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ICIHRN: An Interpretable Multilabel Hash Retrieval
Method for Satellite Cloud Images

Wei Jin , Zhoutao Cai , Yukai Pan , and Randi Fu

Abstract—Observing clouds to understand the weather is a
crucial method for people to forecast upcoming conditions. Uti-
lizing content-based satellite cloud image retrieval allows for the
swift discovery of comparable historical cloud images, significantly
aiding meteorologists in their advanced investigations. Neverthe-
less, satellite cloud images often present complexities due to their
inclusion of diverse cloud types, leading to inadequate retrieval
outcomes when relying on conventionally employed single-label
retrieval techniques. Despite notable accomplishments in cloud
image retrieval applications utilizing deep neural networks, con-
cerns regarding network interpretability undermine confidence
in the model’s deductive outcomes. This article introduces the
interpretable cloud image hash retrieval network, a framework
that employs a singular object-level global unit alongside multiple
local feature units for the purpose of generating hash codes tailored
to cloud image retrieval. Furthermore, an attention branching
network is incorporated to enhance the model’s focus on discrimi-
native regions within the image. In addition, a suppression module
is implemented to progressively uncover complementary regions
through the suppression of prominent areas in preceding layers and
the amalgamation of relationships among activated regions. This
ensures that each feature unit is endowed with distinctive semantic
information, thereby imparting a level of interpretability to the
retrieval outcomes. On this foundation, multilabel supervision is
seamlessly integrated into the deep hash learning framework. This
integration not only enhances the depiction of intricate semantic
contents within cloud images but also boosts retrieval efficiency.
Comprehensive experimental outcomes, grounded in the publicly
accessible satellite cloud map dataset LSCIDMR-V2, demonstrate
superior performance relative to other methods.

Index Terms—Cloud image retrieval, feature extraction, feature
fusion, hash learning, interpretability.

I. INTRODUCTION

W EATHER conditions play an important role in our daily
lives. Clouds are crucial players in weather systems,

with various cloud types, phases, and heights exerting a profound
influence on the formation and evolution of such systems. They
have long been at the forefront of meteorological observation and
research. Satellite imagery serves as a potent tool for monitoring
clouds and weather systems. By utilizing satellite imagery, we
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can gain insights into diverse weather conditions, evaluate their
intensity and potential future trajectories, and establish a reli-
able foundation for all-weather forecasting and disaster weather
prediction. In this article, we aim to explore the monitoring of
tropical cyclones, temperate cyclones, and other potential cloud
and weather systems through the task of satellite image retrieval.
Through the satellite cloud image retrieval algorithm, similar
historical cloud images can be quickly found, offering invalu-
able assistance to meteorologists in their subsequent research
endeavors.

Content-based image retrieval (CBIR) has gained increasing
attention as a prominent branch within the field of image re-
trieval. In general, CBIR mainly consists of two parts: feature
extraction and similarity measurement [1]. Feature extraction
aims to extract representative features of an image, whereas
similarity measurement quantifies the resemblance between the
query image and the target image, ultimately locating the most
similar images within the database. Most of the traditional fea-
ture extraction methods use manually designed features. For ex-
ample, Chandraprakas and Narayana [2] extract texture features
for cloud image retrieval using the grayscale covariance matrix
method. Xia et al. [3] propose a grid-based inner circle method
to extract region-based features of cloud images for retrieval.
Nevertheless, due to the complexity of cloud image content
and the high degree of similarity among diverse image types,
relying on manual features falls short in accurately unveiling the
meteorological semantic information embedded within cloud
images, ultimately culminating in subpar retrieval outcomes.

With the rapid advancements in deep learning techniques,
convolutional neural networks (CNNs) have been extensively
utilized for the extraction of high-level semantic information fea-
tures from remote sensing images [4], [5], [6], yielding remark-
able success. However, the majority of methodologies devised
for remote sensing image retrieval predominantly employ single-
label retrieval [7], [8], [9], thereby limiting the model’s learning
to only the most prominent labels. In recent years, research
efforts have shifted toward multilabel retrieval of remote sensing
images, aiming to surmount the constraints associated with
single-label remote sensing image retrieval [10], [11]. Despite
the widespread application of these deep learning techniques in
remote sensing imagery, their application in satellite cloud image
retrieval remains scarcely reported. Furthermore, remote sensing
imagery encompasses vast amounts of data, leading traditional
methods to extract high-dimensional image features for accurate
representation of semantic information. Consequently, this re-
sults in increased time and space costs. Deep hashing algorithms
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compress high-dimensional image feature vectors into binary
hash codes to represent image content and employ a simple
dissimilarity operation to calculate the Hamming distance for
retrieval, thereby significantly conserving computation time and
memory usage. Typically, current hashing techniques rely on the
output from the final CNN feature layer to produce binary hash
codes; the retrieval process based on these hash codes offers
no compelling explanation for the ultimate decision outcomes
and is deficient in a certain level of interpretability. For mete-
orologists, the results output from a black-box model cannot
be fully trusted. Consequently, it is imperative for us to ensure
that the learned hash codes possess unambiguous meaning and
interpretability.

To address the challenges while accounting for the varying
cloud types and weather systems present in distinct target re-
gions of satellite cloud images, we propose an interpretable
cloud image hash retrieval network (ICIHRN). The proposed
network comprises two branch structures: a global feature learn-
ing branch responsible for acquiring global feature units that
depict the primary semantic objects within cloud images, and
the other branch, the local feature learning branch, incorporates
multiple local feature units dedicated to representing diverse
local cloud type targets within the image. Within each local
feature unit learning module, an attention branching network
is employed to concentrate on salient regions of the image
and incorporates a suppression module subsequent to each
subbranch. This module identifies complementary regions by
suppressing the most prominent features within the preced-
ing layer of the feature map, ensuring that each feature unit
possesses its own distinctive semantic information. Ultimately,
we produce hash codes for retrieval purposes by amalgamating
individual object-level feature units with multiple local feature
units within the hash learning module, thus imparting a degree
of interpretability to the retrieval results. In addition, we inte-
grate multilabel supervision into the deep hashing framework,
facilitating the portrayal of intricate semantic content within
cloud images. The main contributions of this article are as
follows.

1) We propose an ICIHRN. The network comprises a feature
learning module and a hash learning module, designed
to efficiently achieve content-based multilabel retrieval
for satellite cloud images. To the best of our knowledge,
there are very few works focusing on deep-learning-based
satellite cloud image retrieval.

2) We propose a structure for interpretable hash codes. By
utilizing the global learning branch and local learning
branch of the network, we obtain a single feature unit with
object-level significance and multiple local feature units,
enriching each unit with semantic information. Once these
feature units are combined, we employ a deep hashing
method to produce a hash code that is semantically infor-
mative and interpretable, enhancing efficiency while also
imparting a degree of interpretability to the model.

3) The proposed method was evaluated on a public dataset.
The experimental results show that the method achieves
94.39% mean average precision (mAP) on LSCIDMR-V2,
which is better than other existing methods.

II. RELATED WORKS

A. Multilabel Remote Sensing Image Retrieval

Multilabel remote sensing image retrieval involves utilizing
multilabel labeled training images to identify remote sensing
images resembling a specific query image. Chaudhuri et al.
[12] develop a multilabel remote sensing dataset based on the
UCMD remote sensing dataset and proposed a semisupervised
graph-theoretic approach for remote sensing image retrieval.
Dai et al. [13] propose a method for efficiently modeling and
exploiting sparsity in remote sensing image descriptors for the
supervised retrieval method. Shao et al. [11] employ a fully
convolutional network to extract regional convolutional features
of the image for multilabel remote sensing image retrieval.
Sumbul and Demir [14] propose a new graph-theoretic deep
representation learning method, which utilizes a graph structure
to offer a region-based image representation that combines local
information and relevant spatial organization to effectively solve
the problem of remote sensing image retrieval. Sumbul et al. [15]
propose a deep-learning-based triple sampling method to learn
the metric space for multilabel labeled images, thereby achieving
effective results.

However, research on multilabel remote sensing image re-
trieval has been constrained by the scarcity of large-scale
datasets with multiple labels. To address this problem, Sum-
bul et al. [16] propose BigEarthNet, a practical benchmark
dataset for large-scale multilabel remote sensing, comprising
590 326 Sentinel-2 image tiles. Subsequently, they present an
enhanced version, BigEarthNet-mm [6]. However, this remote
sensing dataset does not satisfy the need for weather systems
and cloud-type-related applications. To fill this data gap, Bai
et al. [17] propose LSCIDMR, a dataset focused on weather
and cloud systems, utilizing three channels of data from the
Himawari-8 satellite, and each image in LSCIDMR is cropped
to dimensions of 1000 × 1000 pixels. LSCIDMR comprises
LSCIDMR-S and LSCIDMR-M, designed for processing single
and multiple labels, respectively. The labels in LSCIDMR are
broadly grouped into three categories: weather systems, cloud
systems, and terrestrial systems. However, these datasets provide
only a crude classification of cloud systems into two phases: high
ice clouds and low water clouds. Subsequently, Zhao et al. [18]
expand this dataset by refining the two cloud phase labels into
nine distinct cloud types, resulting in the creation of LSCIDMR-
v2. This updated version incorporates all 16 channels of satellite
data. The availability of this dataset facilitates our investigation
into large-scale multilabel satellite cloud map retrieval. We will
employ this dataset in our research presented in this article.

B. Interpretability of Deep Neural Networks

In recent years, driven by the success of deep learning,
significant progress has been made in various computer vision
tasks. Although this method possesses remarkable discrimina-
tive inference capabilities, its lack of interpretability, being a
black-box model, remains a major critique and a potentially fatal
drawback. In recent times, there has been a growing emphasis on
enhancing the interpretability of deep learning models. Existing
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research in this area can be broadly categorized into two main
approaches: 1) explaining existing models through visualization
techniques and diagnostic analysis of their deep features and 2)
incorporating prior knowledge to modify models and enhance
their ability to provide interpretable feature representations. For
example, Zhou et al. [19] propose a class activation mapping
approach to identify important regions in the input image for
inference by analyzing image class features. Gradient-weighted
class activation mapping (Grad-CAM) [20] improves the method
by incorporating gradient computation in the last convolutional
layer. Bau et al. [21] propose a comprehensive framework for
network profiling, which aims to measure the interpretability
of a neural network’s underlying representations through as-
sessments of consistency between individual hidden units and
a set of semantic concepts, thus providing a more objective
evaluation criterion. Apart from their emphasis on interpreting
and analyzing trained models, these methodologies develop
visually interpretable models by making structural modifications
to conventional deep learning architectures, thereby enhancing
transparency and trustworthiness. For example, Zhang et al. [22]
design interpretable CNNs by forcing each filter to represent
a specific portion of the object. Zhang et al. [23] propose an
attention-based CNN structure, IA-CNN, such that each feature
map in the last convolutional layer has only one response from
the target object. This design enables automatic extraction of
key points from images and significantly enhances the inter-
pretability of the CNN model, facilitating a deeper understand-
ing of its decision-making processes. Meqdad et al. [24] create
interpretable features for CNN models encoded as evolutionary
trees for genetic planning algorithms, and these trees make the
models interpretable by learning the process of extracting deep
structural features.

In satellite cloud image retrieval, our primary focus lies in en-
suring that the hash code features employed for retrieval possess
explicit meaning and interpretability, rather than solely relying
on modifications to traditional models. Hence, in this research,
we propose a semantically rich hash code that combines a single
object-level hash code with multiple local hash codes, aimed at
facilitating interpretable image retrieval.

C. Deep Hash Learning

Similarity retrieval is a fundamental problem in information
retrieval and data mining applications [25]. With the rapid
growth of image data, retrieving similar images is relatively
costly. In deep learning, hashing techniques have become one of
the most popular and effective methods. The aim of hashing is
to acquire a set of hash functions that can transform each image
into a concise binary code via a hashing procedure. Existing
methods for hash learning can be broadly classified into two
categories: unsupervised hashing and supervised hashing.

Supervised hashing aims to derive hash codes through the
utilization of supervised information, with representative su-
pervised hashing methods including kernel-supervised hashing
[26] and minimum-loss hashing [27]. Unsupervised hashes do
not require labeled datasets to learn mapping functions. They
depend on the inherent structure of the image data itself to learn

the mapping function. Typical methods within unsupervised
hashing include spectral hashing [28], iterative quantization
[29], and density-sensitive hashing [30]. With the great success
of deep learning in computer vision, combining CNNs with
hashing techniques has become a mainstream method for image
retrieval. For example, deep supervised hashing [31] uses pairs
of images as training input to learn compact binary codes for
retrieval. Deep Cauchy hashing [32] generates compact hash
codes by designing a pairwise cross-entropy loss based on the
Cauchy distribution, which significantly penalizes similar pairs
of images if they are greater than a threshold value.

In recent years, there has been continuous development of
algorithms that integrate hashing techniques into remote sensing
image retrieval. For example, Liu et al. [33] propose a feature
and hash (FAH) algorithm, which consists of a deep feature
learning module and an adversarial hash learning module for
generating hash codes with balanced distributions. Song et al.
[34] propose an asymmetric hash code learning method, de-
signed to generate hash codes for querying database images in an
asymmetric manner. This approach enhances the representation
of both deep features and hash codes. Tang et al. [35] develop
Meta-Hashing, a technique in which hash learning is represented
in a meta manner, to improve the generalization capability of
the hash network when limited labeled training samples are
available. Experimental results demonstrate its effectiveness in
large-scale retrieval of remote sensing images. Sun et al. [36]
propose an unsupervised deep hashing method that relies on
soft pseudo-labels. This method leverages a deep autoencoding
network to autonomously acquire soft pseudo-labels and a local
similarity matrix, enabling the learning of similarity between
remote sensing images and leading to satisfactory retrieval out-
comes.

III. METHOD

In this section, we describe our proposed method in detail. We
propose an ICIHRN. The ICIHRN consists of two main parts:
1) feature representation learning, focused on obtaining feature
units consisting of a single global feature unit and multiple local
feature units; and 2) hash learning, which optimizes the network
by employing a hash loss function to transform the features
into distinct hash codes. Ultimately, the resulting hash codes
are utilized to assess the similarity between images, enabling
precise retrieval of satellite cloud images. Later, we describe all
these components in detail.

A. Feature Representation Learning

Satellite imagery serves as a potent tool for monitoring cloud
and weather patterns, with content-based satellite cloud re-
trieval aiming to expeditiously locate historical cloud images
resembling the target image. This facilitates further research
for meteorologists. Moreover, we require the model to possess
a level of interpretability, fostering trust in the model’s infer-
ential judgments among meteorologists. Fig. 1 illustrates the
overarching structure of the ICIHRN. Since the CNN model
has a stronger hierarchical architecture and is easy to capture
local features in the image [37], we adopt it as the backbone
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Fig. 1. Proposed framework of ICIHRN. It comprises two primary branches: the feature representation learning module and the hash learning module. Within
the feature representation branch, there are two subbranches: the global feature learning branch and the local feature learning branch. In the global feature learning
branch, images are inputted into the backbone network to generate feature maps, which are then processed through pooling and fully connected layers to extract
global features. Simultaneously, the feature map is passed to the local feature learning branch, where multiple local feature units are derived using an attention
mechanism coupled with a suppression module. Following this, we concatenate the global and local features before feeding them into the hash learning module to
learn the interpretable hash code.

part of the network structure. Unlike general natural images,
satellite cloud image is usually a multispectral image whose
different channels will reflect different physical properties. We
chose the first, second, third, and fifth band data from the dataset
as inputs for our model. Specifically, the first, second, and
third channels consist of visible band data offering insights into
aerosol physical properties, while the fifth channel represents
near-infrared band data, providing information on cloud physical
parameters. Considering the varying resolution sizes of the input
images and aiming to preserve intricate details while bolstering
the robustness of batch processing, we resize the input images
to 256 × 256 and normalize the input data.

1) Global Feature Learning Branch: We denote X =
{x1, x2, . . . , xN} as the set of input satellite cloud images for
each batch, where N is the size of each batch. The corresponding
image labels are denoted as Y = {y1, y2, . . . , yN} , where
yi = {z1, z2, . . . , zC}, C is the total number of categories of
the image, and zi ∈ {0, 1}, with 1 and 0 denoting that the ith
label of this image is positive or negative, respectively. Initially,
we extract the global semantic information from the image.
Specifically, since ResNet50 [38] increases the flexibility and
stability of the network by introducing residuals and has been
effective in several image retrieval methods [7], [36], we utilize
ResNet50, the backbone of our network, to process the input
image X and obtain its deep feature map F:

F = fω (X) ∈ RC×H×W . (1)

To obtain the global features, we perform an average pooling
operation on the feature graph F and obtain our global semantic
features GF after feature dimensionality reduction through a
fully connected layer f with the addition of the parameter θ

GF = fθ (GAP (F )) (2)

where GAP denotes a global average operation.
2) Local Feature Learning Branch: Satellite cloud images

often contain multiple cloud-type targets, and we need to capture
these local-level targets to generate more meaningful hash codes.
In human perception, attention mechanisms enable selective
focus on salient object parts, thereby facilitating improved cap-
ture of visual structure [39]. In the feature learning process,
in addition to considering multiscale information, the diversity
of objects is also considered. Toward this objective, we devise
m mini-branches for local feature extraction, to capture the
objects’ information based on F. The main idea is to utilize
an attention branching network [40] to generate an attention
graph to highlight the discriminative regions corresponding to
each category. Specifically, taking the first small branch as
an example, we initially send the feature map F through a
1 × 1 convolution into the local feature learning module to
obtain F1. Subsequently, F1 is passed through 3 × 3 and 1
× 1 convolutional layer and batch normalization (BN) layer,
followed by activation using the rectified linear unit (ReLU)
function to generate Fm. Finally, Fm is again passed through
a 1 × 1 convolution, which is aggregated and normalized, and
then, a Sigmoid function is chosen to generate the attention map
M1. The process is shown as follows:

Fm = ReLu (BN (Conv (Conv (F1)))) (3)

M1 = Sigmoid (Conv (ConvConv (Fm))) . (4)

After that, we perform the Hadamard product between ele-
ments of F1 and the attention map M1 to obtain the local feature
map LFM1. The specific process is shown in Fig. 2. However, de-
spite its ability to identify the most distinguishable regions, this
method occasionally overlooks the remaining object-specific
regions within the complementary regions of the image. Given



8666 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 2. Attention mechanism.

the contextual relationship between various cloud class regions
in satellite cloud maps, erasing the most distinguishable regions
in a simplistic manner may impede the extraction of other
object-specific regions. Consequently, we introduce a suppres-
sion module designed to amplify other object-specific regions
while simultaneously suppressing the most discriminative ones.
Specifically, we initially input the attention map M into the
suppression module and record the standard deviation and mean
of all elements in the attention graph M as μstd and μmean.
For each element within M μk ∈ {μ1, μ2, . . . , μH×W }, do the
following:

μk = 1− μk−μmean

(μstd)a
(5)

where a is a hyperparameter that distinguishes the degree
of suppression ratio of the salient region from the degree of
enhancement ratio of the other activated regions; the higher
a is, the higher the degree of suppression and enhancement.
Through this operation, which relies on enhancing suppression,
some of the most discriminative regions from the previous stage
will be inhibited. Simultaneously, other complementary regions
that have been activated will experience enhancement alongside.
Consequently, the connection between the activated regions
from the previous stage and those generated in later stages
is preserved. Subsequently, we obtain new local features by
multiplying the suppressed attention map with the layer’s feature
F. This process is repeated to acquire multiple local features.
Likewise, we perform average pooling on these local features
and undergo dimensionality reduction through a fully connected
layer to derive the local feature unit LF = {LFi}mi=1 . Finally,
a novel global–local fusion feature is created by concatenating
the local feature unit LF with the global feature unit GF and then
send this feature to the hash learning module for learning.

B. Hash Learning

To enhance the precision of image retrieval through the gener-
ation of compact binary hash codes, we append a hash network
following the backbone network for the purpose of mapping
global–local fusion features to binary hash codes. We input this
feature into the hash layer and proceed to directly quantize the
output into the desired discrete values, thereby facilitating the
subsequent retrieval task. Specifically, we set the number of
nodes on the hash layer to K, where K is the length of the desired
hash code. For each hash code i = 1, 2, 3, . . . ,K, we calculate

it using the subsequent equation:

bi = sgn (di) (6)

sgn (x) =

{
1, x ≥ 0.5
0, x < 0.5

(7)

where di is the hash-like code obtained by passing the input
image i through the hash layer. To minimize the quantization
error arising during the conversion of the true feature represen-
tation into a binary hash code [41], [42], [43], we introduce a
quantization loss function to bring the binary code closer to the
desired hash code

Lq = − 1
K

N∑
i = 1

‖di − 0.5e‖2 (8)

where e is a K-dimensional vector with value 1. In addition to the
quantization loss, we define a bit balancing loss Lb to efficiently
create hash codes. This loss is used to ensure that each hash
code has a 50% probability of being 0 or 1. This loss function is
defined as

Lb =
N∑
i=1

(mean (di)− 0.5)2 (9)

where mean(di) denotes the calculation of the mean of the
values in di.

Meanwhile, the classification labels of an image often contain
the overall semantic information of the image, especially for
multilabel images, and we can use these labels as semantic clues
to aid network training, enhance the precision of hash codes, and
endow hash codes with richer semantic meanings. Therefore, we
introduce a classification layer after the hash network layer to
improve the feature extraction capability and at the same time
enhance the class discrimination capability of the model. In
single-label image classification scenarios [44], [45], we often
use the classical cross-entropy (CE) loss, which is denoted as

LCE (P ) =
m∑
i=1

−yilogP (10)

where N is the number of the batch sizes for training, yi is the
one-hot label of xi, and P is the probability that a sample is
entered into that class. In contrast to single-label images, multi-
label images frequently encompass multiple classes. Therefore,
we can view all possible labels contained in an image as a binary
classification problem. That is, an input image corresponds to
multiple labels, and each label corresponds to a binary classifi-
cation (yes or no), so we can design a multilabel classification
loss Lcls as follows:

Lcls =
1
N

N∑
n = 1

ln (11)

ln = 1
C

C∑
i = 1

−wi

(
yin ∗ log (σ (

xi
n

))
+(

1− yin
) ∗ log (1− σ

(
xi
n

))
)

(12)

where C denotes the total number of all possible labels con-
tained in the image, xi

n denotes the output of the model corre-
sponding to the ith label of the nth sample in a batch, yin denotes
the true value corresponding to the ith label of the nth sample, and
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σ (x) = 1
1+exp(−x) is denoted as a sigmoid activation function

used to map x into the (0,1) interval.
In summary, when designing the loss function, the labeling

information of the image and the output information of the hash
layer are fully utilized to generate a hash code rich in semantic
information and discriminative properties. Consequently, the
total loss function is expressed as follows:

Ltotal = λLcls + μLq + νLb (13)

where λ, μ, and ν are penalty parameters to better balance the
individual losses.

Finally, the model is sufficiently trained so that the hash codes
of all the samples in the database can be obtained via the model
output. Then, we compute the Hamming distance between the
query samples and all the database samples and sort them to get
the desired retrieval results.

IV. EXPERIMENT

To assess the efficacy of the proposed method, we conduct
multiple experiments in this section. Initially, we introduce
the experimental dataset and experimental environment, then
present the implementation details of the experiments, and ulti-
mately showcase the experimental results and providing analysis
and discussion.

A. Dataset and Settings

In this experiment, we utilize a publicly accessible satellite
cloud image dataset, LSCIDMR-V2 [18]. The source data are
provided by the P-Tree system of the Japan Aerospace Explo-
ration Agency. The entire dataset covers the northern hemisphere
of the western Pacific Ocean. It contains a total of 104 390 images
with 17 labels, each with a pixel size of 300 × 300 and a spatial
resolution of 2.0 km.

In order to compare the effectiveness of different retrieval
methods, we use mAP, P@k, average cumulative gain (ACG),
weighted mean average precision (WAP), and normalized dis-
counted cumulative gains (NDCG) as evaluation criteria, where
ACG, WAP, and NDCG serve as performance metrics specifi-
cally tailored for multilabel retrieval; higher values of mAP and
P@k signify better retrieval performance. Specifically, given a
query image of quantity Q, the value of mAP can be calculated
by the following equation:

mAP = 1
Q

Q∑
r = 1

AP (r) (14)

where AP denotes average precision, defined as

AP = 1
R

K∑
k = 1

P (k) r (k) (15)

where P(k) denotes the precision of the first k images retrieved,
and r(k) is an indicator function that specifies whether the kth
image is relevant to the query image: the value is 1 when it is
relevant to the query image, and 0 when it is not relevant. k
denotes the number of images retrieved, and R is the number of
ground truths retrieved.

The metric ACG describes the similarity of the shared labels
between the query image and the corresponding first k retrieved
images. For the query image q, its ACG score is

ACG@k = 1
k

k∑
i

S (q, i) (16)

where S(q, i) is the similarity of the common label shared
between images q and i.

WAP is an average score similar to mAP and refers to the
average of the ACG scores of the first n retrieved images. WAP
is calculated as

WAP = 1
Q

Q∑
r = 1

(
1
R

R∑
k

r (k)× ACG@k

)
. (17)

In general, the precision of retrieval is the ratio of retrieved
correct results to retrieved results obtained. We use P@k as an
auxiliary performance measure, which represents the precision
when the number of returned results is K. It can be calculated
by the following formula, where Rk(r) denotes the number of
images related to the query image among the first k images
retrieved

P@k = 1
Q

Q∑
r = 1

Rk(r)
k . (18)

NDCG is a normalized discounted cumulative gain score.
Given a query image q, the discounted cumulative gain (DCG)
score of top k retrieved images is calculated by

DCG@k =
k∑
i

2S(q,i)−1

log(1+i) . (19)

Then, the NDCG score of top k retrieved images is calculated
as

NDCG@k = DCG@k
Zk

(20)

where Zk is the maximum value of DCG@k to constrain the
value of NDCG in the range of [0,1].

We use a pretrained ResNet50 network as the backbone net-
work to extract the deep embedding of the images. We replace
the three-channel convolutional input at the beginning of the
pretraining ResNet50 with a four-channel convolutional input.
Subsequently, we fine-tune the network parameters using our
custom loss function and dataset, with the aim of enhancing
its adaptability to our specific retrieval requirements for cloud
map images. Concurrently, to bolster the model’s generalization
capabilities and mitigate overfitting, we normalize the input
images. The spatial resolution size of the input image is 256 ×
256. The penalty coefficients λ, μ, and ν of the loss function are
set to 0.5, 0.5, and 0.0002, respectively. M in the local feature
learning branch is set to 3. The initial learning rate is set to
0.0005, with a decay of 50% after every 30 epochs. The optimizer
for the experiment is set to Adam, whereβ1 is 0.9 andβ2 is 0.999,
and the training batch is set to 64. The hardware environment for
the experiments in this article is Intel Core i5-10600KF CPU,
NVIDIA GeForce GTX RTX3060 32-GB RAM.
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Fig. 3. Effects of different penalty coefficient on mAP. (a) Effect of λ on mAP. (b) Effect of μ on mAP. (c) Effect of ν on mAP.

TABLE I
RETRIEVAL PERFORMANCE OF DIFFERENT HASH BITS CODES

TABLE II
RETRIEVAL PERFORMANCE OF NUMBER OF LOCAL BRANCHES

B. Experimental Result

This section will give the experimental results on LSCIDMR-
V2 and analyze the results. We randomly split the dataset into a
training set and a test set in a ratio of 8:2, where the training set
contains 83 227 images and the test set contains 21 163 images.

1) Penalty Coefficient Analysis of the Loss Function: As
shown in (12), our loss function has three penalty coefficients,
i.e., λ,μ, and ν. Specifically, λ is used to control the contribution
of image label information to overall similarity. μ and ν are, re-
spectively, used to control the contribution of hash quantization
and bit balance to the overall objective function. We designed a
series of experiments for analyzing the effects of all the above
parameters on the retrieval results, and it should be noted that
when analyzing one parameter, the other two parameters are set
to fixed values.

The ultimate outcomes of our experimentation are presented
in Fig. 3. Specifically, Fig. 3(a) illustrates the evolution of mAP
values as the λ parameter increases across the dataset. The graph
reveals that as λ < 0.5, the mAP value experiences an upward

trajectory. Conversely, as λ continues to rise, the mAP value
demonstrates a descending pattern. It is worth noting that the
retrieval performance reaches its optimal value when λ = 0.5.
Fig. 3(b) depicts the fluctuation of mAP values corresponding to
increasing values of μ on the dataset. The peak MAP is obtained
when μ = 0.5, while the lowest value of map is obtained when
μ = 0.8. In addition, Fig. 3(c) showcases the variation of mAP
values in response to escalating ν values on the dataset. We can
observe that the impact of this penalty coefficient on the map
value does not change significantly, and the change is stable. In
conclusion, after careful consideration, we have opted to set the
penalty coefficients as follows: λ at 0.5,μ at 0.5, and ν at 0.0002.

2) Impact of Hash Size on Retrieval Performance: In or-
der to facilitate the subsequent experiments, the effect of
{36,66,132,264}on the model retrieval performance is first in-
vestigated for models with different length hash codes, where
the global hash unit occupies K/2 bits and the local hash unit
occupies K/2M bits. The experimental results are shown in
Table I. We observe an improvement in retrieval performance
as the number of hash code bits increases, with optimal perfor-
mance achieved at 132 bits, and beyond this point, performance
begins to decline. When the number of bits is 132, its mAP value
reaches 94.39%, which improves by 1.76% (36 bits), 1.21%
(66 bits), and 0.61% (264 bits), respectively, compared to other
bits. In addition, its WAP value reaches an optimal 82.23%,
surpassing the performance of other bit lengths. Therefore, for
the purpose of subsequent experiments, we finally chose to set
the hash size to 132 bits.

3) Impact of the Number of Local Branches M on Retrieval
Performance: In the proposed model, the local learning module
comprises multiple local learning branches. Therefore, we in-
vestigate the effect of the number of local branching modules M
on the overall retrieval performance. The experimental results
are shown in Table II. We observe that the model’s retrieval
performance peaks when M is set to 3, achieving an mAP of
94.39%. This represents an improvement of 2.48%, 1.57%,
and 1.87% compared to other configurations, respectively. In
addition, the WAP value reaches an optimal 82.23%, represent-
ing improvements of 8.07%, 1.98%, and 4.29% compared to
other configurations, respectively. A plausible explanation for
this observation is that when M equals 3, each local feature
unit occupies a sufficient number of bits to effectively convey
the semantic information of its respective part. Conversely, in
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Fig. 4. Retrieval examples of different methods on dataset LSCIDMR-V2.

Fig. 5. Visualization of the query image and results.

other configurations, variations in the number of bits allocated
to feature units lead to a reduction in their ability to express
semantic information accurately, thereby compromising perfor-
mance. However, it is worth noting that the overall performance
variations are not substantial, which underscores the general
efficacy of our proposed method. For the purpose of subse-
quent experiments, we finally choose to set the number of local
branches M as 3.

4) Comparison Experiments With State-of-the-Art Methods:
In order to verify the validity of the proposed model, we further
compared the performance of our method with the existing meth-
ods. The method chosen for comparison include ResNet-50,
Transformer [48], Swim-Transformer [49], FAH [33], FDRL
[46], and MLRSIR-NET [47]. Swim-Transformer adopts a hi-
erarchical structure for adapting images of different scales and
implements a linear complexity attention computation using a
sliding window approach to optimize the Transformer. FAH
consists of two modules: deep feature learning model (DFLM)
and adversarial hash learning model (AHLM). It improves the
retrieval efficiency by mapping dense features onto compact
hash codes and combining it with an adversarial regularization
submodel to make the hash codes discretely and uniformly
distributed. FDRL is a label-guided similarity-based feature
decomposition and interactive learning approach for solving
multilabel image retrieval. MLRSIR-NET is a framework for
multilabel remote sensing image retrieval, which consists of two
main subnetworks, i.e., multilevel feature extraction and deep
hashing, which achieves effective multilabel retrieval of remote
sensing images by encoding feature vectors into a compact hash
code. To make a fair comparison, we set the length of the feature
vectors of each model to 132 bits uniformly and learn them under
the same training environment.

The experimental results are presented in Table III. From the
experimental data, it is shown that the ICIHRN model achieves
the most superior results on the dataset. The ICIHRN model has
the best mAP value of 94.39%, which is 22.28% (ResNet50),
14.54% (FAH), 8.29% (FDRL), 5.95% (MLRSIR-NET), 3.85%
(Transformer), and 3.40% (Swim-Transformer) higher than the
comparison models, respectively. The proposed model’s supe-
rior results compared to the Transformer class can be attributed
to the fact that Transformers lack local receptive fields and
translation invariance, which are characteristic of CNNs. This
limitation reduces their ability to extract features specific to
image perception, as they primarily focus on global features and
struggle to effectively capture local image features. In contrast,
most comparative methods are tailored for natural or remote
sensing image datasets, leading to subpar performance. Con-
versely, our proposed method is specifically designed to address
the complexities of satellite cloud imagery and diverse image
scene content. By extracting both global features and multiple
local feature units, and subsequently combining them to generate
interpretable hash codes, our method enhances feature extraction
capabilities and delivers exceptional performance. Furthermore,
our model demonstrates consistent stability in terms of P@K
value, while achieving optimal ACG and WAP scores. This
signifies that our model excels not only in retrieving similar
images but also in accurately gauging the similarity between
multiple tags within those retrieved images, further validating
the efficacy of our proposed approach.

In order to visually demonstrate the retrieval effect of the
proposed method on the dataset, we show some retrieval ex-
amples in Fig. 4. Specifically, we randomly select an image as
the query object, and retrieval results are obtained by sorting
the similarity measure between the query object and the target
image. In the first column, we display the query image, while the
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TABLE III
COMPARISON ON LSCIDMR-V2 WITH STATE-OF-THE-ART METHODS

TABLE IV
COMPARISON OF RETRIEVAL TIME (IN SECONDS) OF DIFFERENT METHODS

subsequent columns showcase the retrieval results. In addition,
images enclosed in a red box indicate incorrect retrieval results.
Because of space limitations, we can only present the first ten
retrieval results and provide a summary of the correct results
among the initial 100. These retrieval examples also validate the
effectiveness of the method.

In addition to the quantitative metrics, retrieval efficiency is
also an important factor when designing a retrieval algorithm.
We conduct a comparative analysis of the proposed method
and other methodologies, with a particular focus on retrieval
time. Given that the model training phase is an offline procedure
that requires only a one-time execution, the time investment for
various models is deemed reasonable. Our primary considera-
tion here lies in assessing the time expenditure associated with
retrieving images through these models. Specifically, we carry
out ten experiments for each method, randomly selecting 50
images to serve as the query set and retrieving the top 100 images
from the dataset. The final result is determined by calculating
the average value of these experiments.

The experimental results are shown in Table IV. We can
find that the hash retrieval methods are generally faster than
other methods for retrieval. Our proposed method can achieve
0.3145 s in retrieval speed, which is acceptable in terms of time
performance. Besides, our method has high retrieval accuracy,
which, taken together, verifies the effectiveness of the proposed
method.

5) Ablation Study: In this section, in order to investigate the
contribution of each component to the ICIHRN model, we con-
duct ablation experiments here. In particular, the proposed net-
work structure mainly consists of a feature learning module and a
hash learning module. The feature learning module encompasses
a global feature learning branch and a local feature learning
branch with a suppression module and an attention mechanism
integrated within. To demonstrate the efficacy of these modules

TABLE V
RESULTS OF AN ABLATION EXPERIMENT ON LSCIDMR-V2

and branches, we incrementally incorporate them into the base-
line backbone (i.e., ResNet-50). Therefore, we constructed the
following methods for the ablation experiments: 1) LocalFeature
(LF), which involves adding the local feature branch to the
backbone network without including the suppression module
and attention mechanism; 2) local with suppression (LWS),
which adds the suppression module to method 1; 3) local with
suppression attention (LWSA), which incorporates the attention
mechanism module into method 2; 4) local with suppression
and hash (LWSAH), which appends the hash learning module
to method 3. We also split the method into LWSAH_no_Lq

and LWSAH_no_Lb in order to verify the validity of our loss
function; 5) The ICIHRN (without hash) indicates the method
without the hashing module; and 6) the ICIHRN, representing
our proposed comprehensive model in its entirety. We choose
mAP to evaluate these methods numerically, and the final ex-
perimental results are shown in Table V.

By observing these results, we can easily find that the ICIHRN
achieves the best performance, and each component of the model
contributes positively to the final retrieval results. Specifically,
when incorporating the suppression module and attention mech-
anism, our model’s mAP value reaches 94.39%, exhibiting a
noteworthy increase of 5.84% compared to its performance with-
out these components. Moreover, adding the suppression module
and the attention mechanism module alone improves 2.61%
and 1.67%, respectively, which proves the effectiveness of the
module to enhance the model’s ability to extract image features
and improve the performance of retrieval. Likewise, we observe
that the introduction ofLq andLb positively impacts the model’s
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retrieval performance. Precisely, the individual inclusion of Lq

andLb leads to enhancements of 0.73% and 1.03%, respectively.
Moreover, when we combine these two loss functions and utilize
them concurrently, our results exhibit a notable improvement
of 1.67%. The outcomes unequivocally demonstrate that our
proposed feature learning component effectively enhances the
model’s ability to extract pertinent features, while our hash
learning component ensures that the learned hash codes are both
accurate and compact, collectively validating the effectiveness
of our proposed method.

6) Interpretability: In order to better understand how our
method works, we provide some visualizations in Fig. 5. We
visualize the query images and the retrieved images using the
Grad-CAM tool and show the hash codes of these images for
observation. The three tags with the highest category probability
in our images are “ocean,” “cirrostratus,” and “cirrus.” It can be
seen that the retrieved images and the original images all have the
contents in the image labels, and these contents are effectively
displayed in the heat map. This shows that the extraction of
image features by our model is well founded and interpretable,
and the retrieved images also find a basis for determining the
existence of the category, enabling meteorologists to trust the
model output. At the same time, we show a part of the hash
code of the image; it can be seen that the query image and the
retrieved image have roughly the same hash code, only in very
few positions there are differences, and these hash codes by the
features of the image for the hash transformation. We can think
that these hash codes can be able to display the semantic part of
the display with a certain degree of interpretability.

V. CONCLUSION

In this article, we propose an ICIHRN for satellite cloud image
retrieval. Satellite cloud images, as a type of remote sensing
imagery, differ from natural images in their composition of
multiple data channels, with each channel representing distinct
physical properties and containing a wealth of information. Fur-
thermore, the complexity of cloud image content often results in
a single image encompassing diverse cloud class compositions,
which cannot be adequately captured by a simplistic single-label
annotation. Therefore, we adopt a multilabel image retrieval
method to extract effective features by designing a multilabel
classification loss to train the model. Given the significance of
cloud mapping research in meteorological work, it is imperative
that our model is interpretable, ensuring that meteorologists can
place trust in the model’s outputted results. Accordingly, we
have designed our network architecture to consist of a global
feature learning branch and a local feature learning branch.
The global feature branch learns a single global hash unit that
represents the object level, while the local branch generates
multiple local hash units that represent different local cloud types
in the image by adding a suppression module to dynamically
localize the image one by one to distinguish between different
types of cloud regions in the image, and we combine the two to
make the hash code rich in semantic information, which gives
it a certain degree of interpretability. By integrating these two

components, we enrich the hash code with semantic informa-
tion, thereby enhancing its interpretability. For the purpose of
enhancing retrieval efficiency, we have introduced a dedicated
hash learning branch tasked with learning more precise hash
codes. The effectiveness of the proposed method is demonstrated
through extensive experiments on the publicly available dataset
LSCIDMR-V2.

The research presented in this article has some shortcomings;
for example, we simply selected four of the satellite cloud image
channel data as input and ignored the data from multiple other
channels. In addition, our approach necessitates a substantial
quantity of labeled data for effective training, procuring which
can often be costly, particularly for satellite cloud images that
demand manual annotation. In our future endeavors, we aim to
explore the integration of data from various channels with metric
learning techniques to enhance the optimization of the loss func-
tion, thereby ensuring the compactness of the generated image
features, and to further increase the interpretability of image
retrieval by starting from the perspective of image similarity
metrics.
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