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An Attention-Fused Deep Learning Model for
Accurately Monitoring Cage and Raft Aquaculture at

Large-Scale Using Sentinel-2 Data
Yunci Xu and Lizhen Lu

Abstract—Cage and raft aquaculture (CRA) is vital for the
coastal economy and provides high-quality aquatic products. Accu-
rately monitoring large-scale CRA lays the foundation for predict-
ing CRA product yield and mitigating environmental impacts. This
study, focusing on the challenges of detecting large-scale. CRA from
freely downloaded, multispectral remote sensing imagery due to
the complexity of both CRA and marine environment, proposed an
attention-fused deep learning model for accurately retrieving large-
scale CRA in China’s offshore sea using open-source Sentinel-2 (S2)
satellite data. We first downloaded the cloud-free preprocessed S2
images in selected study areas. Manual labeling of cage, raft, and
background areas was performed using high-resolution remote
sensing images, with labeled images clipped into 32×32 patches.
To enhance the perception ability of the feature, the convolutional
block attention module was integrated into the well-performing
UNet++ by incorporating both channel and spatial attention in
each convolutional block of the encoder as well as the Level 1
convolutional blocks of the decoder. Using the sample dataset in
2021, the proposed AF-UNet++ was trained, compared to four
mainstream convolutional neural networks, and then adopted to
map CRA in both 2021 and 2018 in the study areas, as well as
four additional sites. Experimental results demonstrate: 1) our
model has the highest OA, F1, and m intersection over union
(IoU), with IoU for cage 4.15% higher than other models. 2) Visual
comparison illustrates that AF-UNet++ best excels in extracting
CRA. 3) Extraction results both in 2021 and 2018 confirm the
proposed model can effectively monitor large-scale CRA and has
the spatio-temporal stability.

Index Terms—Attention-fused deep learning, cage and raft
aquaculture (CRA), China’s offshore sea, convolutional block
attention module (CBAM), Sentinel-2 (S2) imagery, UNet++.

I. INTRODUCTION

G LOBAL aquaculture production increased by 5.78% from
2018 to 2020, retaining its growth trend amid the world-

wide spread of the COVID-19 pandemic [1]. China has produced
more farmed aquatic animals and algae than any other country in
the world since 1991 and has witnessed an increase in the entire
volume of aquaculture, reaching 66.90 million tons in 2021 [2].
Offshore aquaculture, which is commonly equipped with cages
and floating rafts, is one of the most important seafood sources
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for the growing population of our nation and world, while also
serving as a significant catalyst for economic development.
However, the development of cage and raft aquaculture (CRA)
has resulted in a series of eco-environmental problems, such
as seawater pollution caused by excessive breeding baits and
spreading fertilizers [3], eutrophication caused by cultured crop
metabolites [4], quality decline of marine products caused by
antibiotic abuse [5], and the impact of the uncontrolled expan-
sion of breeding areas on coastal ecosystems and ship traffic
[6].

Accurately and timely monitoring CRA is the first and also
essential step for alleviating the aforementioned problems. Re-
mote sensing technology, due to its benefits of large-scale cov-
erage and real-time availability, proves to be the most effective
approach for dynamically monitoring land cover, environment,
and also offshore aquaculture. Thus, a considerable number of
researches on accurately identifying CRA from satellite imagery
have been conducted since the start of this century. In terms of
the classification methods, these researches can be categorized
into the following types [7]: visual interpretation [8], [9], infor-
mation enhancement [10], [11], feature learning [12], [13], and
object-oriented classification [14], [15], [16]. In recent years,
deep learning has been preferred to precisely detect CRA from
satellite imagery owing to its ability to automatically capture ab-
stract features [17]. This has allowed it to achieve more accurate
classification results than traditional machine learning methods
such as random forest and support vector machine. Among the
considerable number of deep learning models, especially among
the convolutional neural networks (CNNs), U-Net along with
its modified versions has attracted popular attention in semantic
segmentation for its elegant architecture and relatively effective
while efficient performance, etc. [18], [19], [20]. For instance,
Lu et al. [21] improved the U-Net model and applied it for
extracting offshore aquaculture areas with medium-resolution
remote sensing imagery; Yu et al. [22] proposed a framework
that integrates UNet++ with marker-controlled watershed seg-
mentation for the accurate and refined delineation of aquaculture
ponds, etc.

Meanwhile, the attention mechanism, which focuses on im-
portant features and suppresses unnecessary ones, has been
widely integrated into CNNs, especially in U-Net-like or other
variants of the encoder–decoder architecture, for improving the
representation of interests and the segmentation results. For
example, Cui et al. [23] created a reverse attention module that
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suppresses seawater features, enabling the learning character-
istics for both apparent and inapparent aquaculture sites. Qin
et al. [24] embedded the convolutional block attention module
(CBAM) [25] into the decoder of the network they proposed to
gain accurate feature maps for offshore farm extraction, etc.

Recently, the existing studies on identifying CRA are mainly
using high spatial resolution (HSR) remote sensing images.
For example, Deng et al. [26] designed a multiscale-fusion
superpixel segmentation optimization module and combined it
with DeepLabV3+ network for extracting CRA from fused
0.8-m-resolution Gaofen-2 images; Wang et al. [27] devel-
oped an incremental double unsupervised deep learning model
consisting of a feature extraction network and a fully con-
volutional semantic segmentation network for characterizing
unlabeled CRA from 3-m-resolution Gaofen-3 images; Ma et
al. [28] adopted a combination method of piecewise linear
stretching and R3Det network to discriminate CRA from the
fused 2-m- resolution Gaofen-6 images; Chen et al. [29] applied
DeepLabV3+ and U-Net models for recognition of marine
ranching from multitemporal 1-m-resolution Gaofen-1 data, and
the results show that U-Net performs more stably. Relevant
research works on pixel-level classification of CRA with CNNs
also include using HSR Gaofen-2 [30], [31], [32], Google Earth
[33], [34] and Gaofen-1 [35] satellite images, as well as using
unmanned aerial vehicle images [36]. Though the aforemen-
tioned studies on CRA detection by CNNs can obtain high
classification accuracies, their proposed methods are still unsuit-
able for monitoring CRA in large-scale areas for the following
reasons.

1) HSR satellites commonly need to take a couple of months
for revisiting the same large-scale area while CRA infor-
mation needs to be quickly updated.

2) HSR satellites often have an insufficient number of spec-
tral bands, resulting in a significant loss of spectral infor-
mation.

3) Massive data and computer power are needed to extract
large-scale CRA using HSR imagery.

4) HSR images are almost not free to use which results in a
considerable expenditure for updating large-scale CRA.

Therefore, a few studies applied CNNs for mapping or
even monitoring CRA from Landsat [37] and 16-m resolution
Gaofen-1 [38] images. Nevertheless, most of the aforementioned
research works gained good performance only within their spe-
cific research regions, while some studies [39], [40], focusing
on extracting CRA over large-scale, encountered limitations in
terms of capturing fine-grained details and discerning individual
objects. Accurately monitoring CRA at a large scale still faces
challenges because of the diversity of cage and raft materials, the
differences in CRA shapes, colors, and sizes, and the confusion
of cage and raft target identification caused by the complex
background interference of land and sea [26].

To address the abovementioned challenges, this study pro-
poses a new attention-fused deep learning model for accu-
rately monitoring CRA at large-scale (i.e., the study area covers
more than 1500 km2) by utilizing open-source 10-m-resolution
Sentinel-2 (S2) satellite remote sensing data. The main objec-
tives of this study are as follows.

1) We construct a representative sample dataset of CRA for
deep learning, which includes a wide range of positive
samples encompassing CRA instances of various sizes,
shapes, spectral characteristics, and spatial distributions,
as well as negative samples consisting of different seawa-
ter backgrounds that do not contain CRA.

2) We propose an attention-fused deep learning model named
AF-UNet++ by flexibly integrating the CBAM module
into the well-performed CNN skeleton, UNet++. The
proposed model, employing dense connections to facil-
itate comprehensive information learning across all layers
and incorporating the attention modules to enhance the
efficient learning of valuable features related to CRA,
harnesses the strengths of both the CNN and attention
module, and thus enables the accurate detection of large-
scale CRA.

II. STUDY AREA AND SAMPLE DATASET

A. Study Areas

China’s extensive coastline and abundant marine areas confer
innate geographical advantages for the thriving development of
mariculture. We selected the following three large aquaculture
zones as the study areas (red boxes in left map of Fig. 1).

1) Sansha Bay in the northeastern region of Fujian Province,
which covers 1770 km2 and is surrounded by mountains
and islands, an interspersed cages, and floating rafts.

2) Haizhou Bay with 1860 km2 and diverse seawater char-
acteristics in Jiangsu Province, which is known as the
“Capital of China’s Seaweed” and is mainly arranged by
square-shaped rafts.

3) The eastern coastal area encompassing Huangjuzi Bay and
Ludao Island in Liaoning Province, which covers an area
of 2024 km2 and is mainly for sea cucumber farming with
floating rafts, its seawater depths varying from east to west.

The variety of materials, colors, and shape sizes of cage and
raft, and the diversity of geographical and seawater conditions
in the study areas, lead to the difficulty in accurately monitoring
CRA.

B. Data and Preprocessing

The freely available S2 multispectral instrument from the
European Space Agency provides researchers great opportuni-
ties for exploring the use of those satellite images to monitor
land cover and targets of interest like CRA in coastal areas. S2
multispectral images contain 13 bands with different resolutions
of 10, 20, and 60 m. The 10-m-resolution bands are Blue,
Green, Red, and Near InfraRed. The 20-m-resolution bands are
two Short-Wave InfraRed bands and four Vegetation Red Edge
bands. The 60-m-resolution bands are the Water Vapor band, the
Coastal Aerosol band, and the Cirrus band. Taking into account
the spatial resolution, we used four 10-m and six 20-m bands of
S2 level-2A images for further analysis and resampled them to
10-m-resolution using the bilinear interpolation method.

Considering the growth cycle of marine plants, and the fact
that the coastal zones are often covered by thick clouds in the
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Fig. 1. Location of our study areas and test sites (left), the distribution of samples in the study areas of (a) Fujian, (b) Jiangsu, and (c) Liaoning (the samples in
pink boxes are for testing).
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Fig. 2. Spectral curves of cage, floating raft, and background.

summer, we narrowed the image dates within February to April.
With the filtering condition of “cloud coverage ≤ 10%”, the S2
images on March 24, 2021 for the Fujian study area, February
20, 2021 for the Jiangsu study area, and February 7, 2021 for the
Liaoning study area were preprocessed and downloaded using
Google Earth Engine platform.

To determine which bands or indexes are needed to input CNN
for mapping CRA, we delineated spectral/index feature curves
(see Fig. 2) of three main categories, cage, floating raft, and
background within the study areas, using the mean values of the
samples. The considered indexes are the normalized difference
water index (NDWI) and the normalized difference vegetation
index (NDVI), since the former is capable of identifying water
body and the latter is useful for discriminating certain rafts
cultivating aquatic plants. They can be calculated by (1) and
(2), respectively

NDWI =
Green−NIR

Green + NIR
(1)

NDVI =
NIR− Red

NIR + Red
. (2)

Combining the visual interpretation of Fig. 2 and the measur-
ing results of feature importance in [16], we applied bands 2, 3, 4,
8, 11, and 12, as well as NDVI and NDWI for extracting CRA.
Due to the unique structure and spatial arrangement of cages
and floating rafts, the texture feature of local binary patterns
(LBP) [41] was obtained based on the spectral bands 2, 3, and 4.
We designed five combination schemas of the above-mentioned
bands and indexes for tests as in Table III, and plan to choose
the best performance schema for CRA mapping.

C. Sample Dataset

With the aid of HSR remote sensing images in Google Earth,
we manually labeled cage and raft samples from the background
in the ArcGIS Pro platform. The samples were considerably
created in terms of the spatial distribution, the representativeness

Fig. 3. Examples of true-color image patches and the corresponding white-
gray-black labels of cage, floating raft, and background.

of shape, size, color, edge clarity of targets, and the diversity
of background (see Fig. 3). The locations of labeled samples
are illustrated in Fig. 1. Considering the complex marine envi-
ronment due to waves, seawater color, sediment concentration,
etc., a certain number of negative samples excluding CRA
were also created. We also took into consideration the diversity
and geographical variability of the background when select-
ing negative samples. The inclusion of negative samples helps
the model avoid misidentifying seawater bodies with similar
spectral features as CRA and accurately delineates CRA bound-
aries by understanding background characteristics. Samples are
transformed into maps where the values of two, one, and zero
represent cage, raft, and background, respectively. These rep-
resentative samples are prepared for training and validating the
proposed model.

By comparing the model accuracies among four patch sizes
of 32 pixels × 32 pixels, 64 pixels × 64 pixels, 128 pixels × 128
pixels, and 256 pixels × 256 pixels, we determined to crop the
images, as well as the labels into 32 pixels × 32 pixels patches.
The details of our sample dataset are show in Table I. The training
and validating sets contain a total of 635 patches, including 100
background patches. These patches were randomly divided into
training and validation sets in the ratio of 7:3. In addition, there
are 304 labeled patch images (in pink boxes of Fig. 1) purposes
for testing.

III. METHODOLOGY

A. Attention-Fused Deep Learning Model

The main idea of this study is to combine the advantages of
CNN and attention module to construct a fine-performance deep
learning model for accurate detection of large-scale CRA. There-
fore, we considerably design the architecture of AF-UNet++
model by flexibly embedding CBAM modules into UNet++
baseline. The proposed model is detailed in this section.

1) Baseline: U-Net is a simple U-shaped CNN with a clear
principle [42] and yields outstanding results on image semantic
segmentation [35], [37], [43]. Its architecture is composed of
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TABLE I
NUMBERS OF LABEL OBJECTS AND IMAGE PATCHES IN SAMPLE DATASET

an encoder subnetwork and a decoder subnetwork. The encoder
applies four blocks of convolution and down-sampling (pooling)
layers to obtain multiscale feature maps, while the decoder uses
four blocks of convolution and up-sampling layers to acquire
refined feature maps. In order to retain more detailed informa-
tion about the targets, the feature maps in every block from
the encoder are copied and concatenated to the corresponding
up-sampling layers in the decoder. Since its proposal, U-Net has
been successfully adopted in numerous studies.

The emergence of U-Net’s modified versions boosts its ap-
plications in the segmentation of medical, natural, and remote
sensing images. UNet++ is one of the successfully modified
U-Net versions [44]. By replacing the plain, same-level con-
catenations with nested dense skip connections which brings
smooth gradient descent for inner convolution blocks, UNet++
mitigates the semantic gap between the feature maps of the
encoder and decoder prior to fusion. This multiscale feature
fusion enhances the representation capability of the network and
improves segmentation accuracy. Another major advantage of
UNet++ is its deep supervision. Adopting the idea of adding
loss functions (LFs) at each hidden layer, UNet++ enables fea-
ture learning at early levels, thus making it possible for users to
check the performance of the network at the intermediate layers.
Meanwhile, a few popular CNNs that use dilated convolutions,
residual modules, and residual connections—like ResNet-18
[45] and DeepLabV3+ [46]—have also achieved exceptional
semantic segmentation performance.

Since the fact that UNet++, comparing with some commonly
used CNNs like U-Net and DeepLabV3+, performs more ef-
fectively on end-to-end image classification [29], [47], [48], we
chose it as the baseline CNN.

2) Convolutional Block Attention Module: With the nested
dense connection structure, UNet++ alleviates, to some extent,
the fusion gap of features from the decoder and the encoder.
However, its experimental results of detecting CRA demonstrate
that it could not effectively detect the targets of blurred edge,
mixed cage, and raft, or “weak” raft. This phenomenon may arise
due to the incorporation of excessive redundant information by
UNet++, making it challenging to capture the essential features
of CRA. In order to highlight the distinctive CRA features for
correctly detecting these types of targets, we introduced the
widely used, lightweight CBAM into UNet++.

The CBAM consists of a channel attention submodule (CAM)
followed by a spatial attention submodule (SAM), and sequen-
tially infers attention maps in the channel dimension and spatial

Fig. 4. Structure of CBAM [24].

dimension (see Fig. 4). CAM concentrates on exploiting the
interchannel relationship of the input image. CAM first incor-
porates two operations, namely global maximum pooling and
global average pooling, to generate two adjusted feature vectors.
These vectors are then fed into a shared network consisting
of a multilayer perceptron with one hidden layer using shared
weights. Subsequently, elementwise addition operations, fol-
lowed by sigmoid activation, are performed to obtain the channel
attention feature map. SAM focuses on acquiring the interspatial
relationship of the input image. In SAM, max-pooling and
average-pooling operations along the channel dimension are
applied to obtain two spatial attentions. A spatial attention map is
produced by concatenating and convolving two spatial attention
using a conventional convolutional layer. Then a sigmoid func-
tion is applied to obtain the final spatial attention. By multiplying
the attention maps outputted from CBAM to the input feature
map of CNN, the model can reach adaptive feature refinement.

3) Model Architecture: We integrated CBAM into UNet++
and named the improved model as AF-UNet++. The overall
architecture of the AF-UNet++ is presented like web-link,
inversed pyramid (see Fig. 5). Briefly, CBAM is induced into
UNet++ in two ways: a) A CBAM is added into each of
the four blocks in the encoder, located after two consecutive
convolutional layers (Consecutive_Conv in Fig. 5). In other
words, each block of the encoder in the proposed model, which
is named Conv_CBAM, consists of two convolutions and one
CBAM. By locating in this way, CBAM facilitates the refinement
of previously extracted features, thereby enhancing the spatial
representation of features and the discriminative capability of
the block. b) A CBAM is added to each of Level 1 blocks
in the decoder, located before two consecutive convolutional
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Fig. 5. Architecture of AF-UNet++ with CBAM.

layers. This kind of block is now called CBAM_Conv, which is
composed of one CBAM and two convolutions. By embedding
each block in this manner, CBAM acts as a feature recalibrator
and helps to improve the quality of the features extracted by the
subsequent convolutional layer.

The CBAM in each block of encoder improves the model’s
ability to assign important weights in both spatial and channel
dimensions to the targets of interest at all levels. Meanwhile,
in the decoder feature fusion process, we have features with
multiple levels and channels. For ease of reference in subsequent
descriptions, we designate the layers of the model from top to
bottom as Level 1 to 5 (see Fig. 5). The CBAM in each Level 1
block of decoder further helps the model better allocate weights
to these heterogeneous features, enabling more efficient sub-
sequent feature learning. There are several motivations behind
only combining CBAM into the encoder as well as the Level 1
blocks of the decoder. First, this structure is clear and simple
to describe. Second, it facilitates model transfer learning by just
unfreezing the blocks of Level 1 layer containing CBAM. Third,
it keeps the balance between accuracy level and resource load.

4) Loss Function: LF is applied to measure the fitting degree
between the predicted results from CNNs and the ground trues. It
is also the key for optimizing CNNs. One of the most commonly
used LFs is cross-entropy LF (LCE), it can be computed by as

LCE = −
M∑

c=1

yc log (pc) (3)

where M , yc, and pc represent the number of classes, the class
values of labels, and the probability that the samples are assigned
to class c, respectively.

However, LCE is not competent for optimizing CNNs when
the pixel ratio of targets is significantly less than that of the
background. Thus, dice loss (LD) [49] is developed to handle

this issue. It can be calculated as

LD =
2× TP

TP + FN+ TP + FP
(4)

where TP, TN, FP, and FN indicate the numbers of true positives,
true negatives, false positives, and false negatives, respectively.

Meanwhile, since detecting edges of CRA is important, we
also applied boundary loss (LB) [50] in (5) to assess and improve
our proposed model

LB = 1− 2PcRc

Pc +Rc
(5)

where Pc and Rc represents precision and recall for class c,
respectively.

Therefore, to aim at obtaining CRA more precisely, we used
the combination of LCE, LD, and LB as final LF in (6) for AF-
UNet++

L = LCE + LD + LB . (6)

B. Evaluation Metrics

The evaluation metrics of overall accuracy (OA) in (7), F1
score in (10), and intersection over union (IoU) in (11) are used
to validate the performance of our proposed model, as well as
to compare the accuracies of AF-UNet++ with the baselines

OA =
TP+ TN

TP + TN+ FP + FN
(7)

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

F1 = 2 · P ·R
P +R

(10)
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TABLE II
NETWORK PARAMETERS OF AF-UNET++ AND BASELINES

TABLE III
COMPARISON OF AF-UNET++ ACCURACIES WITH DIFFERENT COMBINATION

SCHEMAS OF FEATURES

IoU =
TP

TP + FN+ FP
. (11)

In addition, the commonly used frames per second (FPS)
is adopted to compare the computational speeds of different
fusion structures of UNet++ with CBAM. A higher FPS value
indicates a higher efficiency.

IV. RESULTS AND DISCUSSION

A. Experimental Setup

The experiments of AF-UNet++ and the mainstream CNN
models were conducted on the server with an NVIDIA GeForce
RTX 2050 GPU. The parameters of the proposed model and
other CNNs for training are shown in Table II.

B. Selecting Features for Deep Learning

We design five schemas of the preselected six bands and
two indexes, along with the inclusion of LBP texture for bands
2, 3, and 4, as part of our training and validation process for
the proposed model. The experimental results (see Table III)
show that schema 5 achieves the highest IoUs, indicating that
the integration of indexes and texture features with spectral
information effectively improves the segmentation IoUs of our
model. This improvement can be attributed to the fact that these
indexes, along with LBP texture, capture the distinguishing
characteristics between CRA and the background significantly.
As a result, we have utilized this schema for further analysis in
our study.

C. Evaluation of the Fusion Ways of CBAM and UNet++

In this section, we design an experiment to assess the effect
of the fusion ways for CBAM and UNet++ and, thus, validate
that our proposed model can balance between efficiency and
performance. Therefore, we focus on whether the number and
location of CBAM modules fused into the baseline influence the
models’ performance.

We design five different fusing architectures (see Fig. 6) as
follows:

a) CBAMs added to the decoder convolutional blocks at
Level 1;

b) CBAMs added to the convolutional blocks in the encoder;
c) CBAMs added to the convolutional blocks at Level 1 and

the first column;
d) CBAMs added to the convolutional blocks at Levels 1 and

2, and in the encoder;
e) CBAMs added to all convolutional blocks.
It is worth mentioning that (c) represents our final proposed

model, while the architecture (e) is the resemblance to that in
[51].

The experimental results are presented in Table IV. The table
illustrates that as the number of CBAM modules increases,
both the number of parameters and the model’s architecture
complexity increase. This, in turn, leads to a decrease in the
computational speed of the model. Based on the results of (a)
and (b), it is evident that incorporating CBAMs with decoder
blocks of UNet++ at Level 1 enhances the model’s ability for
extracting cages, while adding CBAMs in the encoder improves
the recognition of rafts. This could be attributed to the likelihood
of rafts being confusable with the background, demanding the
assignment of greater significance for their accurate identifica-
tion. Consequently, the early integration of CBAM in the encoder
modules plays a pivotal role in enhancing the recognition of
rafts. Comparing the OAs of (c), (d), and (e), it is evident that
simply increasing the number of CBAM modules does not lead
to significant improvements in the accuracies of the models
but adversely affects the practicality of the models. Compared
with the other four architectures, (c) demonstrates the best OA,
with the highest IoUs for raft and background. It effectively bal-
ances the recognition of raft and cage, which aligns well with the
practical requirements of the three-class classification problem.
This observation indicates that the significant improvement in
our model’s performance is not solely due to the increase in
parameters, but rather the result of architectural enhancements.
Therefore, we have determined the adoption of the structure (c)
as the final proposed model for addressing the CRA extraction
task.

D. Comparisons of CRA Extraction Results

To quantitatively evaluate the performance of our proposed
model, we used the same dataset and network parameters to
train it along with four state-of-the-art CNNs namely U-Net,
UNet++, ResNet-18, and DeepLabV3+. The five trained mod-
els were evaluated with testing sets, and the quantitative com-
parisons of their results are listed in Table V. It can be seen
that AF-UNet++ has the highest OA, F1, and mIoU compared



9106 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 6. Five architectures of fusing CBAM with UNet++. (a) Adding CBAMs in decoder blocks at Level 1. (b) Adding CBAMs in encoder blocks. (c) Architecture
of our proposed AF-UNet++. (d) Adding CBAMs in encoder and decoder blocks at Level 1&2. (e) Resemblance to the architecture in [51].

TABLE IV
QUANTITATIVE COMPARISONS OF THE ACCURACIES, NUMBER OF PARAMETERS, AND COMPUTATIONAL SPEEDS BETWEEN OUR PROPOSED MODEL(C) AND THE

OTHER FUSION ARCHITECTURES OF CBAM WITH UNET++

TABLE V
QUANTITATIVE COMPARISONS OF THE ACCURACIES BETWEEN OUR PROPOSED

MODEL AND OTHER MAINSTREAM MODELS

with the other state-of-the-art models. Its OA reaches 91.32%
with 7.64%, 1.7%, 1.57%, and 0.54% over those of other CNNs,
and its F1 attains 0.89, which is 0.2 higher than those of others.
Moreover, our model demonstrates a remarkable advantage in
terms of IoU of the cage type, where our model achieved an
improvement of 4.15% compared to other mainstream models.
These findings show that the proposed model surpasses the
commonly used models from the perspective of quantitative
comparison.

Fig. 7 presents the visual comparison of the CRA extraction
results among the proposed model and two effective baseline
models from the UNet family. In the first row, U-Net produces
many false identifications (red boxes) and UNet++ decreases
the number of false classification pixels, while the proposed
model almost perfectly detects raft objects. In the second row,
both U-Net and UNet++ incorrectly interpret considerable
island pixels (red boxes), while our model can interpret these
pixels correctly. In the third row, U-Net detects objects with
incomplete shapes and UNet++ with erroneous adhesion of

Fig. 7. Visual comparison of CRA extraction results. (a) True color S2 images.
(b), (c), and (d) Results of U-Net, UNet++, and AF-UNet++, respectively.

nearby CRA areas (red boxes), while AF-UNet++ best char-
acterizes CRA shape and structure. Besides, U-Net fails to rec-
ognize slender cages and U-Net++ incorrectly classifies gaps
as rafts (red boxes), while only AF-UNet++ partially captures
cage shapes and gaps. In the fourth row, though the three models
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Fig. 8. Using AF-UNet++ for large-scale mapping in the study areas in 2021 and 2018. (a) Fujian. (b) Jiangsu. (c) Liaoning.

exhibit the difficulty of recognizing “weak” rafts (red boxes), our
model outstands the boundary of objects best.

In summary, both the quantitative and visual comparisons
demonstrate that, comparing some state-of-the-art CNN models,
AF-UNet++ best excels in extracting CRA.

E. Temporal-Spatial CRA Monitoring

We adopted the trained AF-UNet++ model with the best
performance to automatically detect CRA in the three study
areas from S2 data in 2021, the results are exhibited in Fig. 8.
Visually interpreting the results illustrates that cages and rafts are
precisely delineated, and shorelines and open water are correctly
excluded. It proves that our proposed model has the capacity for
mapping large-scale CRA.

We directly applied the best-performing model trained on
the 2021 dataset to extract CRA in the three study areas from
S2 images taken in 2018. The detection results are shown in
Fig. 8. Carefully visual interpretation of the 2018 results tells
that, though it makes some omissions or errors for identifying
ambiguous and small rafts, as well as objects in cage and raft
mixed zones, the proposed model can identify most cage and
raft objects and guarantees to effectively monitoring CRA using
remote sensing images from different time periods.

In order to justify the spatial stability of our model for the
identification of CRA, we extended our validation efforts to four
distinct sites (in purple boxes, Fig. 1) beyond the scope of the
three study areas. These additional sites, located in Shandong

Province, Zhejiang Province, and Fujian Province, were care-
fully selected to encompass diverse seawater background for
further evaluating the generalizability of our model. The trained
model was directly employed to extract CRA in these four sites.
The experimental results (see Fig. 9) show that, though there
are some misclassification and omission CRAs with “weak”
or “blur” edges, the model still can successfully identify most
CRAs. The conclusion that our proposal can transform to other
regions can be made.

F. Discussions

Though the proposed model can map CRA in the different
years and regions well, some improvement works still need to
be done. First, the model’s performances of extracting cages in
the three study areas are different, the cages in the Fujian study
area seem to be easily misclassified as rafts than those in the
other two study areas [see Fig. 10(a)]. It implies that more cage
samples should be constructed in the Fujian study area. Second,
the identification results in 2018 show there are some floating
rafts that were misrecognized as cages due to the significant
difference in these raft features between 2021 and 2018. The
model, to some content, failed to capture the intrinsic features
of the objects that remain consistent over time. It indicates that
sample dataset in different years need to be added to ensure more
precisely monitoring CRA [see Fig. 10(b)]. Nevertheless, raft
objects in those sites with no samples tend to be relatively easier
misrecognized than those with samples, especially some weak
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Fig. 9. Extraction results from AF-UNet++ in the four selected testing sites (purple boxes in Fig. 1).

Fig. 10. Details of CRA extraction results in 2018 from AF-UNet++.

objects [see Fig. 10(c)]. This suggests that a sample dataset with
a more reasonable spatial distribution is essential to be updated
for more accurate monitoring of CRA in the future.

Other future works include following.
1) Construct more reasonable sample dataset in both spatial

and temporal dimensions which covers the entire offshore
area in our country and multiyears.

2) Given the rapid advancements in semantic segmentation
methods for remote sensing imagery, we aim to explore
more advanced models, such as the transformer and its
variants [52], [53], [54], which have gained popularity in
recent times. Then apply it to map spatial-temporal distri-
bution of large-scale CRA in the whole coastal seawater
region, China.

3) Discover a model that is suitable for cross-data-source
applications, such as validating whether AF-UNet++ can
monitor CRA using Landsat data.

V. CONCLUSION

The complexity of both CRA and its marine environment
makes monitoring large-scale CRA still face challenges. Fo-
cusing on the challenges, we proposed the attention-fused deep

learning model named AF-UNet++ by deliberately inducing a
channel-spatial attention module called CBAM into the well-
performed baseline UNet++. The proposed model was trained
and validated by our self-constructed sample dataset in 2021,
and adopted to map the large-scale CRA in the three selected
areas in both 2021 and 2018, as well as the four selected sites
out of the scope of aforementioned areas. Moreover, comparison
experiments on AF-UNet++ and other mainstream models were
conducted. The results demonstrate that our model detects CRA
more accurately than the others and can accurately monitor
large-scale CRA. Yet further works, including building suffi-
cient and more reasonable spatial-temporal-distributed sample
dataset, monitoring CRA in the entire offshore sea of China in
recent decades with the aid of Landsat imagery, etc., still need
to be carried out.
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