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Abstract—Flooding is a frequent extreme weather event that
causes significant financial and societal losses. According to the In-
ternational Disaster Database (EM-DAT), during January through
July 2023, 87 flooding events caused about 2000 deaths and $13 bil-
lions in damages globally. Among the impacted, low- and medium-
income countries with resource scarcity tend to experience high
mortality, displacement of people, unmitigated damages, and long-
term recovery. Currently, several hydrologic models and Earth
observation (EO) datasets are used to forecast flood severity and
impacts. However, not all of these models are globally operational or
publicly available. The variability in outputs in terms of accuracy,
scale, and content also limits their usage for emergency response
activities. The Model of Models (MoM), an ensemble approach,
integrates hydrologic models and EO datasets 1) to forecast flood
risk (probability of occurrence) globally every 24 h at a subwater-
shed level and 2) to disseminate alert messages and potential impact
information to at-risk communities using the Pacific Disaster Cen-
ter’s DisasterAWARE platform. MoM is operational and designed
to assist countries with flood risk management and mitigation by
providing early warning and situational awareness information.
An accuracy assessment of MoM from user-perspective across nine
different flood types revealed that 1) the model reliably generated
early warning for 100% of the flooded subwatersheds in seven
events, and 2) during 2022 flooding, 61% and 89% of the flooded
subwatersheds that were identified to be in Watch and Warning
categories in Pakistan and Chad, respectively, were detected to be
flooding by the Copernicus Global Flood Monitoring system.

Index Terms—Early warning, Earth observation (EO) data,
global flood forecasting, hydrologic models, Model of Models
(MoM).

1. INTRODUCTION

LOODING is one of the most frequent and costly ex-
I l treme weather events. According to the International Dis-
aster Database (EM-DAT), during 2000-2022, flood-induced

Manuscript received 2 October 2023; revised 28 March 2024; accepted 8 April
2024. Date of publication 18 April 2024; date of current version 14 May 2024.
This work was supported by the NASA Disasters Program. (Corresponding
author: Bandana Kar.)

Bandana Kar is with the U.S. Department of Energy, Washington, D.C. 20585
USA (e-mail: bandana. kar@ee.doe.gov).

Guy J.-P. Schumann is with ImageCat, Inc., Long Beach, CA 90802 USA, and
also with the School of Geographical Sciences, University of Bristol, Bristol,
UK.

Marina T. Mendoza is with ImageCat, Inc., Long Beach, CA 90802 USA.

Doug Bausch is with Niyam IT, Leesburg, VA 20175 USA.

Jun Wang is with Indiana University, Bloomington, IN 47405 USA.

Prativa Sharma is with the Bennett & Pless, Atlanta, GA 30346 USA.

Margaret T. Glasscoe is with the University of Alabama, Tuscaloosa, AL
35899 USA, and also with NASA-Marshall Space Flight Center, Huntsville,
AL USA.

Digital Object Identifier 10.1109/JSTARS.2024.3390579

Financial Losses (in USD Billions)
w
=3

40
30
20
Ll I
0

LHPFLS Q"’Qbm e@@\\\“’\”\b‘\"\b\ IR
O N NN BN NN AN N NN RN PN IO YAN

Fig. 1. Annual flood-induced financial losses across continents. Source: EM-
DAT: The Emergency Events Database; Université Catholique de Louvain
(UCL) — CRED. Online. Available: http://www.emdat.be/.

financial losses ranged from $9 billion (USD) to $90 billion
(USD), with an annual average of $10 billion (USD) (see
Fig. 1). The 2022 and 2023 flooding events, including those
that occurred in the United States and the United Kingdom,
highlight the threat and damaging consequences of flooding.
While countries around the world are exposed to flooding, the
impacts are particularly disastrous to low- and middle-income
(LMI) countries located in South and East Asia, Africa, and
South America, which are also home to about 89% of the world’s
flood exposed population [1].

Although climate change is a major contributor of increased
flood frequency [2], population growth and urbanization con-
tribute to growing flood exposure and potential losses [1]. Due
to the synergistic effect of population growth, expansion of
infrastructures, lack of appropriate mitigation measures, and
climate change, floods may impact billions of people and cause
trillions of dollars in damage by 2100 [3], [4], [5]. In 2023,
atmospheric rivers and tropical cyclone Hilary, both of which
caused record-breaking rainfall, led to billions of dollars in
economic loss in California, USA [6], [7]. The September 2023
flooding due to extreme rainfall caused the death of thousands
of people in Libya and led to a humanitarian crisis [8]. These
events not only underscore the unpredictability of flood hazards
and subsequent losses, but also highlight the fact that despite
access to resources, flood models, and early warning, developed
countries such as the USA still grapple with the damaging conse-
quences of flooding. It is, therefore, not surprising that flooding
leads to catastrophic consequences in LMI countries that tend to
lack access to models/tools, information, and resources to detect
and respond in time to reduce impacts and enhance recovery.
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Over the years, several open-source and proprietary global
flood models have been developed to forecast flood events and
their risk and severity as well as potential societal and financial
impacts to assist communities with flood risk reduction. Propri-
etary models such as Fathom and KatRisk are used by the insur-
ance industry to assess flood exposure and losses. Publicly avail-
able models such as Global Flood Risk (GLOFRIS), Catchment-
based Macro-scale Floodplain (CAMA-UT), and European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) are used
by emergency managers, first responders, and other stakeholders
to assess flood risks and predict flood events. Regardless of
the use, these models generate products at different spatial
resolutions over various geographies and return periods [9].
The variability in model implementation and their outputs in-
evitably makes them less accessible and usable among user
communities, specifically first responders. Considering the con-
sequences of flood hazards, an alternative solution is to have a
global flood early warning system to inform and assist at-risk
communities.

The Model of Models (MoM) contributes to this need. By
deploying an ensemble approach to integrate hydrologic models
and flood products derived from Earth observation (EO) data
(i.e., optical and radar imagery), the model forecasts flood risk
(probability of occurrence) globally every 24 h at a subwa-
tershed level [10]. Based on the forecasted flood risk, early
warnings along with potential exposure and impact information
are disseminated to at-risk communities and stakeholders within
high-risk subwatersheds using the Pacific Disaster Center’s Dis-
asterAWARE platform to undertake preparatory actions [11].
This ensemble framework combined with the alerting platform
is a first step towards meeting the United Nation’s initiative
Early Warnings for All to reduce mortality and financial losses
from natural disasters, especially, in LMI countries, such as
Libya [12], [13].

The rest of this article is organized as follows. A discussion
of global flood models is presented in Section II. Section III
discusses the model and its implementation. The accuracy as-
sessment approach and results are discussed in Section IV.
Finally, Section V concludes this article.

II. GLOBAL FLOOD MODELS

Kar and Schuman [14] reviewed both publicly and privately
available global flood models and tools with the general aim to
assist stakeholders to better manage and respond to floods. The
authors found that existing global flood models not only differ in
their forecasting ability and mapping accuracy, but also in terms
of methodology and applied physics, process representation,
resolution, and frequency at which the outputs are updated.
These models also use field data, remotely sensed observations,
and hydrologic and hydrodynamic models (for more details,
refer to EOTEC DevNet Flood Tracker [15]). Among more than
30 models identified in the flood tracker tool, the Global Flood
Awareness System (GloFAS), managed by Copernicus, is proba-
bly one of the most widely used global flood forecasting models.
It aims to facilitate response to flooding, particularly in countries
that cannot forecast these events on their own [16]. Humanitarian
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agencies, such as the United Nations’ World Food Programme
(UN WEFP), also use this model along with other satellite-based
mapping systems for emergency response [17]. Although these
models and products are useful for emergency response, from
an operational and user perspective, it is crucial to have a global
flood early warning system to alert and provide situational
awareness information with consistent accuracy and reliability
to reduce flood risk and improve the resilience of LMI countries.

For emergency managers and first responders, it is critical to
publicly access usable flood products in a timely manner. To
achieve this goal, flood models should 1) be reliably available
and accessible all the time, 2) generate interpretable and usable
products, and 3) deploy an accepted methodology to produce
consistent results across locations and events. The MoM meets
these criteria by deploying an open-source framework that can
incorporate any flood model and EO outputs to generate alerts
and situational awareness products.

III. MODEL OF MODELS

The MoM has the following three components:

1) an ensemble model to delineate flood extent and forecast
flood risk at 6-h and 24-h intervals;

2) calibration of flood risk based on EO data;

3) dissemination of alerts to impacted communities based on
flood risk.

The following section discusses the steps and datasets used
in each component to generate alerts.

1) GloFAS and Global Flood Monitoring system (GFMS),
the two globally available hydrologic models for flood
forecasting, are used to forecast flood risk in near real-time
(daily and 6-h intervals). Given their variable spatial reso-
lution outputs (discussed later), the flood risk is forecasted
at the global subwatershed basin available from the World
Resources Institute (WRI) [18]. The WRI dataset in-
cludes geometry information (subwatershed boundaries)
for 3400 watershed basins across the world as well as the
flood risk scores of each subwatershed basin based on his-
torical riverine and coastal flooding events [Riverine Flood
Risk (RFR) and Coastal Flood Risk (CFR)]. These scores,
updated annually, represent riverine and coastal flooding
impacts (i.e., populations at-risk, populations impacted by
previous events, and existing flood protections). Forecast-
ing flood risk at subwatershed basins allows emergency
managers to assess impacted populations and infrastruc-
tures for resource planning as well as emergency response
and preparedness activities.

2) GIoFAS is flood forecasting and monitoring system that
is independent of administrative and political bound-
aries [19]. The system couples weather forecasts with a
hydrologic model to produce daily (24-h interval) flood
forecasts and monthly seasonal streamflow outlooks to
assist downstream countries with information on upstream
river conditions. For MoM, the following attributes from
GloFAS are used to derive a hazard score (HS): probability
of a2 year, 5 year, and 20 year flood occurrence, alert level
(medium, high, severe) of the forecasted flood event, and
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TABLE I
WEIGHTING SCHEME FOR ATTRIBUTES USED TO DERIVE HSS
Field Description Initial weighting HS_Score
GFMS_TotalArea_km? | Area of a flooded watershed in km” due to flood depth above the | Ipt for every I000km”, max | HS_GFMS
threshold =10 (e.g., 8 900km? = 8.9)
GFMS_%Area Percentage area of the flooded watershed - GFMSArea/WatershedArea | Ipt for every 10%, Max = 10 | HS_GFMS
(e.g., 66% = 10)
GFMS_MeanDepth(mm) | Mean Depth of flood within the watershed above threshold Ipt for every 10mm, max 10 | HS_GFMS
(e.g., 56mm = 5.6)
GFMS_MaxDepth(mm) | Max Depth of flood within the watershed above threshold 1pt for every 10mm, max =10 | HS_GFMS
(e.g., 89mm= 8.9)
GFMS_Duration Number of 3-h intervals a specific area has been flooded (at least Continuous days of at least | HS_GFMS
100km? overlap in each interval) 100km? overlap, 1 per day,
Max= 10 (e.g., 66 h =2.75)
GloFAS_20yr% Probability that a flood of return period 20 year will be reached 10pt for 100\% Max = 10 (e.g.,| HS_GIoFAS
66\% = 6.6)
GloFAS_5yr% Probability that a flood of return period 5 year will be reached 10pt for 100\% Max = 10 (e.g.,| HS_GIoFAS
66\% = 6.6)
GIoFAS_2yr% Probability that a flood of return period 2 year will be reached 10pt for 100\% Max = 10 (e.g.,| HS_GIoFAS
66\% = 6.6)
GloFAS_AlertLevel Alert Level 1 —>3 with 3 greatest value Level * 3.33, max 10 (e.g.,3 =| HS_GIoFAS
10)
GloFAS_PeakForecasted | Number of days until peak forecast arrives at observation point Weight in days where 1 =10, | HS_GIoFAS
2=9, ... 10 or greater = 1
HWRF_TotalArea_km? | Area of the watershed impacted by the rainfall from HWRF Ipt for every 1000km?, max | HS_HWRF
=10 (e.g., 8 900km? = 8.9)
HWRF_%Area Percentage of the area of the watershed impacted by the rainfall from | Ipt for every 5%, Max =10 (e.g.,| HS_HWRF
HWRF 66% = 10)
HWRF_MeanRain (in | Mean Rainfall within the watershed in inches 1pt for 2 in rain and add 1 pt for | HS_HWRF
inches) every 0.5 in rain increment,
Max=10 (e.g.,4.5in =6)
HWRF_MaxRain  (in | Maximum Rainfall within the watershed in inches Ipt for 4 in rain and add 1pt | HS_HWRF
inches) for every 1 in rain increment,
Max=10 (e.g.,4.5in =1.5)
DFO_1DayArea_km? Area of watershed in km? that is flooded based on one day observed | Ipt for every 100 km?, Max=10 | HS_MODIS
data with cloud shadow masking applied
DFO_1DayPercArea Percentage area of the watershed that gets flooded based on one day | Ipt for 1% area flooded, | HS_MODIS
observed data with cloud shadow masking applied Max=10
DFO_2DayArea_km? Area of watershed in km? that is flooded based on two day observed | 1.5pt for every 100km?, | HS_MODIS
data and cloud shadow masking is also applied Max=15
DFO_2DayPercArea Percentage area of the watershed that gets flooded based on two day | 1.5pt for every 1% area, | HS_MODIS
observed data and cloud shadow masking is also applied Max=15
DFO_3DayArm_km2 Area of watershed in km? that is flooded based on three day observed | 2.5pt for every 100 km?, | HS_MODIS
data and cloud shadow masking is also applied Max=25
DFO_3DayPercArea Percentage area of the watershed that gets flooded based on three day | 2.5pt for every 1% area, | HS_MODIS
observed data and cloud shadow masking is also applied Max=25
VIIRS_lDayArea_km2 Area of watershed in km? that is flooded based on one day observed 1.5pt  for every 100 km?, | HS_VIIRS
data Max=15
VIIRS_1DayPercArea Percentage area of the watershed that gets flooded based on one day | 1.5pt for 1% area flooded, | HS_VIIRS
observed data Max=15
VIIRS_5DayArea_km? | Area of watershed in km? that is flooded based on five day composite | 3.5pt for every 100 km?, | HS_VIIRS
observed data with cloud shadow masking applied Max=35
VIIRS_5DayPercArea Percentage area of the watershed that gets flooded based on five day | 3.5pt for every 1% area, | HS_VIIRS
composite observed data with cloud shadow masking applied Max=35

~
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Note:: HS GIoFAS = HS derived from the summation of all GIoFAS scores; HS GFMS = HS resulting from the summation of all GFMS scores; HS HWRF = HS derived from the
summation of all HWRF scores; HS MODIS = HS derived from the summation of all MODIS scores (obtained from DFO); HS VIIRS = HS derived from the summation of all

VIIRS scores.

peak forecast (# of days until the forecasted flood reaches
the observed peak) (see Table I). Using the weighting
scheme mentioned in Table I, each attribute is normalized
to generate a score between 1 and 10. The weighted
scores are subsequently summed together to derive HS
for GIoFAS (HS_GIoFAS). The HS_GIoFAS ranges from
0 to 50. Because GIoFAS outputs are generated at specific
locations, the estimated HS for all the locations existing
within a subwatershed basin is averaged to compute the
HS for the subwatershed HS,,,_GloFAS.

GEFMS implements a hydrologic runoff and routing model
to detect floods and their intensities using real-time precip-
itation data from the Tropical Rainfall Measuring Mission
(TRMM) Multi-satellite Precipitation Analysis (TMPA)

and Global Precipitation Measurement (GPM) Integrated
Multi-Satellite Retrievals for GPM (IMERG) [20]. The
model is functional between 50°N and 50°S latitudes and
is implemented at 0.125° resolution. Using 13 years of ret-
rospective model runs and surface water storage statistics
(95th percentile plus parameters related to basin hydro-
logic characteristics), the model generates the following
attributes every 3-h intervals: streamflow, surface water
storage (depth in millimeters of surface water above dry
ground), inundation variables at 1-km resolution, instan-
taneous precipitation and total precipitation based on past
seven days, three days and the previous day, and forecasted
flood risk 4-5 days into the future. For each subwatershed,
spatial zonal statistics is used along with these attributes
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5)

6)
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to extract total area and percent area (in km?) flooded,
mean and maximum flood depth above threshold (in mil-
limeters), and cumulative flood duration in hours if more
than 100 km? of a subwatershed is flooded (see Table T).
Each attribute is normalized between 1 and 10 as per the
weighting scheme (see Table I). The weighted scores are
summed together to compute HS for GFMS (HS_GFMS)
that ranges between 0 and 50.

To compute flood risk (a probabilistic output), a Gaussian
cumulative distribution function (cdf) is used to develop
watershed level fragility functions. The cdf computes the
probability of flood risk based on the forecasted HS for a
subwatershed and its flood risk scores (RFR and CFR). In
MoM, the function uses log of the HS, log of the flood risk
score (as mean), and 1 unit as standard deviation (assumes
normal distribution).

Although GFMS outputs are available at every 3-h in-
tervals, MoM forecasted outputs are generated at ev-
ery 6-h intervals to match the time intervals at which
Hurricane Weather Research and Forecasting (HWRF)
model outputs are updated. First, every 6 h, the max-
imum HS_GFMS over a 6-h duration is combined
with the (HSgy_GIloFAS) to generate forecasted flood
risk at subwatershed level (HS_Base = HS_GFMS +
HS,y_GIoFAS).

If either GloFAS or GFMS fails to forecast a flood event,
the HS of the model with forecasted outputs is weighted
twice to compute flood risk. For instance, if HSgy,_GloFAS
= 0, HS_Base = 2 * HS_GFMS. This ensures the total
HS_Base score ranges between 0 and 100 across all the
subwatersheds. Second, the WRI flood risk scores for
subwatersheds (RFR and CFR) are rescaled from 0-5
to 0-100 to match the HS range (0-100). These values
provide the median of the cdf fragility function based on
risk scores. Third, these risk scores and HS_Base are used
in a cdf to compute flood risk (FR_Base) and identify the
subwatersheds at high risk of flooding.

Neither GloFAS nor GFMS incorporates the rapidly
changing flood hazard conditions during a landfalling
tropical storm. To incorporate risks associated with trop-
ical storms, the HWRF model outputs that are updated
every 6-h with forecasted advisory are used [21] to de-
termine the total and percent area of a subwatershed
receiving rainfall, and the minimum, maximum, and to-
tal rainfalls received by a subwatershed. These attributes
are normalized (0-10) using the weighting scheme (see
Table I) and summed together to compute a HS for trop-
ical storms (HS_HWRF). The HS_HWREF is compared
with HS_Base, and the subwatersheds with maximum HS
(HS_HWRF > HS_Base) are flagged for coastal flooding
(Flag = 1) and assigned an HS HS1 (maximum between
HS_HWREF and HS_Base). For these subwatersheds, the
flood risk (FR1) is recomputed using cdf with HS1, RFR,
and CFR.

To calibrate MoM outputs, flood products from the Mod-
erate Resolution Imaging Spectroradiometer (MODIS)

7

8)

satellite and the Visible Infrared Imaging Radiometer
Suite (VIIRS) instrument are used. The MODIS Wa-
ter Product (MWP) provides daily MODIS Surface Wa-
ter (MSW) and MODIS Flood Water (MFW) maps,
which are acquired from the Dartmouth Flood Observa-
tory at approximately 250-m resolution [22]. The geo-
rectified and cloud cover corrected 1-day, 2-day, and 3-
day MWP composites are used to compute the percent
and total area flooded at the subwatershed level. Each
attribute is normalized using the weighting scheme in
Table I, which are then combined together to compute
an HS (HS_MODIS). HS_MODIS is compared with HS1
(HS_MODIS > HS1) and the subwatersheds with max-
imum HS are flagged (Flag=2) and assigned HS2. The
flood risk (FR2) for these subwatersheds is recalculated
using cdf with HS2, RFR, and CFR scores. HS2 repre-
sents HSs for those subwatersheds that are experiencing
maximum flooding as per the forecasted models (GloFAS,
GFMS, and HWRF) and EO data from MODIS.

The VIIRS 1-day and 5-day composite flood products
are available at 375-m resolution. Each 375-m pixel
is categorized into cloud, snow cover, river/lake ice
cover, shadows, clear-sky land, normal open water, supra-
snow/ice water or mixed ice and water, and flooding
water fractions. A pixel with more than 40% area cov-
ered with flood water is considered a flooded pixel [23].
Because flooded pixels represent surface water extent
across different land uses, the world population data,
available at 100-m resolution from WorldPop [24], are
used to mask out wetlands and unpopulated areas. For
each subwatershed, the total and percent area flooded
are computed using the masked 1-day and 5-day com-
posite surface water extent layer. These attributes are
then normalized using the weighting scheme (see Ta-
ble I) and combined to compute an HS (HS_VIIRS).
HS_VIIRS is compared with HS2 (HS_VIIRS > HS2);
the subwatersheds identified to be flooding by VIIRS are
flagged (Flag=3) and assigned the maximum HS (HS3),
which is used along with RFR and CFR to recompute
flood risk (FR3).

The final flood risk score (FR3) is used to determine alert-
ing categories Information (0% < FR3 < 35%), Advisory
(35% < FR3 < 60%), Watch (60% < FR3 < 80%),
and Warning (FR3 > 80%) and trigger alert dissemina-
tion using the DisasterAWARE multihazard alerting plat-
form. The alerting categories were empirically determined
based on MoM performance during 2020-2022 along
with observed flood events during the same time. Alerts
are disseminated for inland subwatersheds provided they
were flagged for active flooding according to MODIS and
VIIRS (Flag = 2 and Flag = 3) and have a high base
flood risk (FR3 > 60%). In case of coastal subwatersheds,
alerts are disseminated provided the subwatersheds have
been flagged for coastal flooding (Flag = 1 and Flag = 2
and Flag = 3) and have a high base flood risk (FR3 >
60%) Fig. 2).



KAR et al.: ASSESSING A MOMS APPROACH FOR GLOBAL FLOOD FORECASTING AND ALERTING 9645
[ GFMS J [ GloFAS ] [ HWRF ] [ MODIS ] [ VIIRS ]
v v v v v
Forecasted Forecasted Rainfall Data Observed Flood Observed
Flood Outputs Flood Outputs R Data (Raster) Surface Water
(Raster) (Point) (Raster) Extent (Raster)
WRI Watershed
(polygon) R v T TTTTTTTTTTY y T TTo v ~TTTTTTTTTTTTTTTTTTTTTTT L 2 !
i | GFMS Score GIloFAS Score HWREF Score MODIS Score VIIRS Score | 1
1
Weighted 1 | (HS_GFMS) (HS_GIoFAS) (HS_HWREF) (HS_MODIS) (HS_VIIRS) :
Scores e e e !
(Table 1)
l v
2 * HS_GFMS, if HS_GIloFAS =0 Final Hazard Score (HS) =
HS_Base 2 * HS_GIoFAS, if HS_GFMS =0 » Max(HS Base, HS HWREF,
HS_GFMS + HS_GIoFAS, otherwise HS_MODIS, HS_VIIRS)
WRI Watershed
Risk Value (RV) = —}/ CDF =/ (In(HS), In(RV),1,1) > Flood Risk (FR)
Max(RFR, CFR) / l
Warning, if FR > 80%
Alert = Watch, if 60% < FR < 80%
Advisory, if 35% < FR < 60%
Information, if 0 < FR <35%
Fig. 2. Conceptual implementation of MoM.
TABLE II
SELECTED FLOOD EVENTS FOR MOM PERFORMANCE ASSESSMENT AND REFERENCE SOURCES (Y = THE EVENT WAS DETECTED—N = THE EVENT WAS
NOT DETECTED)
Region Count Flood type Year | Startdate | End date | MoM | EM-DAT GFM Copernicus | International
£ i P social media GFM Charter
South Asia Pakistan Monsoon flood 2022 | mid-June November | Y Y Y Y Y
Africa Sierra Leone | Flash flood 2022 | 28-August | September | Y Y Y Y N
Africa Chad Fluvial flood 2022 | July October Y Y Y Y Y
Europe Ttaly Flash flood 2022 |15-September|l6-September| Y N Y N N
South America | Brazil Pluvial flood 2022 [28-November| 2-December | Y Y N Y N
Australia Australia Pluvial-fluvial flood | 2022 |22-February April Y Y Y Y N
North America | United States | Atmospheric River 2023 | 9-January 10-January | Y Y Y Y N
South Asia Bangladesh Monsoon flood 2022 | May September | Y Y Y Y Y
Southeast Asia | Philippines Tropical storm 2022 | 28-October |31-October | Y Y Y Y Y
Flood type description: pluvial flood: flood caused by excess rainfall;
fluvial flood: river flooding;
flash flood: intense flooding of short duration;
atmospheric river: long and narrow atmospheric streams of water vapor holding extremely large quantities of water that can be released as rain when making landfall

IV. MOM VALIDATION AND ACCURACY ASSESSMENT

Assessing the performance of MoM from a user perspective
is crucial to ensure its effectiveness in disseminating alerts for
flood events to the correct location(s). While scientific accuracy
is important, user satisfaction relies on timely, precise notifica-
tions that align with their expectations. User-centric evaluation
considers factors such as the model’s ability to issue alerts based
on actual event location and how many times the model alerted
correctly, preferably for all types of flood events. By prioritizing
user-centric metrics, the reliability and trustworthiness of flood
alerts can be enhanced, thereby ultimately improving public
safety and response during critical events.

To assess the accuracy and reliability of MoM, the model
outputs were compared with nine events of various sizes and

severity (see Table II) that occurred in different continents and
caused significant losses. Specifically, the assessment focused
on MoMs reliability in identifying a flood event and its spatial
extent (subwatersheds) for alert dissemination in comparison to
other global models.

The selected flood events guarantee global coverage, diversity
in event types (e.g., flash floods, tropical storms, and atmo-
spheric rivers), and high severity based on impacted population
according to the media and humanitarian agency reports. For
comparison, a list of flood events was retrieved from the EM-
DAT database, the Global Flood Monitor based on social me-
dia [25], and the International Charter for Space and Major
Disasters (referred as Int. Charter). An event was considered
identified if it was recorded in the EM-DAT or social media
database for the timeframes and geographic locations according
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TABLE III
MOM SPATIAL ACCURACY ASSESSMENT AND GFMS PERFORMANCE ASSESSMENT RESULTS USING COPERNICUS GFM DATA FOR THE SELECTED EVENTS

Event MoM Watch/ Warning MoM with Advisory MoM all levels GFMS
Detect No. % Detect No. % Detect No. % Detect No. %
FALSE 38 39% FALSE 24 24% FALSE 3 3% FALSE 30 31%
Pakistan TRUE 60 61% TRUE 74 76% TRUE 95 97% TRUE 68 69%
Total 98 100% Total 98 100% Total 98 100% Total 98 100%
FALSE 5 42% FALSE 2 17% FALSE 0 0% FALSE 3 25%
Sierra Leone TRUE 7 58% TRUE 10 83% TRUE 12 100% TRUE 9 75%
Total 12 100% Total 12 100% Total 12 100% Total 12 100%
FALSE 9 11% FALSE 2 3% FALSE 0 0% FALSE 0 0%
Chad TRUE 71 89% TRUE 78 98% TRUE 80 100% TRUE 80 100%
Total 80 100% Total 80 100% Total 80 100% Total 80 100%
FALSE 5 83% FALSE 3 50% FALSE 0 0% FALSE 3 50%
Brazil TRUE 1 17% TRUE 3 50% TRUE 6 100% TRUE 3 50%
Total 6 100% Total 6 100% Total 6 100% Total 6 100%
FALSE 56 86% FALSE 42 65% FALSE 0 0% FALSE 37 57%
Australia TRUE 9 14% TRUE 23 35% TRUE 65 100% TRUE 28 43%
Total 65 100% Total 65 100% Total 65 100% Total 65 100%
FALSE 17 85% FALSE 10 50% FALSE 0 0% FALSE 9 45%
United States TRUE 3 15% TRUE 10 50% TRUE 20 100% TRUE 11 55%
Total 20 100% Total 20 100% Total 20 100% Total 20 100%
FALSE 10 28% FALSE 4 11% FALSE 0 0% FALSE 17 47%
Bangladesh TRUE 26 72% TRUE 32 89% TRUE 36 100% TRUE 19 53%
Total 36 100% Total 36 100% Total 36 100% Total 36 100%
FALSE 4 57% FALSE 1 14% FALSE 0 0% FALSE 1 14%
Philippines TRUE 3 43% TRUE 6 86% TRUE 7 100% TRUE 6 86%
Total 7 100% Total 7 100% Total 7 100% Total 7 100%

No.indicates the number of instances (combinations of catchments and dates) where MoM or GFMS identified (TRUE) or did not identify (FALSE) flooding.
Note:: The flooding in the Marche Region of Italy in 2022 was not included in this part of the analysis because no satellite imagery was

readily available for flood impacted areas.

to the reports. In case of MoM, an event was considered detected
if a “Warning” or “Watch” was disseminated to any of the
subwatersheds within the event’s geographic location.

The spatial accuracy of MoM outputs was assessed by com-
paring the high flood risk subwatersheds with Copernicus Global
Flood Monitoring system (Copernicus GFM) imagery for the
selected timeframes and geographic locations. Copernicus GFM
was used for comparison because it is independent from MoM
and uses the Sentinel-1 synthetic aperture radar (SAR) images.
Spatially, if an imagery contained flooded areas for an event
that aligned geographically with the subwatersheds identified
to be of high risk by MoM, then the flooded subwatersheds
were considered to be accurate. For long-duration events with
significant geographic coverage, flood maps and imagery from
Copernicus GFM were searched and obtained for a random set of
dates. Upon geo-registering the maps and imagery, the maps and
imagery where flooding was detected were compared with the
subwatersheds based on the alerting category (Warning, Watch,
Adpvisory, and Information). Because MoM outputs are gener-
ated every 6 h, for simplicity, the highest alert level recorded for a
subwatershed within 24 h was used for comparison. In addition,
the overall event statistics was also computed that included
all the subwatersheds identified to be flooding by MoM by
calculating the percentage of times MoM alerts (all categories)

were generated for a subwatershed where Copernicus GFM also
detected a flooding event.

The performance of MoM was also evaluated by comparing
its outputs for the selected events with the performance of a
single model (GFMS) to show the benefits of having an ensemble
approach to flood forecasting and alerting. This approach is
similar to ablation study used in machine learning to examine the
contribution of a component to an overall system and assess its
sensitivity. The flooded subwatersheds identified by the imagery
collected from Copernicus by date were compared with GFMS
and MoM outputs. Although both MoM and GFMS generate
outputs every 6 and 3 h, respectively, a single output value per
day by subwatershed based on the highest alert level according to
MoM and the highest area flooded in a subwatershed according
to GFMS were used. It was assumed that GFMS forecasted
flooding when the area of a flooded subwatershed was higher
than zero. Because GloFAS outputs are generated at specific
locations within a subwatershed, it was not feasible to compare
GloFAS outputs with MoM.

V. RESULTS AND DISCUSSION

Despite the diversity in flood events, results (see Table III)
indicate that MoM was successful in identifying the flood events
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Fig.3.  Frequency distribution of the subwatersheds identified by MoM in each
alert category during (a) 2022 Australia flood and (b) 2022 Pakistan flood. The
subwatersheds that were missed by MoM are represented as “no alert” category.

while other global models and systems missed at least one or
more events. For instance, the September 2022 Italy flash flood
in the Marche Region was missed by most systems including
Copernicus GFM, which did not have any images of the flooded
areas, probably due to its short duration. This flood event,
however, was captured by MoM for alerting purposes.

Overall, MoM performed well for most events (see Table IIT)
regardless of the alert categories. It is significant to note that
MoM reliably generated early warning for 100% of the flooded
subwatersheds in seven events. For high severity floods (Chad
and Pakistan flooding, 2022), 61% and 89% of the flooded
subwatersheds were identified to be in Watch and Warning cat-
egories in Pakistan and Chad, respectively, which were also de-
tected by the Copernicus GFM system. Based on the frequency
distribution of MoM alert levels for the Pakistan and Australian
floods (see Figs. 2 and 3), it is evident that the Australian flood,
a result of pluvial-fluvial flooding, also predominantly received
“Information” while the Pakistan flooding received frequent
“Warnings.”

Following the 2023 Libyan flooding, the World Meteorolog-
ical Organization emphasized the need for early warning to
assist countries lacking technologies and human resources to
reduce extreme weather impacts on society [13]. MoMs current
capability to trigger alerts ahead of time fills this gap. However,
for emergency management, all alert levels should be considered
rather than just the “Warning” and “Watch” categories because
an “Advisory” still generates alerts, albeit for an area with a
lower probability of flood occurrence. A low-probability event
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TABLE IV
MoOM PRODUCTS AND THEIR FORMATS
Output Short Description Data type Format
Impacted Subbasins with forecasted Geospatial Geolson
subbasins flood risk (Subbasin and
administrative
boundaries)
Alerting Alerting level for sub- | Alert CSv
level basins based on flood risk. | categories
Categories included: Warn- | for subbasins
ing, Watch, Advisory and
Information.
Important Attributes of input | Attribute table | CSV
subbasin datasets, weighted scores, | for subbasins
attributes HSs for each
input model/EO dataset,
forecasted and calibrated
flood risk scores

can have high severity impacts, depending upon communities
and infrastructures exposed, mitigation strategies in place, and
resource availability. For instance, during the 2022 Australian
flood, most of the flooded subwatersheds were categorized to be
low-risk (alert category “Information”) by MoM (see Fig. 3), but
it was considered as one of the worst floods [26]. Furthermore,
an advisory alert can change to Watch or Warning in subsequent
forecasting days depending upon the event. Therefore, it is
paramount for decision makers in LMI countries to have access
to alerting information to undertake emergency management
efforts to reduce losses.

In terms of spatial performance, the consistency between
MoM and observed flooded areas from SAR is relatively low
for rapid onset events (e.g., atmospheric river induced flooding
or pluvial floods in Brazil) or events that are covering extremely
large areas spreading across many hydrological basins, such as
the Australia flood. Of course, for these types of events, satellite
remote sensing has significant limitations, particularly, the in-
ability to precisely capture rapid onset events due to infrequent
orbital revisits and to accurately map floods in vegetated and
built-up areas. From this perspective, MoM is well positioned to
not only detect flood events that may or may not be captured by
satellite/sensors, but also to monitor the status of a flood event
over a period of time.

Between GFM and MoM (see Table III), if we consider all
alert levels, it is clear that MoM performed better in all events
except for in Chad, where both models excelled. Considering
MoM alert levels (i.e., Warning, Watch, and Advisory), MoM
performed better than or equal to GFM for high-probability flood
events. These results show the advantage of having a MoM
approach that leverages other models to identify events even
when one or more models fail to forecast or detect flooding.

VI. CONCLUSION AND FUTURE WORK

The current deployment of MoM produces the following
three main products: 1) impacted subwatershed layer, 2) alerting
level, and 3) subwatershed attributes every 6 h that are useful
for emergency management, downstream analytics (such as
social and infrastructure impact assessment), and alerting (see
Table IV). The integration of MoM into the DisasterAWARE
platform (refer to the work in [27] for more information) as
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well as these data products allows early flood warning and
generation of flood impact scenarios for emergency management
activities. The ensemble approach using forecasted and observed
flood products also 1) eliminates the challenge of interpreting
outputs from multiple flood models that can be confusing for
stakeholders, 2) provides the opportunity to identify high flood
risk areas using the longitudinal data for resource planning, and
3) enables monitoring and detection of different flood types
(pluvial, fluvial, and tropical cyclone) more reliably (see Fig. 4).
The current version of MoM has two limitations. First, the
model does not capture flash floods, flooded areas with smaller
footprints, and flooding resulting from rapid onset glacial and
snow melt. Second, the flood probability is determined at sub-
watershed levels that may include several communities with
different flood risks. While the fragility approach used in MoM
amplifies flood risk that could be useful for emergency managers
in LMI countries to prepare for future flood events, this can be
expensive as it identifies all communities within a subwatershed
to have the same risk, which may not be the case. From an emer-
gency management perspective, the cost of resource planning
needed for a low-risk community with little social and infrastruc-
ture exposure would be less than that of a high-risk community
with high exposure. Because the current implementation does
not distinguish the risk level across communities, the use of
model outputs can be expensive for certain communities. Future
enhancements of MoM, therefore, will focus on the following:

1) calibrating model weights and inputs based on observed
model performance;

2) deploying a machine learning algorithm to automatically
adjust weights and parameters to improve reliability and
autoclassify flood risk for alerting purposes;

3) downscaling estimated flood risk to community level by
incorporating localized flood forecasting model outputs.

For precise determination of flood extent and impact areas, the

next generation MoM will incorporate SAR and digital elevation
model datasets to compute flood depth at a finer resolution,
which is dependent on SAR availability. Regional flood models
will also be integrated into MoM to increase the precision of
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Flood Forecast and Flood Hazard Areas
Pakistan, 10 July 2023

Pakistan floods as captured by MoM in 2022 (a) and 2023 (b). Note the map shown in (b) is a UN WFP Country Office map, showing the MoM alerting

flood outputs. The flood extent and depth information will be
used to refine exposure and impact assessment outputs, which
will further increase the usefulness of MoM for the emergency
management community and assist them with geo-targeted re-
sponse efforts. Despite their near real-time availability, MODIS
and VIIRS outputs suffer from cloud cover. To overcome this
issue, the future version of MoM will also incorporate other op-
tical sensors, such as those onboard the NOAA 20 and NOAA 21
satellites, as well as precipitation data. Beyond DisasterAWARE,
the MoM outputs will be disseminated via cloud deployment
to different stakeholders, such as the WFP country offices, to
generate agency-specific analytical outputs.
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