCN.
(f) CEGCN. (g) U-Net. (h) GCFC.

land cover types characterized by complexity in their spatial
features.

For qualitative analysis, Fig. 16 shows the regression ef-
fect plots of six different networks on the labeled graphs on
the Zhoukou dataset. The proposed GCFC model has a high
regression rate. The categories Buildings and Forest appear
to be characterized by missegmentation and noise from other
methods. However, the proposed method yields a smoother
regression effect plot while ensuring correct categorization.
Fig. 17 shows a full map of the predicted ground for each of
the different models in a dataset with a more complex feature
distribution. The proposed model demonstrates a high degree
of agreement with ground truth in terms of accuracy and edge
detail. This emphasizes the effectiveness of the proposed GCFC
model in capturing intricate features and maintaining OA in the
segmentation results.

In summary, the approach proposed in the article exhibits
exceptional precision and accuracy in classifying winter wheat
and other categories. This is consistent with the findings reflected
in the objective indicators detailed in Table VI.

To evaluate the cross-domain capability of the proposed
method in the article, we subject the other five comparative mod-
els to classification training on the Suixian dataset. In contrast,
the proposed method in the article undergoes training on the
Zhoukou dataset, and zero-sample cross-domain classification
is applied to the Suixian dataset. Table VII shows that the
method in the article outperforms the highest CEGCN by 0.5%,
0.47%, and 0.62% in OA, AA, and KPP, respectively. Fig. 18
shows that the GCFC model performs better on both F1 and
Recall metrics compared to the model trained using samples.
Fig. 19 displays the GCFC model’s outstanding cross-domain
performance. Facing the distributed complexity of the features,
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TABLE VIII
COMPARATIVE EXPERIMENTAL RESULTS OF DIFFERENT MODELS FOR CROSS-DOMAIN CLASSIFICATION ON THE SUIXIAN DATASET

Fig. 20. Cross-domain classification results of different models on the Suixian dataset. (a) RGB-color map. (b) Ground-truth map. (c) 2D-CNN. (d) HybridSN.
(e) GCN. (f) CEGCN. (g) U-Net. (h) GCFC.

it is possible to extract small areas of farmland planted with
other crops from large areas of winter wheat. There is also
good recognition of fine features that should be separable but
are misclassified. Compared to training with samples, it even
outperforms it and is closer to the distribution of real surface
features.

Both the five comparison models and the model proposed in
this article undergo training on the Zhoukou dataset, followed by
zero-sample cross-domain validation using the Suixian dataset.
This experimental design aids in providing a more comprehen-
sive demonstration of the excellent performance exhibited by the
proposed GCFC model in cross-domain feature extraction. As
depicted in Table VIII, these five comparison models, although
trained on one dataset, still exhibit good performance on another
dataset. However, OA, AA, and KPP were lower compared to the
GCFC method. Fig. 20 clearly illustrates that the resultant maps

generated by the classification method proposed in this study
closely resemble the real ground conditions. The GCFC model
shows adaptive learning capabilities. It integrates graph struc-
ture and CNN convolution for edge feature extraction. These
capabilities enable it to handle domain bias and inconsistent
data distribution challenges. Such capabilities aid in addressing
challenges encountered across diverse geographies and datasets,
consequently enhancing the accuracy and reliability of the win-
ter wheat extraction task.

Based on the classification results and accompanying data
analyses provided in the preceding tables and figures, we draw
the following conclusions: The methods presented in this article
show outstanding ability to generalize, performing well in both
sample-based training and zero-sample cross-domain validation,
highlighting the exceptional performance of the model. This sub-
stantiates the feasibility and reliability of the proposed approach.
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G. Discussion

The GCFC model proposed in this article is a two-branch
graphical convolutional neural network model specifically de-
signed for winter wheat extraction. Comparative analysis shows
that the GCFC model performs best regarding segmentation ac-
curacy, effectiveness, and cross-domain capability. In addition,
the segmentation performance of the GCFC model is verified
by ablation experiments with different branches, modules, and
loss functions. Comparing GCFC with the other five control
models shows that GCFC performs better in classification, both
on real ground truth maps and 0-sample cross-domain result
maps. This comparison further highlights that GCFC can signif-
icantly reduce the burden of sample data collection. In practical
applications, rapid extraction of winter wheat area can provide
important help for subsequent work such as yield estimation.

This article provides insight into the feasibility of applying
GCFC to winter wheat extraction. The methodology of GCFC
incorporates the advantages of graph convolutional networks
and CNN convolutional neural networks to meet the demand
of extracting winter wheat areas across domains. In addition,
GCFC has a good generalization ability and strong feature char-
acterization ability to capture the spectral and spatial features
of winter wheat and other land features. The performance of
GCFC was validated solely in this study for winter wheat area
extraction across different domains within one municipality.
GCFC exhibits strong performance in training with small sam-
ples, suggesting its potential for extraction across larger areas.
In our next work, we will further increase the sample size and
enrich the diversity of the dataset to extend the applicability of
the model to larger regions.

V. CONCLUSION

The study focused on overcoming challenges encountered
in traditional one-to-one training for remote sensing image
classification, particularly in addressing issues related to sample
distribution imbalance and feature inconsistency across various
domains. We introduced a novel two-branch fusion network
GCFC to overcome these obstacles, which incorporates DWSL.
The loss function improves the model’s focus on important cat-
egories and difficult samples by using task masks and dynamic
category weights. This helps address the problem of imbalanced
samples. The proposed AGCN network offers a flexible solution
for the scarcity of labeled samples in practical applications.
AGCN facilitates winter wheat prediction in cross-domains
with no labeled data by transferring knowledge from labeled
samples and adapting to diverse graph structures. Furthermore,
the introduction of the PCSNet network for edge enhancement
significantly improves the accuracy of cross-domain feature
extraction. Experimental results support the effectiveness of our
proposed method. Without labeled samples in the Shangqiu area,
the accuracy of this method for extracting winter wheat was
91.92%. The comprehensive set of experiments demonstrates
the robust performance of our approach in the challenging task of
cross-domain extraction of winter wheat. Moreover, the method
can extract area information of winter wheat across domains,

providing a crucial reference for subsequent crop management
and decision-making.

Future research will focus on further optimizing the cross-
domain network to improve the accuracy of cross-domain ex-
traction in winter wheat. Our goal is to extend the model’s appli-
cability over a larger region, thereby improving its generalization
capabilities and enabling it to be applied more effectively to
a wide range of winter wheat extraction tasks. This includes
improving the feature learning capability of the model, opti-
mizing the network structure to adapt to different geographical
variations, and effectively fusing multisource remote sensing
data to enhance the overall performance. Through these efforts,
we expect to contribute more accurate and reliable solutions
to developing the field of remote sensing extraction of winter
wheat.
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