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Abstract—Remote sensing (RS) imagery captures the earth’s
ever-changing landscapes, reflecting evolving land cover patterns
propelled by natural processes and human activities. However,
existing RS scene classification methods mainly operate under a
closed-set hypothesis, which stumbles when encountering novel
emerging scenes. This article addresses the intricate task of RS
scene classification without labels for novel scenes under incremen-
tal learning, termed class-incremental novel category discovery.
We propose a contrastive learning-based novel category discovery
pipeline tailored for RS image scene classification, enhancing the
ability to learn unlabeled novel class data. Furthermore, within this
pipeline, we introduce a positive pair filter to identify more positive
sample pairs from novel classes, improving the feature representa-
tion capability on unlabeled data. Besides, our contrastive learning
pipeline incorporates an old-feature replaying method to alleviate
catastrophic forgetting in old classes. Extensive evaluations across
three public RS datasets showcase the superiority of our method
over state-of-the-art approaches.

Index Terms—Contrastive learning, incremental learning,
novel category discovery (NCD), remote sensing (RS), scene
classification.

I. INTRODUCTION

D EEP neural networks have achieved remarkable results in
remote sensing (RS) image scene classification [1], [2],

[3], [4]. Existing research works are mostly performed under a
closed-set hypothesis, where the test set shares the same classes
with training images. However, due to the diverse earth envi-
ronment and frequent human activities, aerial sensors are facing
continuously emerging novel RS scenes, making this closed-set
hypothesis hard to hold in practical use. Toward the automatic
discovery of novel classes, the novel category discovery (NCD)
task is proposed [5], [6], [7], [8], [9], which assumes that the
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closed-set training data are always available when learning novel
class data. Nevertheless, for the continuously emerging aerial
images that take up large storage and are of sensitivity risk,
this task setting will be rarely feasible. Thus, we turn to the
setting that combines the merits of incremental learning and
NCD, termed class-incremental novel category discovery (class-
iNCD) [10], to discover novel scenes for aerial images. Under
this setting, there is no explicit existence of old class images at
the stage of discovering unlabeled classes, and simultaneously,
the model is expected to maintain the ability to classify the
images of labeled classes (see Fig. 1, left).

For the class-iNCD setting, researchers leverage incremental
learning techniques to avoid the catastrophic forgetting of old
classes in the process of learning novel classes. More specif-
ically, one main research line among them suggests providing
additional supervision signals for novel class images by pseudo-
labels obtained using the model trained on labeled classes, such
as using the novel task classification head and Sinkhorn–Knopp
algorithm [11]. However, due to the intraclass diversity and
interclass similarity properties of RS image scene datasets [12],
[13], the generated pseudo-labels can be severely noisy, leading
to the difficulty in learning novel class data and overfitting old
class data.

To tackle the above problems, we pursue class-iNCD for
RS image scenes incorporating contrastive learning, termed
the RS-ConNCD pipeline. First, we replace the pseudo-label
generation with contrastive learning [14] for fine-tuning the
feature extractor on unlabeled classes [15], [16], [17] (see Fig. 1,
right) and replace the classification head with parameter-free
clustering algorithms (i.e., K-means). This eliminates the need
for generating noisy pseudo-labels on RS image scenes and
classification heads, making it easier to learn novel unlabeled
data and avoid the overfitting issue on old labeled data. Sec-
ond, we find that the composition of contrastive learning’s
loss function misclassifies many positive pairs as negative
pairs in the sample pair similarity measure during training.
To avoid this, we propose to excavate positive pairs in con-
trastive learning via a newly designed dimension activation
similarity based on the property of RS image scene datasets,
providing more positive pairs to unlabeled novel class data
and enhancing the corresponding feature representation abil-
ity. Third, we propose to use old-feature replaying to avoid
catastrophic forgetting of old class data, which can also reduce
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Fig. 1. Overview of the task setting and our proposed pipeline. Left: Illustration of class-iNCD setting. Right: The proposed contrastive learning pipeline. The
“+” sign indicates an increase in the Euclidean distance between two features, while the “–” sign indicates a decrease in the distance. In Stage 1, we obtain positive
and negative pairs with the help of ground truth labels and then let the model learn the semantic features of these pairs by contrastive learning. In Stage 2, we first
obtain positive pairs by geometric transformation and the positive pair filter method. Then, we use them to guide the model to perform contrastive learning on
unlabeled data.

the old class learning’s negative impact on learning new class
data.

In a nutshell, the contributions of this article are as follows.
1) We propose a contrastive learning pipeline named RS-

ConNCD to cope with the class-iNCD task for RS images,
which can avoid overfitting the old labeled data.

2) We introduce a positive pair filter to discover unlabeled
novel classes and an old-feature replaying method to avoid
catastrophic forgetting in old labeled classes.

3) We conduct extensive experiments on three RS image
scene datasets to demonstrate the effectiveness of the
proposed method. RS-ConNCD achieves superior perfor-
mance compared to the existing state-of-the-art methods.

The rest of this article is organized as follows. Section II is
devoted to related work. Section III elaborates on our proposed
method. Section IV reports the experimental results compared
with other methods and ablation studies. Section V provides
a discussion of the advantages of the proposed method and
possible directions for further improvement in the future. Finally,
Section VI concludes this article.

II. RELATED WORK

In this section, we will first summarize the progress of the RS
image scene classification task. Following this, we will discuss
techniques related to the open-set scene classification method
proposed in this article, including incremental learning, NCD,
and contrastive learning.

A. RS Image Scene Classification

RS image scene classification is a crucial research topic in RS.
The goal of this task is to predict the class of given RS image
scenes. Early literature in this field mainly relies on handcrafted
features, including the information of texture, contour, color, and
space [18], [19], [20], [21]. However, these methods often fail
when the context of RS image scenes becomes complex. Further-
more, the middle-level feature methods use encoding techniques
to extract high-level representations from local features, such as
bag-of-visual-words (BoVW) [22] and the Fisher kernel [23].
These techniques are effective for RS image scene classification,
but the global semantic information cannot be well described
since image scenes are represented by handcrafted local features.
Recently, with the rapid development of convolutional neural
networks (CNNs), many related methods have been developed
in RS image scene classification [1], [2], [3], [4]. CNNs have
excellent global and local representation ability for complex
scenes without additional artificial significantly facilitating RS
image scene classification. However, these methods are trained
on closed-set datasets with supervised learning, which is un-
suitable for open-world situations. In this article, we study the
class-iNCD task, which aims to enable models to automatically
learn good representations of new data in open-world scenarios.

B. Incremental Learning

Incremental learning tries to solve the problems that arise
in the online learning setting. The basic setting is that the
model is trained on a sequence of tasks and only data from
the current task are available. In this setting, models often suffer
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from catastrophic forgetting [24], which means that models are
prone to lose the ability to classify the data from old tasks
during the training of the current data. To solve this problem,
the existing methods can be divided into three categories: the
regularization-based method, the exemplar-based method, and
the parameter-isolation method. The first one tries to avoid
catastrophic forgetting by constraining the learning range of the
model parameters [25], [26], [27], [28]. The second makes the
model remember the old tasks by introducing information about
old tasks when training on the new tasks, such as old exemplars
or old features [29], [30], [31], [32], [33]. The final one avoids
catastrophic forgetting by assigning different model parameters
to different tasks [34], [35]. In this article, we follow the idea of
incremental learning methods and design an old-feature replay-
ing method under the frame of contrastive learning.

C. Novel Category Discovery

For the NCD task, researchers attempt to transfer the knowl-
edge learned from labeled data to unlabeled data with novel
classes so that the model can classify the novel class data with-
out labels. According to different task constraints, the current
mainstream methods can be divided into two subcategories.
The first is that the labeled data are available when training
on the unlabeled data. Some approaches propose to jointly
train both labeled and unlabeled data, employing pseudo-label
generation algorithms to annotate these unlabeled instances,
thereby enabling their utilization in supervised learning [5],
[7], [8]. In addition, some research pointed out that it may be
better to train labeled and unlabeled data in a self-supervised
way [6]. However, labeled data are often not permitted when
training on unlabeled data due to privacy reasons or memory
constraints. Thus, the second category is training unlabeled
data without the presence of labeled data, which is the class-
iNCD setting. Based on AutoNovel [5] and unified objective
function (UNO) [8], some literature adopted regularization- and
exemplar-based methods to avoid catastrophic forgetting at the
feature extractor and classification head, respectively [10], [36].
Others used the unsupervised deep clustering method from deep
embedded clustering (DEC) [37] to train the unlabeled data and
tried to use regularization-based methods to avoid catastrophic
forgetting [38]. In this article, we study RS image scene classifi-
cation in the class-iNCD setting. Nevertheless, different from the
previous methods, our method discards the linear classification
head and only fine-tunes the feature extractor with contrastive
learning to better learn unlabeled novel class data.

D. Contrastive Learning

Contrastive learning is one of the learning paradigms in self-
supervised learning. It aims to enable models to learn descriptive
and intelligible representations from unlabeled data. Since the
data are not labeled, to identify similar inputs, it is common
to generate variants of individual inputs using transformations
that preserve semantics, such as geometric transformations.
The variants of the inputs are referred to as positive pairs,
and the samples with different categories are called negative
pairs. Through this method, the features of positive pairs are

brought closer, while the features of negative pairs are pushed
further apart. The literature on contrastive learning suggests that
the feature extractor, trained through contrastive learning, is
adaptable to different downstream tasks [15], [16], [17], [39],
[40], [41], which inspires us how to learn from old labeled data
as well as novel unlabeled data. In this article, we will follow
the paradigm of contrastive learning and try to make our model
generalize better to novel unlabeled data.

III. METHOD

In this section, we elaborate on the proposed method. First, we
define the problem and notations in Section III-A. Then, we give
an overview of our framework in Section III-B. We introduce
contrastive learning, positive pair filter, and old-feature replay-
ing in Sections III-C–III-E, respectively. Finally, we introduce
the total objective function in Section III-F.

A. Problem Definition and Notations.

In the setting of class-iNCD, the model M will be trained on
the labeled data Dl = {(xi, yi) ∼ P (X|Yl)} first. After that,
the labeled data Dl are discarded, and the model needs to learn
to classify unlabeled data Du = {(xi) ∼ P (X|Yu)}. Since the
category sets of labeled and unlabeled data are disjoint, i.e.,
Yl ∩ Yu = ∅, we can also refer to the labeled data as the old
class data and the unlabeled data as the novel class data.

B. Overall Framework

The overall framework is shown in Fig. 2. In Stage 1, we
train the model with labeled data Dl . We follow the paradigm
of contrastive learning and calibrate the infoNCE loss [15] with
the ground truth labels. After training, we reserve M old class
features output by the third layer of the feature extractor and
obtain Cl category center prototypes from Dl by calculating the
feature mean for each old class.

In Stage 2, the model is trained on unlabeled data Du . Fol-
lowing the training paradigm in the previous NCD literature [5],
[10], the first three layers of the feature extractorΦl

1−3 are frozen.
Then, we screen the positive pairs with the positive pair filter in
Section III-D and conduct contrastive learning with infoNCE
loss [15]. Meanwhile, the old class features cached in Stage 1
are fed into the fourth layer of Φl and the new feature extractor
Φu, respectively, pulling their outputs closer through the method
in Section III-E. Notice that before training the features with
contrastive learning, we will first map the features into a higher
dimensional space through a projector. The projector can ac-
celerate convergence, improving the model’s ability to transfer
between different data [42], and is then discarded after training.
After training, Cu category center prototypes are extracted from
Du by the K-means algorithm. Cu is the number of unlabeled
data categories. Since Cu is unknown, we determine the value
of Cu by the elbow method [43]. Thus, we can obtain Cl + Cu

category center prototypes from Dl ∪ Du . During inference, the
input image is assigned to the class whose prototype is closest
to it.
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Fig. 2. Overall workflow of RS-ConNCD. Left: The feature extractor is trained on the labeled old class data through contrastive learning with labels. Old class
features and center prototypes are stored after training. Right: The unlabeled novel class data are learned with contrastive learning. Forgetting old classes is prevented
by the old-feature replaying method. After training, the novel class center prototypes are generated through K-means.

Fig. 3. Previous learning paradigm of NCD. In the first stage, the model trains
with labeled classes. In the second, the model first generates pseudo-labels on
unlabeled images and then supervises the learning of novel classes.

C. Contrastive Learning

According to the NCD literature [5], [24], [36], [44], the
model is usually considered as the concatenation of a feature
extractorΦ and a classification head h, as shown in Fig. 3. Based
on this figure, in Stage 2, the feature extractor Φu, which is
initialized with the parameters of Φl from Stage 1, is connected
with a brand new classification headhu , which is trained with the
novel class data and the corresponding pseudo-labels, and then,
the feature extractor is fine-tuned by gradient backpropagation.

However, as shown in Fig. 4, RS image scene datasets exhibit
intraclass diversity and interclass similarity, resulting in severe
noise in generated pseudo-labels. This can make it difficult to
learn unlabeled data, as the classification head is susceptible to
noisy labels [45]. Meanwhile, in Stage 1, the model is trained
on the old class data with ground truth, which makes the model
perform much better on the old class data than on the new
class data. We note this as the “overfitting on the old class
data.”

In this article, we address this issue through contrastive learn-
ing mainly considering two properties: 1) contrastive learning
has been widely used as pretraining to achieve robust repre-
sentations for different data [14], [46], [47] and 2) it directly
trains the feature extractor without labels while still allowing
the model to learn features with good class discrimination [39],
[48], [49], [50]. Therefore, we discard the classification head
and no longer generate pseudo-labels, but directly fine-tune the
feature extractor with contrastive learning.

In detail, we perform a geometric transformation of Du to the
input image first, so the unlabeled data will be Du = {(x,x′)}.
For a batch of unlabeled training data, we use infoNCE loss to
enable Φu to learn good semantic representation [15]. This loss
is given by

LinfoNCE
u = −

∑
i∈B

log
exp (Φu(xi) · Φu(x′

i)/τ)∑
n 1[n �=i] exp (Φu(xi) · Φu(xn)/τ)

(1)

where B is the batch size, 1[n�=i] is an indicator determining
whether these two features come from the same image, and τ is
the temperature coefficient. The key insight is to create positive
pairs through geometric transformation and default to different
images under a mini-batch as negative pairs. Then, the model is
forced to make the features of positive pairs close to each other
and the features of negative pairs far away from each other in the
feature space. After training, we can use clustering algorithms
like K-means to cluster the output features to obtain the final
classification results.

As for labeled data Dl , we can also train it with infoNCE
loss. However, since the labels are available, they can be used
to generate positive and negative pairs. Therefore, we opt to
leverage the well-established contrastive loss with labels, as
described in [51], which is given by

LinfoNCE
l

= −
∑
i∈B

∑
j∈S(i)

log
exp

(
Φl(xi) · Φl(xj)/τ

)
∑

n 1[n �=i] exp (Φl(xi) · Φl(xn)/τ)

(2)

where S(i) is the set of images under the same mini-batch that
belong to the same category as xi.

D. Positive Pair Filter

When we analyze the contrastive learning mechanism based
on infoNCE loss, it is found that the positive pairs in a mini-batch
are not well utilized during training. Take Fig. 5 as an example;
the positive pairs toward feature z1 in this mini-batch should be
{(z1, z′1), (z1, z4)}. However, it can be seen that the pair (z1, z4)
is treated as a negative pair, resulting from the drawbacks in
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Fig. 4. Properties of RS image scene datasets. The figures on the left of the dotted line show images of intraclass diversity, and the figures on the right show
interclass similarity.

Fig. 5. Feature embeddings in a mini-batch under the infoNCE loss. Different
colors denote different classes.

the contrastive learning setting, where different images even
of the same class in a mini-batch are considered as negative
samples. Therefore, the performance on unlabeled data can be
further improved if the model can identify more correct positive
pairs.

In this article, we propose to measure whether two features
are positive pairs by their semantic region coincidence. Since
the feature extractor Φu is initialized with the parameters of Φl

from Stage 1, we hypothesize that it obtains feature general-
ization ability to some extent from the beginning of training.
Furthermore, because of the existence of interclass similarity in
RS image scenes, knowledge acquired from old class data can be
effectively applied to new class data. This implies that utilizing
the encoded information within the model’s output features
enables the identification of some genuine positive pairs, even
in the absence of prior exposure to the novel class data by the
model. We consider that each dimension of the output feature
represents a high-level semantic contained in the original image.
The semantic set represented by the dimension with the highest
activation value should be the main semantic composition of
this image. Therefore, we can determine whether two features
belong to the same category according to the degree of overlap
of their semantic sets. The determination mechanism is given by

ri,j =

{
1,

|topk(zi)∩topk(zj)|
k > η

0, otherwise
(3)

where z is the output feature from Φu, and topk(z) is the set
of dimension indices in z with the top k activation values. The
function | · | computes the size of the given set. η is the threshold

to determine whether two features are from the same class. Based
on (3), we can modify the infoNCE loss from (1), which is given
by

LinfoNCE_r
u

= −
∑
i∈B

∑
j∈R(i)

log
exp (Φu(xi) · Φu(xj)/τ)∑

n 1[n �=i] exp (Φu(xi) · Φu(xn)/τ)

(4)

where R(i) = {j|ri,j = 1}, and x ∈ Du . The model can learn
more semantic representations from the same category through
this method, which is similar to weak supervision.

E. Old-Feature Replaying

When dealing with class-iNCD tasks, catastrophic forget-
ting often occurs because the old class data are not available
when training the novel class data. One main approach in the
NCD literature is constraining the learning range of the feature
extractor Φu for novel class data, which is fulfilled through the
loss function given by

Lf =
∑
i

∥∥Φl (xi)− Φu (xi)
∥∥
2
, xi ∈ Du (5)

whereΦl is the old feature extractor and it remains frozen during
the training of the novel class data. However, this conflicts with
fully learning the novel class data. To address this issue, we
propose to decouple and avoid forgetting from learning the novel
class data. We note that, first, when training the novel class data
in Stage 2, only the parameters of the last layer of Φu need
to be updated, and second, although the old class data cannot
appear when training the new class data, it is feasible to preserve
some of their features [10], [29]. Accordingly, we propose to
use old-feature replaying to avoid catastrophic forgetting. Take
ResNet-50 [52] as an example; we can save the M old features
f for each class output by the third layer of the feature extractor
Φl after the first stage of training. Then, input the saved old class
features into the fourth layer of Φl and the new feature extractor
Φu, respectively, when training the new class data in Stage 2,
and encourage their outputs to be similar. The details are shown
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Fig. 6. Old-feature replaying method. This is a method proposed to avoid
forgetting.

in Fig. 6. Therefore, (5) can be modified to

Lf =
∑
i

∥∥Φl
4 (fi)− Φu

4 (fi)
∥∥
2

(6)

where Φ4 is the fourth layer of Φ. In this way, we decouple
and avoid forgetting from the novel class data learning task,
preventing them from interacting with each other.

F. Learning Objectives

In this section, we introduce the objective loss function of the
proposed method. In Stage 1, the feature extractor Φl is trained
on label data Dl by infoNCE loss in (2), which is

LStage1 = LinfoNCE
l . (7)

In Stage 2, the model is trained on unlabeled data Du . The loss
functions in (4) and (6) are adopted to learn novel class data and
prevent forgetting old class data, respectively. Moreover, since
the category center prototypes of Dl are preserved, the model
can learn to pull the features of the novel class data away from
these center prototypes in the feature space to better distinguish
the novel class data from the old class data. This is fulfilled
through the loss given by

Lc = − 1

Cl

B∑
i

Cl∑
j

∥∥zi − clj
∥∥
2

(8)

where zi = Φu(xi),xi ∈ Du , and clj is the category center
prototype of class j in Dl . Therefore, the total loss function
in Stage 2 is

LStage2 = LinfoNCE_r
u + αLf + λLc. (9)

IV. EXPERIMENTS

In this section, we experiment on three datasets to verify
the effectiveness of the proposed method and then verify the
effectiveness of each component of the method by ablation
studies.

A. Experimental Setup

1) Datasets and Implementation Details: In our experi-
ments, we adopt three public RS image scene classifica-
tion datasets, i.e., AID [53], Million-AID [54], and NWPU-
RESISC45 [19]. The AID dataset contains 10 000 images in total
with 30 scene classes. The NWPU-RESISC45 dataset consists

of 45 scene classes and contains 31 500 images. Million-AID
is a large dataset with 51 classes and 1 000 848 images in total.
We adopt ResNet-50 [52] without the fully connected layer as
the feature extractor and use a three-layer multilayer perceptron
(MLP) as the projector. The parameters η and k in (3) are set to
0.5 and 100, respectively. The number of old featuresM for each
old class in old feature replaying is set to 40. The parameters α
and λ in (9) are set to 1 for all the experiments. The batch size
during training is 128. All the models are trained for 150 epochs
on the old class data and for 200 epochs on the novel class data.

2) Evaluation Metrics: In Stages 1 and 2, we obtain category
center prototypes for labeled and unlabeled data, respectively.
During inference, we assign classes to input samples by calcu-
lating the distances of their features from these prototypes, and
the classification accuracy is measured by

ACC = max
p∈P(Y)

1

N

N∑
i=1

1 {yi = p (ŷi)} (10)

where N is the size of the test set and P(Y) is the set of all
permutations of the class labels in the test set. y and ŷ are the
ground truth labels and the model’s predictions, respectively. We
use the Hungarian optimal assignment algorithm to compute the
maximum over the set of permutations [55].

B. Main Results

Since there is no existing method dealing with the class-
iNCD task for RS image scene classification, we implement
state-of-the-art methods of NCD on RS image scene datasets
for comparison, including UNO [8], AutoNovel [5], GCD [6],
ResTune [38], and FRoST [10]. Experiments are performed with
two different class ratios (the number of old classes: the number
of novel classes) settings, i.e., 2:1 and 1:2. Under each class
split ratio setting, we randomly select the corresponding num-
ber of categories as unlabeled novel classes and subsequently
conduct experiments to obtain results. This process is repeated
three times, and the corresponding experimental outcomes are
averaged to yield the final experimental results for the respective
method.

Results under these two settings are shown in Tables I and
II, respectively. The column “IL” indicates whether the method
employs incremental learning. The columns “Old” and “Novel”
refer to the classification accuracy of the model on old class
(labeled) and novel class (unlabeled) data, respectively, and the
column “All” gives the average classification accuracy over the
entire dataset. According to these tables, the methods with-
out incremental learning suffer from catastrophic forgetting of
old class data, such as UNO, AutoNovel, and GCD. ResTune
and FRoST utilize incremental learning mechanisms to prevent
catastrophic forgetting, achieving good results on old class data.
However, these two methods adopt the supervised paradigm in
Fig. 3 to learn unlabeled novel class data, suffering from over-
fitting old class data. The classification accuracy gap between
old and novel class data exceeds 11% for all three datasets. In
contrast, the proposed RS-ConNCD, which utilizes contrastive
learning to acquire knowledge of novel class data, produces a
more balanced learning outcome for old and novel class data
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TABLE I
CLASSIFICATION ACCURACY RESULTS ON THREE RS IMAGE SCENE DATASETS WITH 2:1 CLASS PARTITIONING

TABLE II
CLASSIFICATION ACCURACY RESULTS ON THREE RS IMAGE SCENE DATASETS WITH 1:2 CLASS PARTITIONING

TABLE III
VISUALIZATION OF CLASSIFICATION RESULTS FROM THE AID DATASET

when compared to FRoST and ResTune. The gap in classifica-
tion accuracy between old and novel class data is less than 9% for
all three datasets. In addition, comparing the results in Tables I
and II, it can be observed that the more old classes there are, the
better the model performs on novel class data. This might result
from the model’s better generalization to novel class data when
it has seen more categories.

Table III presents the visualization classification results of
several RS scene images. In this table, the first and second
images on the left are from the pond class, reflecting intraclass
diversity. Both ResTune and FRoST misclassify the first im-
age into another class, while our method provides the correct
classification result. The third and fourth images belong to
the dense residential and commercial classes, respectively, and
embody interclass similarity. Neither FRoST nor ResTune could
classify them correctly, while the proposed RS-ConNCD can
differentiate them accurately. The last image is quite challenging
as it is very similar to other classes. As a result, all the methods
misclassified it.

C. Ablation Study

We examine the contributions of certain settings and mod-
ules of the proposed approach. Specifically, we determine the
importance of the following elements in our experiments: the
backbone selection, the proportion of novel to old class category
splits, contrastive learning, positive pair filter, and old-feature
replaying. Note that in Sections IV-C1 and IV-C3–IV-C5, our
old-to-new class ratio is set at 2:1, and the experimental results
are obtained from a single random sampling of the categories.

1) Effectiveness of the Backbone: To elucidate the impact
of the backbone on the model’s performance, we incorporated
experiments with ResNet-18, ResNet-50, and ResNet-101 as
backbones, as shown in Table IV. According to Table IV, it
is evident that on the AID dataset, utilizing ResNet-50 as the
backbone yields the best performance. Compared to ResNet-18,
ResNet-50 possesses more trainable parameters and stronger
feature extraction capabilities. In addition, in comparison to
ResNet-101, there is a slight performance improvement, which
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TABLE IV
ABLATION STUDY OF THE CHOICE OF BACKBONES

TABLE V
ABLATION STUDY OF THE CLASS SPLIT RATIO

TABLE VI
ABLATION STUDY OF THE PROPOSED OLD-FEATURE REPLAYING (REPLAY),

POSITIVE PAIR FILTER (FILTER), AND PROJECTOR

may be attributed to the redundant parameters of ResNet-101 for
medium-sized datasets like AID. Conversely, on larger datasets,
such as Million-AID, ResNet-101 exhibits the best performance.

2) Effectiveness of the Proportion of Category Splits: To
further investigate the impact of varying old-to-novel class
proportions on the model, we conducted experiments using the
RS-ConNCD with AID dataset splits at ratios of 2:1, 1:1, and
1:2. The results are summarized in Table V. As shown in the
table, a decrease in the number of old classes corresponds to
a decrease in the model’s classification accuracy on unlabeled
novel class data. This observation can be attributed to the model’s
propensity to overfit the old classes, consequently leading to a
weakened generalization performance on novel class data as the
number of old classes declines.

3) Effectiveness of Contrastive Learning: Based on the expe-
rience of previous literature [42], before performing contrastive
learning, we use an MLP as the projector to map features into a
higher dimensional space for better learning of old and novel
class data. We conduct experiments on contrastive learning
without using the projector, and the results are shown in the
row “Ours w/o projector” of Table VI. The results demonstrate
that the absence of the projector results in varying degrees of
decreased classification accuracy for both old and novel class
data, indicating the projector’s effectiveness.

To further validate the effectiveness of contrastive learning
in expressing features for unlabeled novel class data, we con-
duct visualization experiments for the feature aggregation of
ResTune, FRoST, and the proposed RS-ConNCD. RS-ConNCD
uses contrastive learning to train on unlabeled novel class data,
while ResTune and FRoST rely on supervised learning with
pseudo-labels. We map the high-dimensional features into a
2-D space by t-SNE [56], where one point in the 2-D space
corresponds to the high-dimensional feature output of the model
for one sample. The experimental results of the visualization
are shown in Fig. 7. We observe that the features produced by
ResTune and FRoST only form a broad cluster in the 2-D space.
The features belonging to different categories have a significant
degree of overlap in the space, and the features of the same
category are scattered in the space. In contrast, RS-ConNCD
produces features that form distinct clusters in the 2-D space.
The features belonging to the same class are clustered together
in the space, and the features belonging to different classes are
well separated.

4) Effectiveness of Positive Pair Filter: To verify the effec-
tiveness of the proposed positive pair filter, we replaced the
modified infoNCE loss in (4), which incorporated the positive
pair filter, with the original infoNCE loss in (1). In Table VI, the
row “Ours w/o filter” shows the model’s classification accuracy
results on the novel class data after removing the positive pair
filter. The model’s classification accuracy decreased by approxi-
mately 2% without it. These results verify the effectiveness of the
positive pair filter in enhancing the performance of contrastive
learning.

In addition, there are two hyperparameters η and k in the
positive pair filter, where η is the threshold to determine whether
two features are from the same class, and k means that the
locations of the top k highest activation values of the features
are selected for similarity measurement. To reveal the influence
of these two hyperparameters on the similarity decision, we
conducted the following experiments. First, the novel class data
are input into the model trained in Stage 1, and the corresponding
feature pair outputs are obtained. Then, we use the proposed
method to determine the similarity of these pairs and compare
the determined results with the real results to obtain the similarity
determination accuracy of the proposed method.

The results on the AID dataset are shown in Fig. 8. The green
line “ppf” is the curve of the positive pair filter. In the left
figure, when η decreases from 1 to 0, the accuracy of similarity
determination first increases and then decreases. This is because
in this process, the model gradually identifies some positive
feature pairs, and the corresponding accuracy of similarity de-
termination increases. However, when the threshold is too low,
many negative pairs will be identified as positive pairs, resulting
in a decrease in the accuracy of similarity determination. In
the right figure, when k is relatively small, the threshold for
similarity determination can be easily met, which leads to a large
number of negative pairs being wrongly considered positive
pairs. As k increases, more and more negative pairs are correctly
identified and the accuracy of similarity determination improves.
However, when k exceeds 100, many positive pairs are wrongly
considered negative pairs due to the difficulty in meeting the
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Fig. 7. Feature visualization of different methods. t-SNE visualization of unlabeled novel class instances in the AID dataset for features generated by ResTune [38],
FRoST [10], and RS-ConNCD (our approach).

Fig. 8. Effects of hyperparameters. “ppf” indicates the proposed positive pair
filter, while “cosine_similarity” indicates the cosine similarity-based method.
(a) Influence of the value of η on the accuracy of similarity determination. The
value of k is set to 100. (b) Influence of the value of k on the accuracy of
similarity determination. The value of η is set to 0.5.

threshold for similarity determination, leading to a decrease in
the accuracy of similarity determination.

Furthermore, we also experiment with the widely used co-
sine similarity, and the result is shown in the blue curve “co-
sine_similarity” in the left figure. It can be observed that when
the value of η is 1, most of the feature pairs are deemed negative
pairs. However, as η decreases, the accuracy of similarity de-
termination continues to decrease, which means that this metric
fails to identify the real positive pairs.

5) Effectiveness of Old-Feature Replaying: In this article, we
introduce an old-feature replaying module designed to mitigate
the forgetting of old class data. This module disentangles the
learning of novel class data from the prevention of forgetting
old class data, thereby enabling the model to better capture
the features of novel class data while maintaining classification
performance on old class data. To demonstrate the effectiveness
of the proposed old-feature replaying mechanism, we replace
it with a conventional method that confines the learning of
novel class data to prevent the forgetting of old class data [10],
[38]. The results are presented in the row labeled “Ours w/o
replay” in Table VI. Employing the conventional method to
prevent catastrophic forgetting yields a slight improvement in the
classification accuracy of the model for old class data. However,
it significantly impedes the model’s learning process for novel
class data, resulting in a decrease of approximately 5–6% in
classification accuracy.

TABLE VII
EFFECT OF THE VALUE OF SELECTED OLD CLASS FEATURES ON THE

AVOIDANCE OF CATASTROPHIC FORGETTING

Finally, Table VII illustrates how the number of selected old
class features impacts the ability to avoid forgetting old class
data. It can be observed that with the increase in the number
of old class features per class, the classification accuracy of old
class data increases. The accuracy tends to be relatively stable
when the number of old class features reaches 40.

V. DISCUSSION

Class-iNCD aims to enable unsupervised learning from un-
seen data in an open-world scenario while retaining knowledge
of previous class data, a critical requirement for RS applica-
tions like scene interpretation in unknown environments. The
ability to autonomously comprehend unfamiliar environments
enhances RS performance in real-world scenarios. This study
explores the application of class-iNCD to RS image scene classi-
fication, addressing specific challenges encountered during this
process.

One significant challenge is the poor quality of pseudo-labels,
influenced by intraclass diversity and interclass similarity in RS
scene images, leading to suboptimal performance of previous
methods [10], [38] on novel class data. In response, we propose a
contrastive learning-based class-iNCD method that directly fine-
tunes the feature extractor, bypassing the need for pseudo-label
generation. In addition, we introduce an old-feature replaying
method to mitigate catastrophic forgetting. Experimental results
on three RS datasets demonstrate the effectiveness of our ap-
proach in learning unlabeled novel class data while preserving
the knowledge of old class data, achieving a balanced learning
paradigm.

Despite these advancements, there are potential areas for im-
provement. Our method still encounters challenges in accurately
recognizing certain highly confusable scene images, as demon-
strated in Table III. To address this issue, we propose potential
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enhancements from three perspectives: First, the methodology
employed in this study falls within the domain of representation
learning, where the quality could be further refined through
advanced geometric data augmentations [50] and the utilization
of multiple local crops [57]. Second, since the performance
of contrastive learning relies on the quantity of positive and
negative feature pairs, it is feasible to enhance the precision of
contrastive learning through techniques aimed at increasing the
number of feature pairs, such as utilizing a large batch size [17]
or implementing the negative pair sampling mechanism [58]. In
addition, the learning performance of the model is significantly
influenced by the interclass similarity and intraclass diversity in
RS scene images. Future research could explore the generation
of hard positive and negative pairs through certain generative
methods [7], followed by contrastive learning using the triplet
loss [59], to mitigate the impact of interclass similarity and
intraclass diversity on model performance.

Besides, the ability to learn novel class data is influenced by
the transferability of knowledge between old and novel class
data. However, challenges arise in scenarios with a substantial
gap between old and novel class data, such as discovering novel
categories in infrared image data when the model is trained
on optical aerial images. Investigating novel class discovery
among different modal data is valuable for future research.
Moreover, despite the diverse nature of RS image scenes, many
can be categorized into broad groups (e.g., a baseball field and
stadium as sports land). Incorporating text information about
these broad categories and leveraging language-image models
for discovering new categories [60] could potentially lead to
further gains.

VI. CONCLUSION

In this article, we address the challenging task of class-iNCD
for RS image scene classification. Leveraging the unique char-
acteristics of RS image scenes, we present a novel framework
grounded in contrastive learning named RS-ConNCD. Depart-
ing from conventional methodologies, RS-ConNCD discards the
classification head and pseudo-label generation, opting instead
for the direct fine-tuning of the feature extractor. This strategic
refinement aims to establish a more balanced learning model
for both novel and existing class data. In addition, we introduce
a positive pair filter to reveal more informative pairs, thereby
augmenting the learning capacity for novel class data. Moreover,
we integrate an old-feature replaying method to mitigate the risk
of catastrophic forgetting. The experimental evaluations on three
public RS image scene datasets demonstrate the advantages of
our proposed framework over several state-of-the-art methods.
Our work provides valuable insights into the incremental dis-
covery of novel categories in RS scene images, contributing to
the ongoing development of precise and reliable methods for
uncovering novel categories in understanding RS images.
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