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Hyperboloid-Embedded Siamese Network for
Change Detection in Remote Sensing Images

Qian Yang , Shujun Zhang , Jinsong Li , Yukang Sun , Qi Han , and Yuanyuan Sun

Abstract—Change detection (CD) is a significant branch of re-
mote sensing image analysis. Its main distinction from general
semantic segmentation lies in the input of bitemporal images.
Recent CD methods have primarily focused on Euclidean space,
disregarding the hidden non-Euclidean details due to the high
imaging altitude and complex scenes in remote sensing imagery.
This limitation hampers the model’s performance. In recent years,
hyperbolic space has gradually been introduced into deep learning
as a classical non-Euclidean space. To explore the potential impact
of hyperbolic information in CD, a hyperbolic-embedding-based
Siamese network is proposed in this article. Specifically, we propose
a hyperbolic similarity attention mechanism that can map deep fea-
tures from bitemporal images into hyperbolic space, then establish
the relationship between bitemporal features based on the hyper-
bolic distance, fully mining non-Euclidean information, and fusing
features from both branches to enhance feature cohesiveness. Fur-
thermore, we design a differential feature enhanced module in the
decoder, which utilizes differential operations at multiple scales to
highlight the essence of each layer’s features and improve feature
richness. Experimental results on two public very-high-resolution
CD datasets demonstrate that the proposed network achieves better
detection accuracy than other state-of-the-art CD methods.

Index Terms—Attention mechanism, change detection (CD),
hyperbolic geometry, remote sensing (RS) images.

I. INTRODUCTION

THE objective of change detection (CD) in remote sensing
(RS) images is to identify semantic changes between a

pair of images in the same area at different times. Depending
on the training data used, change detection models can be
applied in various fields, such as land use [1], environmental
monitoring [2], building and forest cover change analysis [3],
urban planning [4], and disaster assessment [5]. RS images
differ from natural images in several distinct aspects, including
high resolution, multispectral, and distinctive viewing angles.
Furthermore, with the advancement of computer and sensor
technologies, the resolution of RS images has been steadily
increasing in recent years [6]. These factors have brought new
advantages and challenges to RS image CD. Effectively ex-
tracting the rich information contained in very-high-resolution
(VHR) RS images and capturing the bitemporal change features
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required for CD, while ensuring the robustness of the results,
has been a critical concern in the relevant field.

In recent years, deep learning methods have experienced
rapid development and have been widely applied in the field of
RS [7], [8], [9], [10]. In the context of CD tasks, deep belief
networks [11], convolutional neural networks (CNN) [12],
and other neural network architectures have gradually replaced
traditional CD methods [13], [14]. This is attributed to their
exceptional capabilities in deep feature extraction, robustness
to noise, and the ability to learn automatically from data
without the need for extensive manual intervention. Currently,
most deep-learning-based backbone networks for CD employ
encoder–decoder architectures such as fully convolutional net-
works (FCNs) [15] and U-Net [16]. These networks demonstrate
outstanding performance in image segmentation tasks, including
CD, due to their powerful context extraction ability and deep
feature extraction effects. However, CD differs from general
image segmentation tasks as it involves the input of a pair
of dual-time images. To effectively fuse the information from
bitemporal images, researchers have introduced the Siamese
network [17] and applied it to RS image CD [18], [19], signifi-
cantly improving detection accuracy. Subsequently, this idea has
been widely adopted and has become a baseline network in CD
tasks.

However, existing deep learning models still face some
challenges. First, current methods cannot effectively integrate
bitemporal features, leading to adverse impacts on detection
results due to irrelevant changes. The twin-branch structure
of the Siamese network, indeed, enhances the cohesiveness
of bitemporal inputs to some extent, but the simple parame-
ter sharing and concatenation operations of Siamese networks
cannot effectively fuse the features of bitemporal images and
can generate redundant information. In order to overcome these
shortcomings, some teams [20], [21], [22], [23] employed a
combination of Siamese networks and self-attention mechanism
(SAM) [24] to integrate contextual and bitemporal information.
However, due to the high computational costs of SAM, it is not
suitable for dual-branch inputs in CD tasks.

In addition, existing deep-learning-based CD methods are
typically defined in Euclidean space, neglecting the informa-
tion inherent in non-Euclidean spaces. These CD deep learning
models are constrained by the Euclidean geometry, which makes
it difficult to extract spatial relationships and hierarchical rela-
tionships between pixels [25]. Bronstein et al. [26] demonstrated
the existence of highly non-Euclidean properties in RS images.
The unique characteristics of RS images, such as high imaging
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altitude, high resolutions, and complex hierarchical structures,
make them susceptible to distortions in Euclidean space. Hyper-
bolic space, as one of the most typical non-Euclidean spaces, can
significantly alleviate these effects by representing RS images
on the hyperboloid. For example, it is very difficult to extract the
occluded features of the buildings in Euclidean representations,
whereas, in hyperbolic representations, these occluded portions
can be stretched and highlighted. The significance of this is
particularly evident in CD, the change region as the detection
target is different from the general semantic segmentation target,
with huge differences in shape, size, and type, and it is difficult
to extract the deeply hidden non-Euclidean features only in
Euclidean space.

Ultimately, most of the existing methods focus on using deep
semantic information [18] while shallow features containing
fine-grained details and edge information are either utilized
through skip connections to assist in upsampling deep fea-
tures [27] or merged after upsampling features to the same
size using multiscale strategies [28], [29]. These methods can-
not fully highlight the advantageous information of features at
different scales, not only the shallow information, but also the
hyperbolic information embedded in the deep features found in
our study.

To address the earlier problems, we design a hyperboloid-
embedded Siamese network (HES-Net) to incorporate the hid-
den hyperbolic information from Euclidean space into the neural
network, leverage the dual-branch advantage of the Siamese
network, and combine it with the hyperbolic space character-
istics to deeply integrate bitemporal features. The network is
based on the Siamese-UNet architecture. We design a hyperbolic
similarity attention mechanism (HSAM) to project the deep
Euclidean features extracted by the encoder into the hyperbolic
space, highlight the detailed features that are flattened in Eu-
clidean space, and construct the bitemporal feature relationship
by combining the hyperbolic distance (HD) with the attention
mechanism, which fully fuses the bitemporal information and
improves the CD accuracy. Additionally, we design a differential
feature enhanced module (DFEM), which subtracts the average
feature depth from the multiscale features at the decoder end,
synthesizes the advantages of multiscale features, strengthens
the shallow fine-grained features and the deep hyperbolic fea-
tures, and increases the feature richness. Moreover, our HSAM
as an independent operation does not increase the number of
network parameters and has low computational cost.

To sum up, the main contributions of this article include the
following.

1) An HSAM is proposed to project feature vectors onto
pseudohyperbolic surfaces and determine feature similar-
ity based on the HD. This mechanism effectively integrates
bitemporal features at the same scale, incorporating hyper-
bolic information into the network.

2) A DFEM is put forward to enhance feature richness by
emphasizing the differences between multiscale features
and highlighting the advantages of each scale’s features.

3) A HES-Net is proposed, which combines Euclidean fea-
tures and hyperbolic features through the utilization of
HSAM and DFEM. Extensive experiments demonstrate

that our model achieves higher CD accuracy than other
state-of-the-art (SOTA) methods.

The rest of this article is organized as follows. The related
works are reviewed in Section II. A detailed description of the
proposed method is provided in Section III. The experimental
results are reported in Section IV. Discussions of key issues are
given in Section V. Finally, Section VI concludes this article.

II. RELATED WORK

A. Backbone Network for RS Image CD

Early deep learning CD methods can be categorized into
pixel-based and object-based approaches. Pixel-based methods
involve extracting deep features from individual pixels or their
neighborhoods in bitemporal images [30], [31], which can be
inefficient and prone to noise in high-resolution RS images [32].
On the other hand, object-based methods segment the images
into objects and compare them to obtain change maps [33], [34],
but they heavily rely on accurate object segmentation algorithms
and preprocessing operations, making them susceptible to vari-
ous factors and lacking robustness [35].

The emergence of FCNs [15] has greatly benefited the field of
CD. FCNs possess powerful capabilities in extracting contextual
information and can handle image inputs of any size for end-to-
end training. This makes them well-suited for scene-based CD
tasks. The U-Net [16] is based on FCNs and has the advantage
of fusing multiscale features efficiently and accurately. These
studies make the encoder–decoder structure the mainstream
backbone for DL in the field of CD. Addressing the unique char-
acteristics of the bitemporal inputs in CD, Daudt et al. [19] intro-
duced the shared-parameter Siamese network structure, which
enhances the utilization of bitemporal images and significantly
improves CD accuracy. It has become the baseline networks
for CD [36], [37], [38], [39]. For example, Fang et al. [18]
combined the Siamese structure with UNet++ [40], introduc-
ing a densely connected Siamese network (SNU-NET), which
alleviates the loss of localization information in the deep layers
of the neural network through compact information transmission
between encoder and decoder. Lei et al. [41] introduced the
spatial–spectral feature cooperation (SSFC) strategy based on
the Siamese structure to enhance feature richness and so on.
However, these models have limitations in modeling context
relationships during the convolution process and suffer from the
inductive bias of limited local receptive fields. To address these
issues, attention mechanisms [24] have been widely adopted as
embedding modules in visual tasks to recalibrate convolutional
feature maps.

B. Attention Mechanism for RS Image CD

In recent years, the effectiveness of attention mechanisms in
various computer vision tasks has been demonstrated. Attention
modules have been integrated into existing frameworks for CD
tasks. For example, in SNU-NET [18], the enhanced channel
attention module is employed to aggregate objects at different
scales within the U-Net structure. DASNet proposed by Chen
et al. [42] combines channel attention and spatial attention [43]
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to capture more discriminative features. However, these methods
either overly emphasize the fusion of multichannel information
at the decoder or focus on the importance of individual chan-
nels between pixels, neglecting the interrelationships among the
features extracted from bitemporal RS images.

To address these limitations, Chen et al. [21] introduced the
BIT model, which incorporates a transformer to encode change
regions using semantic tokens. This allows for the fusion of
deep features with the original image features to generate change
maps. Additionally, Chen et al. [29] designed a scale-aware mod-
ule to calculate the cross-scale attention of Dis, concentrating
the features on more important channels. They further extract
the changed pixels through cross-self-attention. These methods
consider the interrelationships among features from bitemporal
images, but they are still constrained by the extraction of original
features, making it difficult to incorporate deeper-level detailed
features that are not available in Euclidean space. Moreover,
these methods rely on SAM that exhibits exponential computa-
tional complexity with increasing input size, making them less
suitable for VHR and bitemporal inputs from an application
perspective.

C. Applications of Hyperbolic Space in Deep Learning

Hyperbolic space is a type of Riemannian space with
negative curvature, which enables the representation of hierar-
chical structures that are not easily captured in Euclidean space.
For data with prominent hierarchical characteristics, hyperbolic
space can restore their inherent hierarchical structure [44]. Most
existing deep learning methods are defined in Euclidean space,
benefiting from the isomorphism between Euclidean space and
vector space, which facilitates the computation of vectors or
matrices required by neural networks [45]. However, vector
operations in hyperbolic space need to satisfy manifold con-
straints, and as a result, they require definition in the gyrovector
space, where the representation reflects the characteristics of the
manifold.

In the early stages, the applications of hyperbolic space in deep
learning were primarily focused on NLP, graph neural networks,
knowledge graphs, and similar areas. However, more recent
research has discovered the potential of modeling computer
vision tasks in non-Euclidean spaces [46]. The physical space
we inhabit is a space with curvature, and RS images, which serve
as a means to represent the real world, are flattened in Euclidean
space. This flattening process causes certain non-Euclidean fea-
tures to be concealed, making them difficult to be learned by
Euclidean networks. Other studies have indicated that expert-
designed dissimilarity measures often exhibit non-Euclidean
behavior in certain applications [47]. Moreover, hyperbolic
models have demonstrated the ability to generate high-quality
representations, even in low-dimensional embedding spaces.
This characteristic makes them particularly advantageous in
scenarios with limited memory and storage [48]. Hyperbolic
space has two commonly used representations: 1) the Lorentz
model and 2) the Poincaré ball model. Zhang et al. [49] have
shown that in the Poincaré ball model, the HD can serve as a
metric for uncertainty. By measuring uncertainty or smoothing

decision boundaries, we can enhance the robustness of neural
networks. In this study, the proposed HSAM is based on this
theory and combines HD to construct hyperbolic attention.

III. METHODS

A. Overview

This section provides a detailed description of our HES-Net.
The network is based on a combination of Siamese architecture
and U-Net. The method framework is illustrated in Fig. 1. First,
a Siamese CNN encoder with shared parameters is employed
to extract multilevel features from the bitemporal images. The
features from both branches are preliminarily fused using con-
catenation to prevent information loss. Next, the HSAM is
applied to the two deepest layers of the network to map the
features into hyperbolic space. By introducing non-Euclidean
characteristics and computing the HD as a similarity measure
between paired hyperbolic features, the original features are
deeply fused using high-fidelity hyperbolic attention and refined
with global context. Finally, the features of each layer of the
encoder are upsampled, combined, and then passed through the
DFEM to highlight the advantages of features at different scales,
improve the feature richness, and generate the final pixel-level
prediction.

B. Hyperbolic Similarity Attention Mechanism

Existing CD methods flatten the extracted features from RS
images to satisfy the geometric axioms of Euclidean space.
However, the hierarchical structure in RS images is even more
complex than natural images. Flattening the features leads to the
loss of spatial information, such as image distortions caused by
variations in building heights or shadows. To address this issue,
we propose the HSAM, which introduces hyperbolic properties
into Euclidean-based neural networks without adding extra pa-
rameters or computational complexity. The detailed structure of
HSAM is illustrated in Fig. 2. The operation of HSAM can be
divided into two steps: 1) calculating HD and 2) constructing
similarity attention.

1) Feature Projection and HD Calculation: To perform
operations in hyperbolic space, we first need to project the
original Euclidean features extracted by the Siamese network
onto the hyperbolic surface Dd

c . In hyperbolic geometry, this
mapping is known as the exponential map, as shown in

y = expcx(v) (1)

where x, y ∈ Dd
c , x is the anchor point and 1/c is the hyperbolic

radius; v ∈ Rn ∼= TxDd
c is a vector in Euclidean space; TxDd

c is
the tangent space of the hyperbolic surface at point x.

According to the chosen hyperbolic model, different mapping
functions are required. James et al. [50] describe five common
hyperbolic models. In this study, we utilize the Poincaré ball
model. The Poincaré ball is a spherical model in hyperbolic
space, where the hyperbolic space can be embedded into a
higher-dimensional Euclidean space and represented using the
Poincaré ball. When we map a Euclidean space vector to the
hyperbolic space, we essentially map it to a point on the Poincaré
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Fig. 1. Overall architecture of the proposed HES-Net. (a) Backbone of HES-Net. The results of each layer after concatenation, according to different scales, are
connected to the upsampled results through skip-connections. (b) HSAM integrates deep bitemporal features and embeds hyperbolic information. (c) Differential
feature enhanced module (DFEM) highlights shallow fine-grained features and deep hyperbolic features through subtraction operations.

ball. This point in the Poincaré ball model corresponds to a point
in the hyperbolic space. The exponential mapping formula in the
Poincaré ball model is defined as

expcx(v) = x⊕c

(
tanh

(√
cλc

x

2
‖v‖
)

v√
c ‖v‖

)
(2)

where λc
x = 2

1−c‖x‖2 is the conformal factor that scales the local
distances, ‖ · ‖ is the norm l2, and ⊕c is the Mobius addition.

In practical applications, we set the anchor point x at the
origin and the radius parameter c as 1, resulting in (2) being
transformed as follows:

exp10(v) =
tanh(‖x‖) · x
‖x‖+ eps

(3)

where eps is a very small value used to prevent division by zero.

The process of projecting and labeling a pair of Euclidean
space feature vectors can be described as follows:

FjH = MT(exp10(Fj)) (4)

where Fj ∈ RC×H×W , j ∈ (1, 2) represents a pair of original
feature vectors at the same scale. FjH ∈ RC×H×W is the gy-
rovector obtained by projecting Fj onto the hyperbolic space.
MT(·) represents the operation of constructing a manifold ten-
sor, which is used to sequentially store the gyrovectors.

Afterward, the obtained pair of hyperbolic gyrovectors,
F1H , F2H , are reshaped to RHW×Ch and RCh×HW , respec-
tively, in order to calculate the HD between them. Ch represents
the dimensionality of the gyrovector. The HD can serve as a
metric for measuring the similarity between the two gyrovec-
tors. When used in CD tasks, the HD captures the underlying
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Fig. 2. Illustration of HSAM, where “exp” and “log” represent exponential and logarithmic mapping operations, “⊕” implies the elementwise summation, and
“⊗” implies the multiplication operation.

hyperbolic properties within RS images and represents the simi-
larity between the bitemporal inputs at the corresponding spatial
locations. By using the HD as a metric and constructing attention
maps, it allows for compensating the missing hyperbolic infor-
mation in Euclidean features. This facilitates the deep fusion of
bitemporal input features and emphasizes the regions of change.
The calculation of the HD can be represented as follows:

HD(v, u) = cosh−1

(
1 +

2 ‖v − u‖2
(1− ‖v‖2)(1− ‖u‖2)

)
(5)

where v and u are the hyperbolic gyrovectors corresponding to
the same spatial location in the pair of bitemporal data. They
are defined on the same Poincaré ball. Therefore, the HD can
be normalized to indicate the hyperbolic similarity between the
bitemporal features at a specific location.

2) Constructing Hyperbolic Similarity Attention: To obtain
the hyperbolic similarity attention map, the first step is to nor-
malize the HDs of the gyro vector features F1H , F2H to obtain
the hyperbolic similarity matrix MHS

MHS =
HD(F1H , F2H)√

Ch
(6)

where Ch is the dimension of the gyrovector.
Subsequently, the hyperbolic similarity attention map can be

obtained by feeding MHS into the SoftMax layer converted to
a probability distribution map MHa. However, since SoftMax
is defined in Euclidean space and involves exponentiation and
normalization operations, it cannot be directly applied in the
hyperbolic space. Therefore, it is necessary to first map the
tangent vectors on the manifold to points on the manifold us-
ing the exponential mapping, satisfying the flattened Euclidean
space characteristics. Then, the SoftMax operation is performed.
Finally, the logarithmic mapping is applied to restore the tangent
vectors, resulting in the desired attention map. The equation

defining the generation of the hyperbolic similarity attention
map is as follows:

MHa = logmap(Softmax(expmap(MHS))) (7)

where expmap(·) represents the exponential mapping and
logmap(·) represents the logarithmic mapping. MHa ∈
RHW×HW is the attention map that represents the hyperbolic
similarity.

The pair of original features, Fj ∈ RC×H×W , where j ∈
(1, 2), are individually split into two branches. One branch
from each feature is reshaped and multiplied elementwise with
the attention map MHa, yielding the attention features. The
remaining branches of each feature act as residuals and are
added to their respective attention features. The final result is
the generation of new features that possess hyperbolic properties
and integrate the bitemporal information. The equation defining
the generation of the new features is as follows:

FH
j = (reshape(Fj)×MHa)⊕ Fj (8)

where ⊕ is elementwise addition.
Finally, the new features FH

j ∈ RC×H×W , where j ∈ (1, 2),
will replace the original featuresFj in the network computations.
Experimental results have shown that it is not necessary to apply
HSAM to every feature extracted at each layer of the encoder
for optimal performance. This is due to the characteristics of the
Siamese-UNet network architecture, such as dense skip connec-
tions and weight sharing. The hyperbolic properties introduced
byFH

j through HSAM can propagate to all scales as the encoder
performs further convolutions and the decoder progressively
upsamples the features. In practice, we only applied HSAM to
the deepest two layers of the four spatial scales. The rationale
behind this choice will be discussed in Section V.
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Fig. 3. Structure of the DFEM. Feature averaging ensures keeping the key features while deep subtraction operations can highlight detailed information at
different scales.

C. Differential Feature Enhanced Module

Different scales of features often represent different semantic
levels due to variations in information density. HES-Net pro-
duces four outputs in the decoder, each with the same size as
the input image but representing different semantic levels. The
shallow outputs contain richer fine-grained features and more
precise edge information, but they are also more susceptible
to noise. The features from the deeper layers possess richer
semantic information and coarse-grained features, allowing for
more accurate identification of areas with changes. However,
the details of these changes may appear blurred. Additionally,
since HSAM is only applied to the deeper layers of the decoder,
despite the information propagation facilitated by dense skip
connections, the deep features still exhibit more pronounced
hyperbolic properties compared to the shallow features. To
effectively leverage the advantages of features at different scales,
the DFEM is introduced in this study prior to the final output
prediction.

The architecture of DFEM is illustrated in Fig. 3. In DFEM,
we apply subtraction and feature enhancement operations to
the four decoder outputs Fi, i ∈ (1, 4), in conjunction with the
average feature Favg. The subtraction operation between Fi and
Favg serves to achieve the effect of image smoothing, helping
to mitigate the impact of noise in the shallow features to some
extent. Furthermore,Favg highlights the information of common
interest across all levels, specifically facilitating the precise
localization of changed regions. The formula for obtaining Favg

is expressed as

Favg =

∑i=1
n Fi

n
(9)

where n represents the number of decoder output features, in
this study, n is set to 4. The notation

∑ · denotes elementwise
summation.

To enhance the advantages of features at different scales with-
out suppressing edge information, we perform deep subtractions
between Fi and Favg. The size of change regions in RS images

can vary significantly. To better extract features from different
receptive fields, we employ multiscale convolutions of 3×3
and 5×5. Compared to a single-scale differencing module, the
multiscale differencing module can capture more information,
thereby improving the accuracy of the model. Additionally, the
multiscale subnetwork can extract higher-order complementary
information, further enhancing the precision of the model. The
deep subtraction operation is formulated as

FDi = Conv3×3(|Fi � Favg| ⊕
|Conv3×3(Fi)� Conv3×3(Favg)|
⊕ |Conv5×5(Fi)� Conv5×5(Favg)|) (10)

where FDi represents the subtraction result of the ith layer,
� denotes elementwise subtraction, ⊕ represents elementwise
addition, and Convn×n denotes a convolutional filter of size
n× n. The purpose of adding the three subtraction results is to
delve deeper into the exploration of differential information.

Deep subtraction can highlight the advantages of features at
different scales, providing richer feature representations. How-
ever, using only subtraction may lead to the loss of crucial
information. Therefore, after applying subtraction to obtainFDi,
we further enhance the features by passing them through a
sigmoid activation function and multiplying them with Favg.
This helps to enrich the features. To recover the lost information,
we employ residual connections. Finally, the enhanced features
from each layer are concatenated to generate the final output
Fout. The formula for obtaining Fout is as follows:

FSi = Favg ⊕ (Sigmoid(FDi)× Favg) (11)

Fout = Concat(F1S , F2S , F3S , F4S) (12)

where FSi represents the enhanced features of the ith layer, and
Concat denotes the concatenation operation along the channel
dimension.

Previous CD methods have typically used subtraction opera-
tions only at the encoder side to obtain the difference information
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between bitemporal inputs. In the decoder, a simple concatena-
tion operation is commonly used to fuse multiscale features.
However, this simple concatenation can result in redundant
information. In contrast, our proposed DFEM leverages the
advantages of multiscale features while reducing information
redundancy through subtraction operations. This enables us to
obtain more precise localization and richer details in the features.
In Sections IV and V, we conducted ablation experiments and
effectiveness analysis of DFEM to validate its performance.

D. Loss Function

The CD task in RS images is a subclass of image segmentation
tasks, where the final output is a binary image indicating the
presence or absence of changes. Because the changed regions
are often much smaller in comparison to unchanged regions, CD
datasets commonly suffer from class imbalance. To address this
issue, we employ a hybrid loss function that combines the widely
used dice loss for segmentation tasks and the weighted cross-
entropy loss specifically designed to handle class imbalance.
Our loss function is defined as follows:

L = Ldice + Lwce (13)

dice loss and weighted cross-entropy loss are, respectively,
defined as

Ldice = 1− 2 · Y · Softmax(Ŷ )

Y + Softmax(Ŷ )
(14)

where Y indicates the ground truth, Ŷ is change map

Lwce =
1

H ×W

H×W∑
k=1

weight [class]

·
(
log

(
exp(ŷ [k] [class])∑1
l=0 exp(ŷ [k] [l])

))
(15)

where ŷ is the point in Ŷ , H,W is the height and width of ŷ,
the value of “class” is 0 or 1, indicating unchanged and changed
pixels, respectively.

IV. EXPERIMENTS

We conduct extensive comparative experiments to evaluate
the performance of HES-Net. Furthermore, we perform ablation
experiments to validate the effectiveness of HSAM and DFEM.

A. Experimental Setup

1) Datasets: We conducted experiments and analysis using
the most authoritative evaluation datasets in the field of CD,
namely CDD [51] and LEVIR-CD [52].

The CDD dataset consists of 11 pairs of multispectral images
captured by Digital Globe at different seasons, and the spatial
resolution of the obtained images ranges from 0.03 to 1 m.
A total of 16 000 image pairs each with a size of 256 × 256
are obtained through random cropping and data enhancement,
The final dataset was divided into three parts: 1) 10 000 pairs
for training, 2) 3000 pairs for validation, and 3) 3000 pairs for
testing.

LEVIR-CD dataset consists of 637 pairs of high-resolution
RS images from various locations in Texas, USA, with a reso-
lution of 0.5 m and a size of 1024 × 1024 pixels. The dataset
is specifically designed for building CD and was captured at
different times between 2002 and 2018. To reduce computational
complexity and align with recent CD literature, we adopted
a patch-based approach. They are cropped into 256 × 256
image pairs by random cropping. This yielded a total of 10 192
images, dividing into 7120 images for training, 1024 images for
validation, and 2048 images for testing.

2) Implementation Details: HES-Net was implemented us-
ing the PyTorch framework on an NVIDIA RTX A5000 GPU.
The model was trained for 120 epochs to achieve full conver-
gence. To highlight the effectiveness of our HSAM and DFEM,
and minimize the influence of other factors, we did not employ
any data augmentation techniques. The batch size for input
images during training was set to 16. We employed the Adam
optimizer with a learning rate of 7e-4, and the learning rate
was decayed by a factor of 0.8 every 8 epochs. The weights
of each convolutional layer were initialized using KaiMing
normalization.

3) Evaluation Metrics: In the experiments, we evaluated the
model performance using the three commonly used metrics in
CD: 1) precision (Pre), 2) recall (Rec), and 3) F1 score (F1). The
calculation methods for these metrics are as follows:

Pre =
TP

TP + FP
(16)

Rec =
TP

TP + FN
(17)

F1 =
2× Pre× Rec

Pre + Rec
(18)

where false negative (FN) represents the number of pixels that
are incorrectly classified as unchanged. False positive (FP) rep-
resents the number of pixels that are incorrectly classified as
changed. True positive (TP) is the number of pixels correctly
classified as changed. The F1, which comprehensively reflects
the levels of precision and recall, serves as the primary criterion
for evaluating the quality of our model.

B. Comparison Experiments

1) Comparison Methods: We compare our experimental re-
sults with the following eight deep-learning-based CD methods,
including both classic models in the CD field and the latest
models in recent years. These methods, such as our Baseline,
mostly adopt a Siamese architecture as follows.

FC-Siam-Conc [19] combines Siamese networks with U-Net
by fusing same-scale features before decoding.

STANet [52] incorporates spatiotemporal attention modules
to model the spatiotemporal relationship between bitemporal
RS images, enhancing feature discrimination for different-scale
objects.

FDCNN [53] generates multiscale and multidepth feature
difference maps to improve CD accuracy.
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TABLE I
PERFORMANCE COMPARISON ON CDD DATASET

DASNet [42] introduces a dual attention mechanism to penal-
ize features in pseudochange regions and enhance the attention
weights of change region features.

SNUNet [18] combines Siamese networks and UNet++ to
strengthen information transmission and employs an integrated
channel attention module for multiscale feature fusion and im-
proved detail recognition.

BIT [21] introduces a transformer-based encoder to model
contextual information and represent high-level semantic fea-
tures.

HMLNet [54] proposes a hierarchical metric learning network
using ensemble learning for same-scale feature learning, en-
hanced by dual attention modules for internal consistency within
change objects.

USSFC-Net [41] employs multiscale decoupled convolution
for extracting multiscale features and incorporates spatial–
spectral attention for enhanced feature richness.

To ensure fairness, all methods were implemented with the
same data partitioning settings, and whenever possible, the
original authors’ open-source code for the comparative methods
was used.

2) Comparison of the CDD Dataset: The quantitative anal-
ysis of the experimental results on the CDD dataset is presented
in Table I, with the best values for each metric highlighted in
bold. The visual analysis is illustrated in the upper half of Fig. 4.
Through quantitative analysis, it is evident that our proposed
method surpasses the comparative methods in all three metrics.
Compared to SNUNet, which is one of the most commonly cited
CD methods in the past two years, our method achieves improve-
ments of 2.06%/2.72%/2.39% in Pre, Rec, and F1, respectively.
When compared to the latest CNN-based methods, HMLNet and
USSFC-Net, our method demonstrates respective improvements
of 2.57%/2.97%/2.82% and 4.02%/0.69%/2.48% in Pre, Rec,
and F1.

The CDD dataset is a complex target CD dataset with seasonal
variations, which imposes demands on the robustness of the
network. For example, in the first row of Fig. 4, the road is
highlighted by weather changes and becomes a pseudochange
area. The second and fourth rows depict complex changes influ-
enced by seasonal factors, where some road changes are highly
ambiguous. However, our HES-Net exhibits almost no false
detections or omissions compared to other methods, accurately
identifying even the ambiguous details. In the third row, which
involves changes in small areas, it can be observed that our

TABLE II
PERFORMANCE COMPARISON ON LEVIR-CD DATASET

method’s results are closer to the ground truth compared to other
methods, faithfully restoring irregular edges like the ground
truth. Through visual analysis, it is evident that our method
possesses strong noise resistance and fine-detail detection ca-
pabilities, with the hierarchical structure of hyperbolic space
greatly aiding in the classification of complex scenes.

3) Comparison on the LEVIR-CD Dataset: The quantitative
analysis of the experimental results on the LEVIR-CD dataset
is presented in Table II, and the visual analysis is illustrated
in the lower half of Fig. 4. From Table II, it can be observed
that our method achieves satisfactory results on the LEVIR-CD
dataset. Compared to the latest transformer-based method, BIT,
our method demonstrates improvements of 1.94%, 0.44%, and
1.19% in Pre, Rec, and F1, respectively. Although the recall rate
does not reach the SOTA, our method outperforms the latest
CNN-based methods, HMLNet and USSFC-Net, by 3.42% and
0.54% in terms of F1, respectively, which better reflects the
overall model performance. Moreover, the Pre metric shows
significant improvements of 6.76% and 2.99%, respectively.

The LEVIR-CD dataset focuses on dense building CD. As
shown in the second row of the lower half of Fig. 4, our method
produces detection results in dense urban areas that are closer
to the ground truth compared to other methods, especially in
terms of capturing edge shapes. In both the first and fourth
rows, which depict large-scale building changes, our method
effectively segments different buildings, demonstrating its abil-
ity to recognize fine-grained edge details. In the top-left of
the fourth row, there is a region with pseudochanges that are
prone to false alarms. While most other methods mistakenly
detect changes in this area, our method accurately identifies
the pseudochange region. This highlights the excellent capa-
bility of our HES-Net in capturing details in specific regions.
Overall, our model exhibits the best performance on both
datasets.

C. Ablation Study

To validate the effectiveness of HSAM and DFEM, we con-
ducted a series of ablation experiments using different com-
binations of modules on both datasets. The results of these
experiments are presented in Tables III and IV.

As shown in Tables III and IV, our ablation experiments
exhibit consistent trends on both datasets. Our baseline model is
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Fig. 4. Visualization comparison of results on the CDD and LEVIR-CD test sets. White is true positive and black is true negative. (a) Pretemporal image.
(b) Posttemporal image. (c) Ground truth. (d) FC-Siam-Conc. (e) STANet. (f) FDCNN. (g) DASNet. (h) SNUNet. (i) BIT. (j) HMLNet. (k) USSFC-Net. (l) Our
HES-Net.

TABLE III
QUANTITATIVE ANALYSIS OF ABLATION EXPERIMENTS ON THE CDD DATASET

TABLE IV
QUANTITATIVE ANALYSIS OF ABLATION EXPERIMENTS ON THE LEVIR-CD

DATASET

a combination of Siamese network and U-Net (Siam-UNet). In-
troducing HSAM, which embeds hyperbolic information, leads
to an improvement of 2.25% and 2.88% in F1 on the CDD and
LEVIR-CD datasets, respectively. It is worth noting that the ap-
plication of HSAM does not introduce any additional parameters
to the network. This is because the process of mapping Euclidean

space to hyperbolic space and computing HD is solely dependent
on the positions and does not require training or optimization
of the pseudohyperbolic space and its related parameters. In
addition, applying HSAM only results in a 1.477-GB increase
in FLOPs. This is primarily because the size of the deep features
where HSAM is applied is relatively small. From the tables,
it can be observed that combining DFEM with the baseline
results in a less significant improvement in F1 compared to
HSAM alone but still achieves a remarkable increase of 1.92%
and 0.93% on the CDD and LEVIR-CD datasets, respectively.
Furthermore, adding DFEM to the HSAM-based model further
enhances the exploitation of hyperbolic information, resulting in
a greater improvement of 2.74% and 3.42% in F1 compared to
the baseline on the CDD and LEVIR-CD datasets, respectively.
This clearly demonstrates the effectiveness of both HSAM and
DFEM.

V. DISCUSSION

A. Discussion on the Effectiveness of HSAM and DEFM

HSAM can embed hyperbolic information into the network
and deeply integrate the features from bitemporal phases, en-
hancing the network’s capability to extract details and resist
noise. Specifically, the introduction of HSAM improves the
detection ability for details in small regions, blurry areas, and
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Fig. 5. Feature activation after HSAM or DFEM on the CDD and LEVIR-CD test set. (a) Pretemporal image. (b) Posttemporal image. (c) Ground truth.
(d) Feature activation map of baseline. (e) Feature activation map of baseline + HSAM. (f) Feature activation map of baseline + DFEM. Red and yellow in (d)–(f)
denote higher attention values.

areas where it is difficult to determine whether there is a change.
The feature activation maps of the baseline model and the model
with HSAM are shown in Fig. 5(d) and (e), respectively. It can be
observed that the model with HSAM effectively complements
the missed detections in the original model, such as the buildings
in the middle of the second row and the small area on the right
side of the middle; as well as the bottom-left corner in the
third row. Moreover, there is no apparent noise in the activated
maps after introducing HSAM. The model’s ability to capture
change regions is significantly improved with the introduction
of HSAM. Furthermore, the introduction of hyperbolic space
can reduce errors caused by factors such as height differences in
the images. For example, in the bottom-left corner of the second
row, both map (d) and map (f) assign equal attention to both the
balcony and the roof in image (b), treating them as the same
region of interest. Only map (e) distinguishes this difference,
which aligns with the ground truth.

In comparison, the feature activation maps after introducing
DFEM [see Fig. 5(f)] show improvements in a different direc-
tion. As shown in the first row, although map (e) detects most of
the changed areas in the top-left intersection, it fails to refine the
edges, while map (f) separates the edges of the intersection.
Although map (f) has fewer correctly judged pixels overall
compared to map (e), its shape is closer to the ground truth.
This is due to the effective utilization of shallow fine-grained
features by DFEM. Similarly, in the second and third rows, map
(f) exhibits a higher focus on the edges of the change regions
compared to map (e). In the gap between the buildings in the
middle of the third row, the edges in map (f) better match the
shape of the ground truth. The analysis of the data in Tables III
and IV, combined with the visual analysis in Fig. 5, thoroughly
demonstrates the effectiveness of our proposed HSAM and
DFEM.

B. Performance Comparison of HSAM at Different
Convolutional Layers

To introduce hyperbolic information into the network and fuse
the paired features, HSAM projects a pair of features at the same
scale into hyperbolic space and calculates hyperbolic similarity.
However, features at different scales possess distinct character-
istics, and the effectiveness of HSAM varies significantly when
applied to different convolutional layers of the network. Our
HES-Net consists of four convolutional layers in the encoder,
providing us with four scales of features. The application of
HSAM to each layer’s features is shown in Fig. 6. For clarity,
we refer to the method of applying HSAM after the xth layer
convolution as “x H-Layer.” Since the receptive field of the first
convolutional layer is small and lacks tight contextual infor-
mation, it is not suitable for applying the hyperbolic attention
module. Therefore, our experiments start from the 2 H-Layer,
gradually exploring the impact of the HSAM position on model
accuracy. To maintain consistency, all experiments default to
using DFEM.

From Fig. 6, it is evident that the changes in the position
of HSAM have a similar trend on the CDD and LEVIR-CD
datasets. The introduction of HSAM at the 2 H-Layer sig-
nificantly decreases the F1 score compared to the baseline.
Interestingly, even when HSAM is applied to multiple convo-
lutional layers, introducing it at the second layer reduces the
network’s accuracy compared to only applying HSAM at the
(3,4) H-Layer. This may be because the features extracted by
the second convolutional layer are relatively shallow and cannot
fully exhibit the hyperbolic properties we need. Additionally,
the introduction of HSAM integrates the noise from the shallow
features, amplifying the impact of noise and interfering with
network learning.
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Fig. 6. Effect of HSAM applied at different layers on network accuracy. The
horizontal axis represents the applied convolutional layers (x) for HSAM, and
the vertical axis represents the F1 score of the corresponding method.

The 3 H-Layer and 4 H-Layer significantly improve the
network’s performance, but the 4 H-Layer falls slightly behind.
The deep-level features extracted by the fourth layer possess
stronger semantic information but have a poor perception of
details, making it difficult to fully utilize HSAMs ability to
recognize small objects and detailed information. The features
from the third layer combine some advantages of shallow and
deep-level features. Data analysis shows that the third layer’s
features are most suitable for HSAM while the fourth layer’s
features also reflect the impact of HSAM.

To leverage the distinctive advantages of multiscale features
across different layers, we apply HSAM at multiple levels in the
encoder. We ultimately select the (3,4) H-Layer version, which
yields the best performance. In this version, HSAM effectively
extracts hyperbolic information from deep-level features, avoids
the influence of noise in shallow features, and obtains more fine-
grained features. This version outperforms the suboptimal 3 H-
Layer version by 0.41% on CDD and 0.24% on LEVIR-CD.

In conclusion, our HSAM demonstrates advantages in the
CD task but needs to be applied to deeper layers with multiscale
features. Features that are too shallow severely impact the per-
formance of HSAM while features that are too deep fail to fully
exploit the benefits of HSAM.

C. Limitations and Future Work

The proposed HES-Net in this article has achieved more
accurate results in CD of RS images by introducing hyperbolic
information. This demonstrates the effectiveness of hyperbolic

space in feature extraction and deep fusion of RS images.
However, during the experiments, we have identified certain
limitations of the proposed method.

First, in order to demonstrate the excellent performance of
HSAM on the basic backbone, we selected the Siamese and
U-Net architecture, which is the most fundamental architecture
for CD tasks in recent years, as the backbone network. However,
there have been many stronger backbone networks emerging
now, such as transformers and their various variants [20], [21],
as well as improved Siamese networks [27], [41], [42]. These
stronger backbone networks can provide more accurate dis-
criminative features, which would be beneficial for extracting
hyperbolic information.

Second, since our method only extracts hyperbolic informa-
tion in deeper convolutional layers, the newly added hyperbolic
components in the features lack fine-grained information. This
may slightly reduce the precision of the detected boundaries in
the new regions.

On the other hand, to further explore the application of hy-
perbolic information in CD tasks, we plan to extract and fuse
hyperbolic information on more powerful backbone networks
in the future. Thanks to the plug-and-play nature of HSAM,
it is feasible to transfer the module to other networks. Ad-
ditionally, hyperspectral imagery collected from airborne or
satellite sources inevitably suffers from spectral variability [55].
However, the noise resistance brought about by the negative
curvature and nonlinear properties of hyperbolic space may help
alleviate the impact of spectral variations. Furthermore, HSAM
operates on feature maps rather than the images themselves.
These advantages provide possibilities for handling multiple
input types, such as hyperspectral images and synthetic aper-
ture radar images. In the future, we intend to investigate the
performance of hyperbolic information on multimodal data by
improving the backbone network.

VI. CONCLUSION

In this article, we propose a network called HES-Net for RS
image CD. The network backbone adopts the popular Siamese-
UNet structure. By introducing our designed HSAM, we embed
hyperbolic information, which is difficult to extract from RS
images, into feature learning. HSAM constructs bitemporal
attention based on hyperbolic similarity to fully integrate the fea-
tures from the two temporal phases and enhance the compactness
of change information. Through extensive experimental analy-
sis, we demonstrate the importance of hyperbolic information
in the CD.

Furthermore, to address the issue of neglecting shallow fine-
grained features and the underutilization of deep-level hyper-
bolic information, we propose the DFEM. DFEM highlights
the advantages of multiscale features by deep-level feature sub-
traction, simultaneously enhancing HSAM and strengthening
fine-grained features to refine the boundaries of change regions.

The effectiveness of these methods is validated through exper-
iments on two popular datasets: 1) CDD and 2) LEVIR-CD. The
experimental results demonstrate that our HES-Net outperforms
existing popular networks in terms of detection accuracy.
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