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Abstract—Matching planetary remote sensing images (PRSI) is
essential for deep space exploration. Through matching optical
images collected by different probes, the terrain of planets can
be accurately mapped; however, PRSI lacks surface texture in-
formation and exhibits noticeable nonlinear radiation differences,
e.g., illumination differences. It is not easy to achieve satisfactory
results through traditional matching methods. In order to cope
with the above problems, a new PRSI matching method has been
proposed. It can extract low–high frequency features by building
double-frequency scale space. In addition, we also use the nonmax-
imum suppression strategy for rejecting overlapped feature points,
which reduces the time consumption and improves the matching
accuracy. The experimental results show that the proposed method
can effectively match PRSI and be superior to comparable methods.

Index Terms—Feature extraction, image matching, nonlinear
radiation distortions, planetary remote sensing images (PRSI).

I. INTRODUCTION

IMAGE matching is a fundamental task in 3-D reconstruction
of planetary surfaces using multisource planetary remote

sensing images (PRSI), serving as a prerequisite for many
applications, such as crater detection [1], planetary navigation
[2], and scientific exploration [3]. It aims to detect reliable
geometric relationships in images from different times, sensors,
and perspectives [4].

According to the utilized feature type, the matching of mul-
tisource remote sensing images (MRSI) can be divided into
three types: 1) area-based, 2) feature-based, and 3) learning-
based methods [5]. Area-based methods often use templates to
search for the most similar parts of the whole image. These
templates can be built from the spatial and frequency domain.
The area-based methods are capable of achieving high matching
accuracy. However, it is time-consuming and sensitive to scale

Manuscript received 2 January 2024; revised 17 March 2024 and 8 April
2024; accepted 15 April 2024. Date of publication 17 April 2024; date of
current version 3 May 2024. This work was supported by the National Key
R&D Program of China under Grant 2022YFF0504100 and the National Natural
Science Foundation of China under Grant 42201478 and Grant 42221002, in
part by Shanghai Pujiang Program under Grant 22PJ1413000, and in part by
the Chenguang Program of Shanghai Education Development Foundation and
Shanghai Municipal Education Commission under Grant 22CGA22. (Corre-
sponding author: Genyi Wan.)

The authors are with the College of Surveying and Geo-Informatics,
Tongji University, Shanghai 200092, China, and also with the Shanghai Key
Laboratory for Planetary Mapping and Remote Sensing for Deep Space
Exploration, Shanghai 200092, China (e-mail: rong_huang@tongji.edu.cn;
genyi_wan@tongji.edu.cn; zyy535@tongji.edu.cn; 89_yezhen@tongji.edu.cn;
huanxie@tongji.edu.cn; yusheng_xu@tongji.edu.cn; xhtong@tongji.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2024.3390432

changes [6]. The feature-based methods match images using
points [4] or geometric primitive, such as lines [7] and regions
[8]. Compared with the area-based methods, the feature-based
methods are more robust. Traditional feature matching methods,
such as SIFT [9] and SURF [10] are widely used. However,
for MRSI, apparent nonlinear radiation differences (NRDs)
often occur, which leads to the invalidation of these features
aiming at capturing grayscale changes. Therefore, researchers
intend to achieve robust matching of MRSI by constructing
descriptors over the frequency domain, such as RIFT [11] and
HAPCG [12].

Moreover, the saliency structure of images is also utilized
to match PRSI, e.g., CoFSM [13]. In recent years, in the field
of matching, learning-based methods have also attracted atten-
tion [14], [15], [16], [17], [18]. Wu et al. [18] utilized both
low-level geometric information and high-level context-aware
information to improve matching accuracy. Zhang et al. [14]
adopted the deep convolutional neural network (CNN) to learn
the features of PRSI and achieved matching through the De-
launay triangulation strategy. Although learning-based methods
have achieved promising results in some specific tasks, the type
and number of datasets limit them and still lack generalization
ability.

Although the methods mentioned above have achieved
promising performance in image matching, there are still some
limitations in the matching of PRSI. Compared with RS images
acquired in Earth observation, the textures of PRSI are much
weaker, and the differences in illumination are more serious.
To solve the problems of NRDs and weak texture in PRSI, we
propose a combined low–high frequency feature matching algo-
rithm called fast double-channel aggregated feature transform
(FDAFT) by capturing the information of low-frequency and
high-frequency images. In addition, we match the descriptors
from the double channels and integrate the matching results
into the fast sample consensus (FSC) [19] to eliminate false
matches to improve the matching accuracy. Fig. 1 illustrates the
matching results of the FDAFT and the traditional method, such
as PSO-SIFT [20], on a pair of planetary images. The significant
contributions of this article are summarized as follows.

1) We propose a novel double-channel feature transform
strategy for extracting low-frequency structure feature
points and high-frequency phase feature points and ag-
gregating them for feature matching.

2) A fast double-frequency scale space construction method
is proposed to reduce the influence of PRSI scale changes
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Fig. 1. Matching results of FDAFT and PSO-SIFT on sample planetary
images. (a) Matching results of PSO-SIFT. (b) Matching results of FDAFT.

by using edge confidence maps (ECM) [21] and extracting
phase features.

3) The nonmaximum suppression strategy and the FSC are
involved in rejecting overlapped feature points and elim-
inating false matches, which improves the matching effi-
ciency.

II. RELATED WORK

In this section, we review the development of the PRSI match-
ing methods. The details are reviewed as follows.

A. Area-Based Methods

Area-based methods use a preset template to move within
the window to be matched, thus comparing the similarity of
features. In addition, in order to address the problems of rotation
and scales in matching, the methods often use geographic ref-
erence coordinates for initial calibration to improve the match-
ing accuracy [22]. This method of initial calibration based on
geographic reference coordinates is widely used in matching
optical-SAR images [8], [22], [23]. The key for area-based
methods is establishing reliable similarity measures from the
spatial or frequency domain instead of finding corresponding
features from two images. Previous studies often used image
grey information to match images, such as the sum of squared
differences (SSD), normalized cross-correlation (NCC), and
mutual information (MI). However, due to the existence of
sensor differences and illumination differences in PRSIs, these

methods based on spatial domain features have proved difficult
to apply to the images with the above problems [24]. Different
from the grey change relationship of images captured from the
spatial domain, similarity measurement built in the frequency
domain can better reflect the structural features of images [25],
[26], [27], [28]. Pedrosa et al. [25] constructs matching templates
through fast Fourier transform (FFT) and calculates the probabil-
ity volume between the templates and the images, thus realizing
the detection of Mars impact craters. Although the method based
on phase templates can deal with NRD and contrast between
images well, it is less effective at rotated and scaled images and
has certain limitations.

B. Feature-Based Methods

The feature-based methods extract similar features from two
images, which can be point features, line features, surface
features, etc. Traditional feature matching methods mainly in-
clude feature extraction [29], [30], [31], [32], construction of
similarity measure [9], [10], [11], and removal of mismatched
features [19], [33], [34]. Since the texture of PRSI is sparse
and the structure is not apparent, most of the work focuses
on the extraction and description of point features [24], [35].
Although there have been many matching methods in ground
photogrammetry and computer vision, such as SIFT, SURF,
ORB, etc., these methods based on image gray feature mainly
focus on matching between homologous images. Because of
the illumination differences of PRSI, the effect of using these
methods is inferior. In order to solve the illumination variation
existing in the image, Wu et al. [24] observed the double peaks
in the dominant direction histogram of SIFT key points and
proposed the use of adaptive suppression Gaussian function to
level the histogram to reduce the illumination difference caused
by the sun angle change. Zhang et al. [26] used the DEM of
orbit image as an auxiliary image to simulate the change of
solar illumination with the Lambert model. The most similar
query image is obtained through the correspondence between
the DEM image and the track image.

However, both Wu et al. [24] and Zhang et al. [26] ’s methods
are essentially weighted in the spatial domain to achieve the reg-
istration of PRSIs. Considering the sensitivity of spatial domain
features (texture) in multimodal image matching, scholars use
structure features to deal with NRDs. Li et al. [11] used to use the
maximum phase index map (MIM) to address the NRDs between
images. This method introduced phase features instead of image
gradients, effectively solving the NRDs between heterogeneous
images. Since then, the use of phase features to process MRSI
has become mainstream due to the light invariance and NRD
resistance of phase features [36]. For example, Xiang et al.
[37] realized the registration of optical-SAR image through the
global–local registration method and optimization of the phase
congruency (PC) model. Yang et al. [38] designed a semiauto-
matic registration method for Chang’e-1 IIM images calculating
NCC in the frequency domain. These methods promote the
process of MRSI matching. Although the phase-based matching
method has obtained satisfactory results in many applications,
due to the weak texture characteristics of PRSI, it is difficult
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Fig. 2. Framework of the proposed FDAFT method.

to find the corresponding feature points by describing the local
structure of the phase feature (the phase feature is mainly a
description of the local structure of the image [39]). Recently,
Yao et al. [13], Li et al. [4], and Wan et al. [40] have reduced the
impact of NRD by calculating the global structure of images and
using improved gradient features. This strategy of using global
feature matching brings a new idea to solve the problem of weak
texture in PRSI.

C. Deep Learning-Based Methods

In recent years, with the rapid development of deep learning,
more and more learning-based methods have been used to match
PRSI [2], [41], [42], [43]. Zhong et al. [41] proposed a feature
detection and description method for planetary images, which
obtained a sparse and reliable set of feature points by learning
the depth features of images, called robust planetary features
(RPFeat). Li et al. [42] used the CNN model (Net-model) to
extract local features and global descriptors and use the nearest
neighbor matching algorithm to match feature points. In addi-
tion, in order to accurately map the topography of Mars, Li et al.
[2] used Superpoint [44] to extract basic shape features (trian-
gles, cubes, checkerboard, and stars), and used SuperGlue [45] to
complete the matching of narrow overlapping regions between
adjacent CCD images. Compared with traditional algorithms,
the deep learning method has the advantages of automatically
optimizing parameters and constructing required descriptors
[14]. However, because the deep learning method relies on
a large amount of data [46] or time [47] for training, it is
relatively difficult to construct PRSI datasets, and the application
situation is complex and variable. As a result, learning-based
approaches may be less transferable. In order to obtain stronger
generalization ability and better applicability, the registration
method based on deep learning still needs further research.

III. METHODOLOGY

Fig. 2 shows the framework of the proposed FDAFT method.
The framework includes the construction of double-frequency
scale space, feature point extraction and description, and false
matches elimination.

A. Double-Frequency Scale Space

Although PRSI collected from different orbiters exists as
obvious NRDs, all the structural features remain consistent.
Therefore, we capture structural features (low-frequency fea-
tures) from the images to match PRSI. In addition, scholars
have found that phase features (high-frequency features) can
better reflect the detail changes between images [11]. Thus,
phase features can be enhanced by using phase information. We
established low-frequency scale space and high-frequency scale
space, respectively, from PRSI to capture the images’ structural
shape and phase details.

1) Low-Frequency Scale Space Construction: The ECM
[21] of the image based on machine learning is used to calculate
the structure features of each image. Besides, the Gaussian filter
is applied to the ECM to construct low-frequency scale space.
The low-frequency scale space is divided into N layers, and the
scale of each layer is defined as follows:

σsn = σs0 · 3
√
2n, (n = 01, . . . , N) (1)

where σsn represents the scale of the first layer, σs0 represents
the scale of the nth layer, and N is the number of layers in the
low-frequency scale space.

For low-frequency scale space, we need to define the filter
window of each layer. The filter window of each layer can
be calculated from the scale of the current layer and the filter
window of the first layer. The definition is shown as{

FWn = σsn
2·NO
2

L− FSpace =
{
FWn · Jn

p

}N

n=0

(2)

where L− FSpace represents the low-frequency scale space,
FWn indicates the size of the filter window in the nth layer,
NO is the initial size of the filter window, and Jn

p is the nth
layer in L− FSpace.

2) High-Frequency Scale Space Construction: Similar to the
construction of low-frequency scale space, high-frequency scale
space first extracts phase information from PRSI and then per-
forms Gaussian blur. The maximum moment map (Mmax) of
phase information shows the significance of image features and
can reflect change details. FDAFT uses weighted PC (PCw) [29]
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to calculate Mmax

Mmax =
1

2

(
c+ a+

√
b2 + (a− c)2

)
(3)

where Mmax is the maximum moment map; a, b, and c are the
three intermediate quantities, and the definition of a, b, and c are
shown as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
a =

∑
θ

(pcw (θ) cos (θ))2

b = 2
∑
θ

(pcw (θ) cos (θ)) (pcw (θ) sin (θ))

c =
∑
θ

(pcw (θ) sin (θ))2 .

(4)

By collecting texture information of images from different
directions, the second-order steerable Gaussian filter can ef-
fectively process NRDs and enhance texture features in MRSI
[22]. In this article, we use the second-order Gaussian steerable
filter to further process Mmax and construct Gθ

2,σ −Mmax. The
definition of the second-order Gaussian steerable filter is shown
as⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

G0◦
2,σ = Gxx =

(− 1
2πσ4

) (
1− x2

σ2

)
e

−(x2+y2)
2σ2

G90◦
2,σ = Gyy =

(− 1
2πσ4

) (
1− y2

σ2

)
e

−(x2+y2)
2σ2

Gxy=
xy

2πσ6e
−(x2+y2)

2σ2 ,G60◦
2,σ=Gyy −Gxy, G

120◦
2,σ = Gyy +Gxy

Gθ
2,σ = cos2 (θ)G0◦

2,σ + sin2 (θ)G60◦
2,σ−2cos (θ) sin (θ)G120◦

2,σ

(5)

where Gθ
2,σ filter is mainly composed of G0◦

2,σ , G60◦
2,σ, and G120◦

2,σ .
σ represents the scale of the Gθ

2,σ filter. The final Gθ
2,σ −Mmax

is achieved by using Gθ
2,σ filter to convolve with Mmax in

(0, π
6 ,

2π
6 , 3π

6 , 4π
6 , 5π

6 ) and summing.
As Gθ

2,σ −Mmax has been constructed, we use the Gaussian
filter to build high-frequency scale space. The construction
process of the high-frequency scale space is the same as that of
the low-frequency scale space, so we will not repeat the process.

B. Feature Point Extraction and Description

1) Feature Point Extraction and Nonmaximum Suppression
Strategy: After constructing the double-frequency scale space,
the feature points can be extracted. The feature points of the
image include corner and blob points. For low-frequency im-
ages, we use FAST detector [48] to achieve corner points. For
high-frequency images, we use the KAZE detector [49] to extract
blob points. Besides, in order to eliminate unnecessary feature
points and retain important feature points, an optimization strat-
egy (OS) is adopted. Nonmaximum suppression was applied to
blob points and corner points, respectively. We also calculate the
significance score of the points set. The process is shown as{

fscore (·) = sortrows(Spoints|pscore
i )

OS = fscore (fnms (Spoints))
(6)

where fscore(·) represents a set of feature points selected accord-
ing to the significance score, Spoints represents the feature points
that need to be processed, pscore

i is the intensity value of each
feature point got in the previous step; and the fnms(·) represents
the nonmaximum suppression function.

2) Log-Polar Coordinate Descriptor: The progress in con-
structing feature vectors is similar to the gradient location and
orientation histogram (GLOH). We select a local block ofR ×R
pixel size around each feature point. The direction histogram
of the local block is evenly divided into 24 equal parts (bin)
at 15° intervals, calculating the sum of the structural gradient
amplitudes of each bin, and the bin with the highest score is
selected as the main orientation. Furthermore, the bin scores
greater than 0.8 times in the main orientation also be used as the
auxiliary orientation. Different from the GLOH, we divide the
orientation of each local block into 12 directions. Therefore, for
each feature point, an eigenvector of (2 ∗ 16 + 1) ∗ 12 = 396
dimensions will be generated. These feature vectors will be
matched in their respective scale spaces, and the initial matching
results will be achieved.

C. Matches Aggregation and Outlier Removal

The low-frequency feature descriptors and high-frequency
feature descriptors of the two images are matched by using SSD
metric, respectively. Then, we concatenate the matching results
of low-frequency features and high-frequency features to obtain
the aggregated matching results. The outliers are eliminated
using FSC and the threshold of outliers is 3 pixels.

IV. EXPERIMENTAL RESULTS

This section evaluates the proposed method with four state-of-
the-art matching methods. The details of comparison methods
and the dataset are introduced as follows.

A. Datasets and Experimental Settings

The proposed method is compared with several baseline
methods, including RIFT (2019) [11], LPSO (2022) [50], LNIFT
(2022) [4], and HOWP (2023) [29]. The parameters of compared
methods are tuned as the same. For example, we set feature
points of each layer to 5000 for all comparison methods. In
addition, we have established scale space with three layers for
LNIFT and RIFT. Since RIFT is time consuming, we add parallel
operations to it. The dataset we choose to evaluate our proposed
method mainly collected from Mars and Moon. The dataset
includes a total of four types of PRSI (illumination differences,
weak textures, scales, and rotation), and each type contains 25
image pairs. Fig. 3 shows sample image pairs from the collected
dataset.

Five metrics are used to evaluate our methods in experiments,
which are the running time (RT), the ratio of corrected matches
(RCM), the number of correct matches (NCM), the root mean
square error (RMSE), and the success rate (SR). The RMSE
reflects the precision of the matching, and the definition is shown
in (7). If the RMSE> 3 pixels or NCM< 10 in a matching trial, it
is considered failed for matching. In addition, we set the RMSE
is set to 10 for failed matching trials

RMSE =

√√√√ 1

NCM

NCM∑
i=1

[
(xi − xi

′)2 + (yi − yi′)
2
]

(7)
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Fig. 3. Sample image pairs from the collected dataset. (a) Image pairs with illumination differences. (b) Image pairs with weak textures. (c) Image pairs with
scale changes. (d) Image pairs with rotation changes.

TABLE I
DETAILS SETTINGS OF PARAMETERS

where (xi, yi) is the coordinate for the correct match; (xi
′, xi

′)
is the correct transformed coordinate of (xi, yi) through true
transformation.

SR is the ratio of the successful trials between all matching
trials, and RCM represents the RCM among all matches; the
definition of RCM is shown as

RCM =
NCM

NCM + NFM
(8)

where NFM represents the number of false matches.
The proposed FDAFT mainly includes two parameters: 1) the

number of layers in the low-frequency scale space and 2) the size
of the descriptor, which are denoted as N and R. In order to seek
appropriate values of parameters. Two independent experiments
are designed and can be shown in Table I. The other parameters
in this article are set according to the relevant research [23], [29],
[50].

In general, the size of N is proportional to the number of
feature points extracted as well as the time spent. In addition,
the size of N is also related to the robustness of the method to
the scale variation of the images. As the size of N increases,
more feature points will be extracted. At the same time, as N
becomes more significant, the method will become more robust
to matching scale images. However, an increase in N will lead
to a rise in computational overhead, resulting in a long RT of the
method. R represents the radius of each feature block, and the
larger R is, the more information the feature block contains, and

TABLE II
RESULTS OF PARAMETER R

TABLE III
RESULTS OF PARAMETER N

the easier it is to determine its location on the image. However,
the increase of R will lead to an increase in the computation time.
If the size of R is too small, the feature block cannot accurately
describe the corresponding feature point which will lead to the
failure of matching.

In order to achieve the appropriate parameters, we selected 40
image pairs, which covering all transform types, from the dataset
for experiments. We design two independent experiments to
explore the parameter settings of N and R. Only one parameter
acts as a variable in each experiment, and the others are fixed.
NCM and SR are used as evaluation metrics. Tables II and
III show the results of two parameter experiments. Through
Tables II and III, we can infer that 1) If the parameter N is
too small, NCM will poorer. As N increases, NCM will also
be improved. However, too large N will significantly increase
computational complexity. Therefore, the parameter N is set to
3 considering both SR and NCM, as well as the computational
complexity. 2) Table III shows the relationship between SR and
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Fig. 4. Matching results of all methods on sample images with illumination differences. (a) FDAFT. (b) HOWP. (c) RIFT. (d) LNIFT. (e) LPSO.

TABLE IV
RESULTS OF ILLUMINATION DIFFERENCES ON FIVE EVALUATION METRICS

NCM and the radius R of the feature descriptors. As R increases,
the NCM becomes larger. To ensure the SR, NCM, and take
runtime into count, set R to 48.

B. Experiment on Illumination Differences

The first experiment mainly evaluates the performance of
the proposed method on illumination differences. These images
mainly collected from lunar images. Table IV shows the results
of all methods on five metrics. FDAFT achieves the best match-
ing accuracy in all metrics compared to other compared methods.
As seen, the RMSE of FDAFT on images with illumination
differences is about 2.168 pixels, and the SR reaches 96%.

Between the comparison methods, HOWP, RIFT, and LPSO
belong to the phase method, and LNIFT to the spatial strategy.
Compared with HOWP, RIFT, and LPSO, the results of LNIFT
are much worse. It can be seen from Table IV that the SR of
LNIFT only reaches 4% on images with illumination differ-
ences. For image pairs with significant illumination differences,

the imaging transformation between them is nonlinear. Since
the phase-based method realizes the matching by extracting
the local structure of the images, the methods using phase are
more suitable for nonlinear radiation problems than those using
gradient.

However, although the above phase-based methods are more
robust than the grayscale gradient-based methods, their results
still need improvement in experiments. The SR of RIFT only has
16% and the SR of LPSO is 64%. Besides, the NCM of above
phase-based methods are much lower than that of our proposed.
Different from images collected on Earth, the NRDs on deep
space images are more complex; Fig. 3(a) shows part image pairs
with illumination differences and Fig. 4 shows the experimental
results of different methods in Fig. 3(a). To be specific, although
Wan et al. [51] demonstrated the illumination-invariant property
of phase angle to the illumination changes resulting from differ-
ent solar positions, via mathematical analysis and experiments.
However, the local illumination of the lunar surface is more
complex and variable. Thus, matching of deep space images is
more difficult than that of the images of the Earth.

RIFT constructs the MIM to match image features. This
method is less effective in planetary images because it may not
find the correct maximum index layer due to the complexity and
variability of local illumination. In addition, the weak texture
environment in deep space images will also make the pixels
near the feature points on the MIM share the same index. For
HOWP, it designs a weighted bandwidth function model for the
PC model, and this action helps curbing phase direction reversal
and phase extreme value mutation. The results of Table IV shows
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TABLE V
RESULTS OF WEAK TEXTURES ON FIVE EVALUATION METRICS

this optimization method is effective, it can avoid shape changes
caused by local illumination differences to a certain extent.
Compared with RIFT, HOWP has a 28% improvement in SR.
LPSO uses the local phase sharpness feature, the purpose of this
method is to extract the local structural features of the image
using the local phase coherence model. The experimental results
of LPSO has proved that on the planetary images, this way is
effective. The SR of LPSO reaches 64% and the NCM is about
172.960. Different from phase-based methods, LNIFT hopes
to achieve matching by highlighting details. This method can
enhance the detailed features of the image but at the same time
magnify the effect of image noise, which makes the matching
results of LNIFT unsatisfactory.

To address the problem of illumination differences in plan-
etary images, we propose the FDAFT. We not only consider
the local structural details of the image but also the overall
contour features in the image. The ECM is used to obtain the
contour features of the image, and the Mmax is used to obtain
the local structure features. Consider the various problems faced
by matching planetary images, such as illumination differences
in lunar images and weak textures in Mars images. We build
descriptors in ECM and Mmax, respectively, and perform the
matching aggregation in the stage of outlier removal.

C. Experiment on Weak Textures

In order to verify the performance of the proposed method on
weak texture images, 25 pairs of planetary images are chosen to
evaluate the proposed method. Compared with the first dataset,
the illumination differences of weak texture images are relatively
small and the problem with weak textures is more serious.
Table V shows the results of all methods on five metrics.

It can be seen from Table V that, compared to the first
experiment, HOWP, RIFT, and LNIFT have improved their SRs
by 24%, 32%, and 12%, respectively. These results show that
matching images with weak textures is relatively easier than
images with illumination differences in our dataset. Our method
proposed in this article achieves the best matching performance
on all metrics between all comparison methods, with the RMSE
being about 1.832 pixels, the RCM reaching 32.719% and the
RT about 21.515 s. In particular, on the NCM metric, we have
more than twice as many correct matches as all other methods.

Fig. 3(b) shows part image pairs with weak textures, and Fig. 5
shows the experimental results of different methods in Fig. 3(b).
Among all comparison methods, LPSO achieves the best match-
ing performance, with the SR reaches 80%. Besides, we also find

TABLE VI
RESULTS OF SCALED IMAGES ON FIVE EVALUATION METRICS

the SR of all phase-based methods are more than 45%. To better
investigate the performance of the phase-based methods on two
different types of images, we present the matching results of
RMSE in the first and the second experiment. By comparing
Fig. 6(a) and (b), we can find that the phase-based methods
perform significantly well on weak texture images. In the second
experiment, the RMSE of HOWP is about 4 pixels, and the
SR of HOWP reaches 68%. However, in the first experiment,
HOWP only achieves a matching accuracy of about 2 pixels on
only eleven pairs of images and the SR only reaches 44%. The
matching results of HOWP in the first and second experiments
show that the phase feature can extract the local structure of
the image well, but the effect is relatively poor on images with
complex local illumination changes. Experiments with RIFT
have also confirmed this conclusion. Compared with the first
experiment, the SR of RIFT in second experiment reached 3
times that in first experiment.

Fig. 5 and Table V show the results of different methods on
weakly textured images. Among the methods for comparison,
LPSO performs best. The SR of LPSO reaches 68%, and the
RCM reaches 15.753%. Compared with the proposed method in
this article, LPSO reduces RCM by 26.966%, and the matching
time is 2.064 s longer. RIFT and LNIFT show the most tremen-
dous variation in matching accuracy on two types of images.
The SR of RIFT reaches 48%, and the SR of LNIFT reaches
16%. Although RIFT and LNIFT perform better in the second
experiment than in the first, they still perform relatively poorly.
RIFT builds feature descriptors on the MIM, which takes much
time. In the second experiment, the RIFT takes an average time of
about 45.131 s, which is slower than all other methods. Besides,
the RCM of LNIFT only reaches 0.735%, and the average RMSE
of LNIFT is about 9 pixels. The SR of LPSO reaches 80% in the
second experiment and 64% in the first experiment. Since LPSO
uses the local phase sharpness feature instead of the traditional
gradient for matching, it can better capture the local structural
features of the images. The idea of our method is similar to that
of LPSO, both of which hope to obtain better matching results
through enhancing structure features. The experiments prove
that it is effective to match images by using the global structural
features (contour features).

D. Sensitivity to Scale Changes

This part mainly evaluates the FDAFT’s robustness to the
scale changes. We selected 25 pairs of images with scale vari-
ations for evaluation. Table VI summarizes the results of all
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Fig. 5. Matching results of all methods on sample images with weak textures. (a) FDAFT. (b) HOWP. (c) RIFT. (d) LNIFT. (e) LPSO.

Fig. 6. RMSEs of different kinds of images. (a) Images with illumination
differences. (b) Images with weak textures.

methods on five metrics. It can be found that LNIFT fail to match
most test image pairs, and the SR of LNIFT only reaches 8%.
RIFT builds feature descriptors on the MIM, which takes a lot
of time. The experiments show that LNIFT performs poorly on
scale changes. The NCM of LNIFT only reaches 11.16 and the

RCM only reaches 0.599. Since LNIFT unable to match images
with illumination differences and weak textures robustly, the
results are worse on planetary images with scale differences.
HOWP and LPSO achieve better results than RIFT and LNIFT,
the SR of HOWP and LPSO both reach than 30%. Compared
to LPSO, HOWP improved by 6.416% in RCM metric and 8%
in SR metric. It can be seen from Table VI that, FDAFT match
almost all test images successfully except two image pairs. The
RCM of FDAFT reaches 19.203% and the RMSE is about 2.486
pixels. Besides, our method consumes least time among all
comparison methods, only 19.165 s. The results of experiments
show that even if there are scale differences and, illumination
differences or weak textures in the images, our method can still
complete the image matching well. The average NCM of our
method over 25 scale image pairs is about 960.040, far more
than other methods, proving our method’s reliability.

E. Sensitivity to Rotation Changes

This part mainly evaluates the FDAFT’s robustness to the
rotation changes. We select ten image pairs and perform different
rotation transformations. Table VII summarizes the results of
all methods on five metrics. It can be found that LPSO fails to
match all test image pairs, and the SR of HOWP only reaches
8%. Since HOWP, and LPSO limit the main orientation to under
180°, they are sensitive to rotation changes. Although RIFT does
not limit the main direction under 180°, RIFT is still sensitive to
rotation. The RIFT’s poor results may be due to its sensitivity to
illumination differences and weak textures, as seen in Sections
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TABLE VII
RESULTS OF ROTATED IMAGES ON FIVE EVALUATION METRICS

TABLE VIII
RESULTS OF ABLATION STUDY ON FOUR EVALUATION METRICS

IV-B and IV-C. Compared with the performance of HOWP,
RIFT, and LPSO, the results of LNIFT are relatively better.
However, since LNIFT mainly considers gradient changes in the
spatial domain, LNIFT still performs worse on most test images,
with the SR only reaching 8%. For rotation images, FDAFT
achieves the best performances among all metrics, and these
results prove the FDAFT’s robustness to the rotation changes.

F. Ablation Study on FDAFT

To evaluate the effectiveness of the proposed FDAFT, we
conduct ablation experiments on the test dataset. We replace the
low–high frequency with the construction from Mmax, ECM,
PC, MIM, ECM-PC, and ECM-MIM, and keep other parts
unchanged. Table VIII shows the comparison results in terms
of NCM, RCM, SR, and RMSE.

Since FDAFT uses low–high frequency to build scale space
and extract features, it can more effectively preserve blob and
corner features from deep space images compared to other met-
rics. The SR of FDAFT reaches 95%, and the RMSE of FDAFT
is about 2.312 pixels. Through using low–high frequency, our
method achieves the best matching results among all metrics.

Besides, to further explore the effects of different metrics on
matching results in FDAFT, the low-frequency features (ECM)
and high-frequency features (Mmax) in FDAFT are tested sepa-
rately. The results of the ECM and Mmax experiments are shown
in Table VIII. We can find that two metrics proposed in this
article are better than others: the SR of ECM reaches 62%,
and the SR of Mmax reaches 93%. Through building low–high
frequency scale space and extracting features, FDAFT improves
the accuracy to 95% compared to using onlyMmax. These results
prove that our proposed double-channel aggregated features are
effective.

To our surprise, MIM achieves the worst results among all
metrics. The SR of MIM only reaches 13%, and the RMSE of
MIM over 8 pixels. It is considering that MIM is mainly proposed
to address the matching of the multimodal remote sensing image

Fig. 7. Sample image pairs from the dataset [29]. (a) Optical-depth. (b)
Optical-infrared. (c) Optical-map. (d) Day-night.

TABLE IX
RESULTS OF FOUR EVALUATION METRICS ON IMAGES OF THE EARTH BY FOUR

METHODS

TABLE X
RESULTS OF ALL IMAGES ON FIVE EVALUATION METRICS

pairs of the Earth. Thus, we add a set of images of Earth to
test. These image pairs are collected by Zhang et al. [29] and
Fig. 7 shows sample image pairs of the dataset. It can be seen
from Table IX that MIM achieves great results among images of
Earth, and the SR of MIM reaches 90%. The reason that MIM
cannot achieve satisfactory results in deep space may due to the
complexity and variability of local illumination, which can cause
it to fail to find the correct maximum index layer. In addition, the
weak texture environment in deep space images will also make
the pixels near the feature points on the MIM share the same
index.

The SR of PC reaches 55%, and the RMSE of PC is about
5.562 pixels. Since the local illumination of the lunar surface is
more complex and variable, the impact of PC metrics on deep
space images is less effective than on images of the Earth, as
shown in Tables VIII and IX.

V. DISCUSSION

In this section, we evaluate the overall results of five methods
on four types of images, as seen in Fig. 8 and Table X. During
four kinds of images, FDAFT achieves the best performance
on five metrics. The REMSE of FDAFT is about 2.312 pixels
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Fig. 8. Matching results of five methods on total images. (a) RMSE results.
(b) NCM results. (c) RCM results. (d) SR results. (e) RT results.

and the SR reaches 95%. Besides, we have also found that
our method is fast and has higher RCM than the other four
comparison methods. The RCM of FDAFT reaches 20.070%.
Four experiments show that our method is robust to planetary
image matching. Compared with RIFT, LNIFT, and HOWP, the
matching results of LPSO are relatively better. LPSO designs a
local phase sharpness feature; the purpose of this method is to
extract the local structural features of the image by using the local
phase coherence model. This action helps curb phase direction
reversal and phase extreme value mutation. However, LPSO

ignores the contribution of global features to image matching.
Thus, the matching result of LPSO is worse than that of FDAFT.
HOWP is higher than LPSO in the NCM metric, and is similar to
LPSO in the RT metric. To obtain better matching results, HOWP
and LPSO still need further improvement. RIFT constructs
the MIM to match image features. Since the complexity and
variability of local illumination, the RIFT does not match the
PRSI or the images of the Earth. Besides, RIFT takes a long
time to match and is, therefore, less effective in images of large
scenes. Different from other compared methods, LNIFT com-
putes image detail features in the spatial domain. Considering
the NRDs between images, LNIFT is inferior to other methods in
terms of matching effect. Effectively reducing the NRD of PRSI
is an important problem when using spatial domain methods.

VI. CONCLUSION

In this article, we propose an aggregated low–high frequency
feature matching method, called FDAFT. First, we construct a
fast double-frequency scale space to capture contour and phase
features. Subsequently, corner and blob points are extracted from
high-frequency and low-frequency images. Finally, we use the
nonmaximum suppression strategy to match the double chan-
nels’ feature points. Different experiments show that FDATF
is superior to other compared methods and can cope well with
problems such as weak texture, scales, rotation, and illumina-
tion differences. Compared with other methods, our method
extracts global and local features from images and proposes
a two-channel aggregation strategy, which makes our method
superior to others.

Although FDAFT achieves the best results among all compar-
ison methods, it still needs to perfectly match in all experiments
where the illumination difference, scale changes, and rotation
difference are too large. Besides, the size of deep space images
tends to be large, which often requires a larger radius to ensure
reliable descriptors. Accordingly, in the future work, we will
focus on improving the robustness of descriptors and reducing
computational complexity by optimizing the framework of the
method.
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