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A Method for Nearshore Vessel Target Detection in
SAR Imagery Utilizing Edge Characteristics and

Augmented Global Information Amplification
Hongjian Ye , Weiming Chen , Diyong Wang , and Yu Qiu

Abstract—Synthetic aperture radar (SAR), which can work nor-
mally under various meteorological conditions, has been widely
researched and applied in marine vessel target monitoring and
identification. Among the many research topics, due to the in-
consistency of ship scale in SAR images, susceptibility to sea and
land noise and clutter interference, resulting in a low detection
rate of near-shore ship targets and inaccurate edge delineation of
densely lined ships, a target detection algorithm based on deep
convolutional neural network is proposed. The algorithm employs
the channel-space grouping attention mechanism during feature
extraction to enhance features by utilizing global positional and
edge information associated with instances. The feature mobility
fusion module is employed to merge features of various scales,
bolster the interconnection among these features, and enhance
multiscale ship target detection capabilities. The decoupled head
is employed for ship target localization, while the angle-weighted
intersection over union is used to mitigate regression errors. The
experimental results show that the precision (P) achieved on HRSID
and SSDD datasets reaches 94.81% and 99.01%, respectively, ex-
ceeding the control algorithm by more than 1.35% and 0.94%; the
average precision (mAP) reaches 92.06% and 99.50%, respectively,
exceeding the control algorithm by more than 2.32% and 2.51%;
this indicates that the proposed algorithm has a good performance
on SAR image ship detection and a strong generalization ability.

Index Terms—Anchorless box mechanism, channel-space group
ing attention mechanisms (CSG), feature mobility fusion (FMF)
module, synthetic aperture radar (SAR).

I. INTRODUCTION

MARINE vessel monitoring and identification are vital
for coastal nations, aiding in the protection of marine

resources, fisheries vessel oversight, and the prevention of smug-
gling and stowaways. Synthetic aperture radar (SAR) technol-
ogy provides all-weather active imaging capabilities, unaffected
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by weather and lighting conditions [1], [2]. With the continuous
advancements in SAR imaging technology, image resolution
continues to improve [3], [4]. In recent years, substantial re-
search has focused on the effective extraction and utilization of
SAR image data for marine vessel monitoring and identification.

Traditional SAR image ship target detection algorithms rely
on contrast disparities between targets and background clutter
and employ mathematical and statistical methods, such as con-
stant false-alarm rate (CFAR) detection, template matching, and
wake modeling [5], [6], [7], [8], [9]. Pan et al. [10] incorporated
a generalized gamma distribution clutter model into the CFAR
algorithm for multiscale target detection, considering practical
scenarios, although the approach exhibits limited generaliz-
ability. Leng et al. [11] introduced bilateral CFAR to mitigate
the impact of SAR image blurriness and background noise on
detection. The aforementioned methods rely on manually crafted
features, resulting in low detection efficiency and limited gen-
eralization capabilities, making them unsuitable for ship target
detection in complex environments.

The rapid development of deep learning in computer vision
[12], [13], [14], [15], [16], [17], [18], [19] has led to the
emergence of various target detection approaches, including
single-stage and two-stage detection, anchor box detection,
anchorless box detection, and the use of transformers in SAR
image detection applications. Deng et al. [20] utilized a dense
network to repurpose feature information, but it is less suitable
for densely arranged ships. Li et al. [21] improved feature extrac-
tion by altering the convolution kernel’s sampling position. Sun
et al. [22] based on the YOLO detection framework, solved the
problem of discontinuous ship boundaries by designing an angle
classification module to capture feature target length, width, and
direction information. Humayun et al. [23] formulated anchor
frames matching the targets based on the data distribution of
target sizes in the dataset to enhance the network’s sensitivity
to targets of specific sizes and to improve the training efficiency
and detection accuracy, but it is easy to ignore targets outside
the specific size interval. Anchor-less box detection has gained
widespread adoption for accurately delineating ship boundaries
in SAR image target detection [24], [25], [26], [27], [28], [29],
[30]. Sun et al. [31] performed pixel-by-pixel prediction of im-
ages to reduce false positives and misses based on the anchorless
frame mechanism and optimized the target location using the
CP module. Du et al. [32] introduced reinforcement learning
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to autonomously identify ship-containing regions and mitigate
background noise influence. Hou et al. [33] implemented scene
interpretation before detection to reduce the impact of back-
ground noise.

Enhancing the quality of semantic information significantly
improves SAR image detection performance, with attention
mechanisms and feature pyramid networks (FPNs) widely
adopted [34], [35]. Bai et al. [36] improved the detection ac-
curacy by aligning spatial attention and target features into a
feature pyramid with shallow feature reorganization to reduce
scattering noise and obtain rich semantic information. Regarding
attention mechanisms, Chen and Gao [37] introduced an atten-
tion transfer mechanism, masking attention for all ship targets to
clarify semantic feature information. Feng et al. [38] proposed
position-enhanced attention by capturing horizontal and vertical
ship attention maps and fusing them with feature maps to enrich
semantic information. Concerning FPN fusion, Bai et al. [36]
introduced a feature enhancement pyramid, enhancing features
through a spatial enhancement module and feature alignment
module by combining deep and shallow semantic features.
Zhang et al. [39] utilized FPN to merge features from the
backbone network at different scales, enhancing attention to
small targets.

Many existing methods rely on spatial or convolutional block
attention mechanisms, making networks overly focused on lo-
cal target details, akin to RAM [40] and CBAM [41]. This
hyper-local focus can result in semantic information being ob-
scured by background noise. Directly fusing feature information
containing complex background noise can exacerbate semantic
ambiguity issues. Current research often emphasizes deepen-
ing feature fusion without fundamentally addressing semantic
ambiguity problems. Current SAR image ship target detection
methods predominantly rely on horizontal anchor frame algo-
rithms [42], [43], [44]; directional anchor frame algorithms [45],
[46], [47]; and anchor frame-free detection algorithms [24], [25],
[26], [27], [28], [29], [30]. However, the introduction of anchor
frames can consume substantial computational resources due to
the discontinuous boundaries of SAR image instances, varying
instance density, and scattering noise. While anchorless frame
detection algorithms overcome the anchor frame limitations,
they mainly address regression issues using center bias distance
loss, leading to significant regression errors. The challenges in
the above-mentioned SAR image detection task are summarized
as follows.

1) Existing networks are overly concerned with the local
details of the target, and due to various scattering phenom-
ena resulting in discontinuous, noisy, or deformed object
boundaries, it is very easy to generate false alarms due to
the fact that the image edges can provide little effective
semantic information, and there may be features that are
similar to the target information.

2) Ship detection in SAR images near the shore presents
challenges due to complex backgrounds, such as waves,
islands, and harbors. Some features or noise from these
backgrounds may resemble ship features, resulting in
compromised detection accuracy while aiming for high
recall rates.

Fig. 1. Flowchart of SAR image ship detection.

3) In contrast to optical images, SAR images lack effective
RGB information, leading to semantic ambiguity issues.

4) The prevalence of ocean areas in the images and the
absence of labeled data for land in the current dataset make
it challenging to learn features for small ships.

To address the above-mentioned challenges, a network
model of “decoupled head-deep convolutional neural network
(DCNN)” is proposed. Our approach utilizes the CSPDarknet53
framework for initial feature extraction, and uses the channel-
space grouping attention mechanisms (CSG) module, and the
feature mobility fusion (FMF) module in the feature fusion
network to extract and fuse the feature information, to obtain
a feature map containing rich semantic information. In addition,
an angle-based weighted intersection over union (angle-WIoU)
loss function is introduced to correct the detection loss of the
decoupled detection head based on the angle between the line
connecting the center of attention of the true and predicted values
and the horizontal direction.

The primary research findings and contributions are outlined
as follows.

1) A CSG is designed to extract feature maps contain-
ing high-quality semantic information by enhancing the
grouping characteristics of channel and spatial features,
thereby enhancing the network’s ability to discriminate
between noise and target features and improving the de-
tection performance of targets at different scales.

2) Fusing the input feature maps using the FMF module,
which facilitates interscale information interaction, makes
the network applicable to ship target detection at different
scales, and reduces false alarms at the edges of images.

3) An angular-WIoU loss function is developed for the an-
chorless box detection head to minimize object loss, and
nonmonotonic focusing coefficients are employed to mit-
igate gradient degradation caused by distance-corrected
and angular-corrected regressions for low-quality samples
and accurately locate the center of the target.

4) The proposed algorithm’s practicality, accuracy, and gen-
eralizability for detecting near-shore ship targets in SAR
images are showcased through comparative experiments
on various datasets.

The rest of this article is organized as follows. In Section II,
the proposed method is summarized. In Section III, experimental
details are given. In Section IV, the experimental results are
analyzed. In Section V, the experimental results and analysis
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Fig. 2. (a) Schematic diagram of YOLOv5 network structure. (b) Schematic diagram of decoupled head-DCNN network structure.

are discussed. Finally, in Section VI, this article is summarized
and limitations of this study and the future research directions
are pointed out.

II. PROPOSED METHOD

Fig. 1 depicts the flow of the decoupled head-DCNN al-
gorithm, consisting of three elements: SAR image input, the
decoupled head-DCNN network for image feature extraction
and depth information fusion, and ship prediction results.

A. Decoupled Head-DCNN Network Architecture

The proposed approach is a single-stage detection method,
and its network structure in the feature extraction stage is in-
spired by YOLOv5, in Fig. 2(a). The proposed model is depicted
in Fig. 2(b), and an in-depth explanation will be provided in the
subsequent sections.

1) Backbone: The CSPDarknet53 network serves as the fea-
ture extraction backbone through Conv+C3. The output feature
maps from the last three C3 modules undergo feature enhance-
ment, with output image sizes at 1/8, 1/16, and 1/32 of the input
image scale. The final feature fusion is accomplished through
the feature SPPF module.

2) Feature Enhancement: To improve multiscale ship detec-
tion performance, the features extracted by the backbone are
enhanced. In the Neck stage, the introduced CSG attention
module enhances the attention for position and fine features
while mitigating background noise interference, which includes
elements like docks, buildings, islands, and ship wakes. The
FMF process, as represented by the blue arrows in Fig. 2(b), is
facilitated by the FMF module, combining both strong and weak
semantic information to generate rich semantic features.

3) Decoupled Head: This method utilizes a multiscale de-
tection feature fusion strategy for high-precision detection of
arbitrarily oriented ships in SAR images. The decoupled head,
as illustrated in Fig. 2(b), comprises three branches: Cls. for class
prediction loss, Obj. for target presence probability prediction
loss, and angle-WIoU. for bounding box prediction loss.

B. Channel-Space Grouping Attention Mechanism

To mitigate the impact of sea and land noise in SAR images,
inspired by the concept introduced by Zhang and Yang [48], we
propose the CSG attention module, as depicted in Fig. 3. This
module is positioned before the SPPF module of the backbone
and after the upsampling in the Neck. It efficiently processes
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Fig. 3. Schematic diagram of CSG attention.

local and global feature information, thereby improving global
localization accuracy and instance segmentation.

1) Grouping: Given a feature mapping X ∈ RC×H×W ,
where C, H, and W denote the number of channels, height, and
width, respectively, the feature X is divided into group g. (In
this article, g is set to 8.) The attention module generates corre-
sponding weight coefficients for each subfeature in accordance
with the degree of importance, and each group captures a specific
semantic feature, and channel and spatial attention enhancement
is carried out along the channel dimension, respectively.

The attention calculation process divides the feature chan-
nel into eight different groups representing different features
learned and calculates the respective attention weights within
each group, which allows the channel features within the group
to exchange information and avoids the mutual influence of the
features in different groups, which in turn strengthens the learn-
ing ability of the attention mechanism for the feature correlation,
and enhances the differentiation ability between the feature and
the nonfeature elements.

2) Channeling Attention: Each group of feature information
is fed into two parallel operations, average pooling (AvgPool)
and maximum pooling (MaxPool), to incorporate global infor-
mation and produce channel statistics, s ∈ R

c
2g×1×1. This pro-

cess compresses the global spatial dimensions H × W, resulting
in the creation of compressed channel features denoted as Xk1,
this utilization of global information enhances target localization
capability. In (1), Xk1 represents the channel features, while H,
W represent the spatial dimensions.

s = Fgp(Xk1) =
1

H ×W

H∑
i=1

W∑
j=1

Xk1(I, J). (1)

The pooled outputs are element-wise summed and then input
into a two-layer neural network designed for information shar-
ing. In the first layer of this network, there are channel/r neurons
(where r is the reduction rate), utilizing a ReLU activation func-
tion. The second layer consists of neurons organized in a channel
format. Through a summation operation and the application of
a sigmoid (σ) activation function, a compact feature channel,
referred to as Xk1’, is created. This principle is illustrated in the
following equations:

MPL(s) = σ(conv(ReLU(conv(s)))) (2)

Mc(F ) = MLP (AvgPool(Fc(s))

Fig. 4. Schematic diagram of BiFPN structure.

+MLP (MaxPool(Fc(s)) (3)

Xk1
′ = σ(W1(Mc(F )) + b1). (4)

3) Spatial Attention: The CSG method leverages group norm
to capture spatial statistics during spatial attention processing.
This aids in emphasizing feature maps with valuable information
content while reducing the impact of noise and irrelevant data.
Feature weighting is employed to produce enhanced spatial fea-
tures denoted as Xk2

′, ultimately boosting the network’s ability
for target segmentation. These enhanced spatial features Xk2

′

are determined in the following equation:

Xk2
′ = σ(W2·GN(Xk2) + b2)·Xk2. (5)

4) Feature Aggregation: The enhanced features are inte-
grated during the feature aggregation stage. The “channel shuf-
fle” method is used for feature fusion [34], in which each
group of fused features strengthened by channel and spatial
attention is divided into g subgroups, which are exchanged to
form a new feature and fed into the next layer for aggregation,
realizing cross-group information interaction along the channel
dimension.

C. FMF Module

Compared with the traditional FPN network, inspired by the
concept of BiFPN, jump connections are introduced between
input and output features at the same layer. This facilitates the ef-
ficient transfer and fusion of feature information across scales in
both directions, promoting the effective transmission of elemen-
tal information [49]. The structure of BiFPN is schematically
depicted in Fig. 4, with blue arrows representing the top-down
pathway for high-level semantic information transmission, the
red portion denoting the bottom-up transfer of underlying se-
mantic information, and the black arrows signifying connections
and jump connections within the same layers.

The FMF module integrates weighted individual scale fea-
tures using a multistep process. Initially, the network au-
tonomously learns weight parameters for each input layer, en-
abling a two-way information flow interaction across different
scales. Subsequently, the model conducts feature fusion by
placing the feature information of adjacent scales in the middle
layer, promoting bottom-up feature integration while retaining
fine-grained details globally through maximum pooling. Lastly,
the fused feature maps undergo top-down fusion, preserving
global texture information with average pooling. Finally, the
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Fig. 5. Schematic of FMF multiscale feature fusion.

processed features are ready for output. Equations (6) and (7) are
top-down feature fusion and (8) is used to aggregate multiscale
features.

Pi
td = Conv

(
ω1·Pi

in + ω2·Pi+1
in

ω1 + ω2 + ε

)
(6)

Pi
out = Conv

(
ω1

′·Pi
in + ω2

′·Pi
td + ω3

′·Pi−1
out

ω1
′ + ω2

′ + ω3
′ + ε

)
(7)

Pi
out = Conv(Pi

in +Resize(Pi+1
Out)). (8)

In the above-mentioned equation,Pi
td represents the interme-

diate feature in the top-down path, whilePi
out denotes the output

feature of the ith layer from top to bottom. ω1,ω2 corresponds to
the weights of the current input layer, while ω1

′, ω2
′, ω3

′ are the
weight parameters of the output layer. ε denotes the correction
parameter, and Resize indicates the operation of upsampling or
subsampling.

The FMF module is applied to perform feature fusion in the
Neck section of the model, as shown in Fig. 5, “+” denotes the
fusion of features from different scales, the gray circle represents
the middle layer, and the colored circles represent the output
layers corresponding to various scales. Yellow arrows are used
to depict feature interactions among these output layers. Within
the Neck, the repeated blocks process, as illustrated in Fig. 4, is
repeatedly executed to optimize weighted features and enhance
the clarity of feature importance. This iterative learning process
in the Neck section also involves the introduction of yellow
arrows to signify the top-down transfer of high-level semantic
information. By enabling the flow of image feature information
across different scales, this methodology mitigates semantic
ambiguities and enhances result accuracy.

D. Angle-WIoU Loss Function

The chosen detection head is illustrated in Fig. 6, with three
branches serving the functions of classification, refinement,
and regression. Specifically, the Cls. branch employs binary
cross-entropy loss to measure the disparity between the pre-
dicted category and the actual category. The Obj. branch utilizes
binary cross-entropy loss to evaluate the deviation between the
predicted probability of target presence and the true probability
of its existence. Finally, the angle-WIoU. branch calculates

Fig. 6. Schematic diagram of decoupled head structure.

the difference in cross-combination ratio between the model’s
predicted location and the actual location.

The decoupled detection head can combine different target
localization modules more flexibly, and can better balance the
two tasks of target localization and target classification, reduce
the risk of overfitting, reduce the complexity of the model,
and enable the model to be optimized more easily. In addition,
the decoupled detection header enables different parts of the
network to carry out migration learning independently, and the
model trained on one dataset can be applied to more similar
models, so the proposed model adopts the decoupled detection
header.

The decoupled head conducts feature map regression, as
illustrated in Fig. 7(a). It employs the geometric center point of
the feature map as the reference and defines an a priori prediction
region with a 2.5 times step size. Subsequently, it quantifies the
disparity between the a priori prediction frames and the ground
truth using regression correction via angle-WIoU, as demon-
strated in Fig. 7(b). The final output comprises the regression
results.

To mitigate the influence of wave noise and scattering noise
inherent in SAR image samples, a precise regression penalty
loss is introduced. This loss function, called the angle-WIoU
loss, is designed specifically for bounding box regression. It
incorporates an angle penalty term, which is constructed based
on WIoU. Additionally, the angle penalty term is combined with
a nonmonotonic focusing mechanism to mitigate the adverse
effects of low-quality instances on the regression process.
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Fig. 7. Schematic diagram of ship target detection regression. (a) Target
regression for the normal case. (b) Target regression for correcting low-quality
samples using the angle-WIoU loss function. The green region is the prediction
region framed by the feature map, and the blue region is ground truth. (c) Distance
correction. (d) Angle correction. (a) Target regression for ships. (b) Ship target
regression correction. (c) R1 penalty. (d) R2 Penalty.

1) Distance Correction: The distance penalty term is con-
structed as shown in Fig. 7(c), and the distance correction is
performed using the line connecting the centroids of the true
and calculated values. The distance penalty term is defined in
the following equation:

R1 = exp

(
(xi − xgt)

2 + (yi − ygt)
2

(Wg
2 +Hg

2)
∗

)
(9)

where R1 represents the distance penalty term, and “∗” denotes
that Wg and Hg have been detached from the computational
graph to prevent interference with gradient descent convergence.

2) Angle Correction: Formulate the angle penalty term, il-
lustrated in Fig. 7(d), which employs the angle between the line
connecting the true and predicted centroids and the horizontal
direction for angle adjustment. The angle penalty term is speci-
fied in (14).

Δ = 1− 2sin2(arcsin(Hi/a)− π/4)

= cos(2(arcsin(Hi/a)− π/4)) (10)

a =

√
(xgt − x)2 + (ygt − y)2 (11)

where a is the distance between the centroids, and Hi

a denotes
the sine of the angle between the line connecting the centroids
and the horizontal direction sinα.

Hi = max(ygt, y)−min(ygt, y) (12)

R2 =
1

2

∑
n=x,y

(
1− exp

(
−γ

(
ngt − n

ρn

)2
))

,

{
ρx = Wg

ρy = Hg

(13)

Fig. 8. Experimental sample display. (a) Sample in the SAR-Ship-Dataset.
(b) Sample in the HRSID dataset. (c) Sample in the SSDD dataset.

R2=1−
exp

(
−γ
(

xgt−x
Wg

)2)
+exp

(
−γ
(

ygt−y
Hg

)2)
2

, γ=2−Δ

(14)

where R2 is the angular penalty term, and Δ denotes the angular
correction term.

3) Boundary Box Loss: Building upon the previous concepts,
an outlier degree is introduced to quantify the quality of in-
stances. Smaller outlier degrees correspond to higher-quality
instances, and targets with larger outlier degrees are assigned
smaller gradient gains to mitigate the impact of low-quality
instances, as defined in (15).

β =
L∗

IoU

LIoU

∈ [0,+∞) (15)

Langle−WIoU = rLIoU (R1 +R2), r =
β

δλβ−δ
. (16)

The ultimate loss function is presented in (16), where LIoU

is the IoU loss; L∗
IoU denotes the gradient gain; LIoU is the

running mean of momentum m; λ and δ are hyperparameters that
control the mapping of the nonmonotonic focusing coefficients
β and the gradient gains r where λ is used to balance the weights
of the intersection and concatenation sets, characterizing the im-
portance given to correctly classified and misclassified regions,
and δ is used to adjust the rate of change of the loss function,
controlling the degree of smoothing of the loss function as the
degree of overlap between the predicted and the true values
changes. Both hyperparameters are determined by the validation
set to determine their optimal values.

III. EXPERIMENTAL DETAILS

A. Dataset and Experimental Preparation

Experiments were conducted using the SAR-Ship-Dataset,
HRSID, and SSDD datasets. In the training process, the SAR-
Ship-Dataset dataset is used for network weight training, and
the HRSID dataset and SSDD dataset are used for network
performance validation. The experimental samples are shown
in Fig. 8. Where (a) is the sample in the SAR-Ship-Dataset; (b)
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TABLE I
DETAILED DESCRIPTION OF SAR-SHIP-DATASET

Fig. 9. Display of image enhancement results in SAR-Ship-Dataset.

TABLE II
DETAILED DESCRIPTION OF HRSID

is the sample in the HRSID dataset; and (c) is the sample in the
SSDD dataset.

1) The SAR-Ship-Dataset ([50]): The dataset comprises 102
Chinese Gaofen-3 images and 108 Sentinel-1 images, resulting
in a total of 43 819 images and 59 535 instances. The images
exhibit a range of target resolutions, varying from 3 to 25 m,
with a fixed size of 256×256 pixels. Key parameters of the SAR-
Ship-Dataset are detailed in Table I. To facilitate model training,
we randomly partitioned the dataset into training, testing, and
validation sets in a 7:2:1 ratio. Data augmentation techniques
were applied, including rotation, scaling, panning, mosaic [51],
and mixup [52]. An illustrative example of data augmentation
can be found in Fig. 9.

2) The HRSID Dataset ([45]): The dataset consists of
TerraSAR-X and TanDEM-X images, amounting to 5604 im-
ages and 16 951 instances. Target resolutions vary between
0.5 and 3 m, and the image size is 800×800 pixels. Essential
parameters for HRSID can be found in Table II.

3) The SSDD Dataset ([46]): The dataset comprises
RadarSat-2, TerraSAR, and Sentinel-1 images, totaling 1160
images and 2456 instances. Target resolutions vary from 1 to
15 m, and the image aspect size is approximately 600 pixels.
Refer to Table III for the key parameters of SSDD.

The experiments were conducted on a Windows 11 system
with an NVIDIA A100-PCIE-40 GB graphics card (GPU). The

TABLE III
DETAILED DESCRIPTION OF SSDD

TABLE IV
EXPERIMENTAL ENVIRONMENT AND HYPERPARAMETERS

model was implemented using the PyTorch framework and train-
ing was accelerated using CUDA and cuDNN. The accuracy may
vary depending on the version of the computational framework.
All experiments utilized a pretrained transformer model from
the COCO dataset and employed a cosine annealing learning
rate schedule. The optimizer used was Adam, with a total of
300 iterations. Optimizing hyperparameters can significantly
enhance algorithm convergence. Considering a large amount
of training data, to reduce the computational expenditure, to
retain the integrity of the target features in the image during the
training process, and to balance the computational efficiency and
detection accuracy, the proposed method selects 640 × 640 size
image as the network input size. Further details are provided in
Table IV.

B. Evaluation Indicators

Evaluation metrics for this study include precision (P), recall
(R), and average precision (AP), as defined in the following
equations:

P =
TP

TP + FP
(17)

R =
TP

TP + FN
(18)

AP =

∫ 1

0

P (R)dR,mAP =
n∑

i=1

APi

n
. (19)

In the above-mentioned equation, P represents the ratio of cor-
rectly predicted targets to all predicted targets, while R denotes
the proportion of actual positive samples correctly predicted. AP
quantifies the area under the precision-recall (PR) curve, offering
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TABLE V
ABLATION EXPERIMENTS

Fig. 10. Convergence of loss functions. The convergence effect is compared
by training angle-WIoU, WIoU, and CIoU combined with different detection
head mechanisms.

a comprehensive assessment of the model’s detection perfor-
mance. Higher AP values indicate better model performance.
mAP represents the mean value for assessing the model’s de-
tection effectiveness across n scenes. Furthermore, the model’s
size was evaluated using params (M), and its detection speed
was measured using latency (ms).

IV. RESULT AND ANALYSIS

A. Ablation Experiments

In the ablation experiments, groups 2 and 5 demonstrate the
effectiveness of the angle-WIoU loss function combined with
the decoupled head, while groups 3 and 4 highlight the efficacy
of the CSG module and the FMF module, respectively. The
corresponding experimental results are provided in Table V.

1) All the metrics of the proposed model were higher than
the benchmark P, R, mAPmedium, and mAPsmall reached
91.4%, 89.9%, 94.5%, and 65.2%, respectively, which
is an enhancement of 4.3%, 2.5%, 4.9%, and 16.9%,
respectively, compared with the control.

2) The introduction of angle-WIoU incorporates angle
correction and nonmonotonic aggregation coefficients,
specifically designed to address the challenge of precise
localization for densely packed targets when using an
anchorless frame detection head. The combined use of
angle-WIoU and decoupled head yields the best detection
results, addressing the issue of misclassifying low-quality
small targets as background noise, thus reducing the omis-
sion and misdetection of small target ships near the shore.
Loss convergence comparisons for various combinations
of loss functions and detection heads are presented in
Fig. 10, where the proposed method achieves a loss of

approximately 0.015. The convergence results for the
control groups with other combinations are higher than
those of the proposed method, demonstrating the efficacy
of the combination of angle-WIoU and decoupled head.

3) CSG and FMF significantly contribute to improving the
model’s detection performance. Comparing experimen-
tal groups Num.1 with Num.3 and Num.4 in Table V
reveals enhancements in precision (P), recall (R), and
mean average precision (mAP) for medium and small
targets, particularly in terms of small target detection
accuracy. As discussed in Section IV-A, the combined
influence of these two components strengthens the model’s
information retrieval capability, resulting in the acquisi-
tion of high-quality semantic feature maps.

B. Comparison With Mainstream Algorithms

The proposed method’s performance is evaluated on the
HRSID and SSDD datasets in comparison to several mainstream
algorithms. The results are presented in Table VI and the com-
parative models include faster RCNN+ResNet50 [12], cascade
RCNN+ResNet50 [53], SSD300+VGG16, SSD512+VGG16
[54], quad-FPN [39], DAPN [55], ASAFE [56], Pow-FAN [24],
and YOLOX [29].

1) Table VI presents the detection results, demonstrating
that the proposed model, HRSID and SSDD, outperforms other
models with a P of 94.81% and 99.01%, and a mAP of 92.06%
and 99.50% in the HRSID and SSDD datasets, respectively.
These results highlight the superior generalization ability of the
decoupled-head DCNN algorithm across different datasets.

Synthetic performance (SP) is visually compared in Fig. 11,
indicating that our proposed model surpasses two-stage target
detection algorithms like Cascade RCNN+ResNet50 [53] in
accuracy and size. This reduction in training burden is particu-
larly noteworthy. In contrast to anchor frame-based single-stage
algorithms, such as ASAFE [56], which can be restrictive to edge
delineation accuracy, our anchor frame-free detection strategy
effectively enhances accuracy. Our model, with a size of 246.5M
and a detection latency of 18.1ms, is well-suited for real-time
monitoring requirements. The addition of the CSG module and
the FMF model enriches semantic information, making our
algorithm more suitable for SAR target detection compared with
other anchor-frame-free mechanisms, such as YOLOX [29].

2) Fig. 12 presents the prediction results of ground truth and
the decoupled head-DCNN algorithms on various experimental
samples from different datasets. In the case of the HRSID
dataset, the model demonstrates strong noise resilience, effec-
tively detecting near-shore targets and densely clustered small
targets. However, it may occasionally misjudge small targets
due to the predominance of iso-targets in the SAR-Ship-Dataset
used for training and the limited land scene area. Conversely, the
model excels on the SSDD dataset, characterized by its large
scale and uncomplicated background, delivering precise ship
boundary delineation for densely arranged ships. Further anal-
ysis of common false alarm causes is provided in Section V-B.

3) Fig. 13 presents the results of ship detection in SAR
images using various models. The control models encompass
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TABLE VI
QUANTITATIVE EVALUATION OF HRSID AND SSDD BY DIFFERENT METHODS

Fig. 11. Comprehensive performance comparison of different detection algorithms on HRSID and SSDD using various detection metrics. (The blue dashed line
and red dotted line serve as reference lines for the proposed methods in this article).

two-stage algorithms, single-stage algorithms, and anchorless
frame detection-based algorithms. On the SSDD dataset, the
control algorithm tends to concentrate on local features with lim-
ited global feature learning capability. Similarly, the results from
the HRSID dataset show that the control algorithm struggles to
accurately detect targets with significant scale differences. In
summary, the proposed algorithm improves global localization
and boundary feature extraction by incorporating the CSG and
FMF modules. Furthermore, it enhances the model’s ability to
pinpoint the center of ships by employing a decoupled detection
head with angle-WIoU correction. These enhancements provide
a competitive advantage in terms of detection accuracy com-
pared with other algorithms.

4) Fig. 14 illustrates the precision-recall (PR) curves for two-
stage, single-stage algorithms, and the anchorless frame detec-
tion algorithm. Our proposed algorithm demonstrates superior
detection performance compared with traditional two-stage and
single-stage algorithms. Notably, it outperforms the mainstream
algorithms employed in our experiments. While the mainstream
algorithm prioritizes fast detection through a streamlined net-
work structure, sacrificing accuracy, our proposed model strikes
a balance between detection accuracy and speed, enhancing
overall performance.

TABLE VII
DETECTION RESULTS OF THE NEARSHORE SHIP DETECTION NETWORK ON THE

SSDD DATASET

C. Algorithm for Nearshore Ship Detection From SAR Images

The comparison methods selected in this part are SAR
nearshore ship detection methods, including ESD+TDL [57],
OSCD-Net [58], S2LSDNet [59], BSLM-faster RCNN [60],
and BLSM-SSD [60], since most of the networks are pretrained
using SSDD dataset, to ensure the fairness of the experiment.
The test dataset is selected from the SSDD dataset for testing,
setting epoch to 100 and batch size to 12.

1) The detection results of the comparison methods and the
proposed method on the SSDD dataset are listed in Table VII,
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Fig. 12. Detection results of decoupled head-DCNN on SSDD and HRSID.
In the Pred section, red boxes indicate the detected results, while in the ground
truth section, red boxes represent sample markers, blue boxes signify instances
of misdetection, and yellow boxes indicate instances of missed detection.

Fig. 13. Detection outcomes of various methods, with columns (a) and (b) rep-
resenting results from the SSDD dataset and columns (c) and (d) demonstrating
results from the HRSID dataset.

Fig. 14. PR curves for diverse methods applied to the HRSID dataset.
(a) Selection of two-stage detection algorithms. (b) Various single-stage
detection algorithms. (c) Anchorless frame detection algorithms.

Fig. 15. P, R, and mAP graphs for different algorithms on SSDD.

Fig. 16. Detection results of various nearshore SAR ship target detection
algorithms.

and the corresponding P, R, mAP, and curves are shown in
Fig. 15. Where (a) describes the model precision, (b) describes
the model recall, and (c) describes the model average precision,
for a more intuitive comparison of the performance of each
method. From the table, it can be seen that the proposed method
is 2.75% and 7.23% higher than the optimal method in terms
of P and R, respectively. It proves that the proposed method
has a significant advantage in SAR near-shore ship detection
performance, and the substantial increase in recall is mainly due
to the CSG module improving the sensitivity of the model to
target features, and the FMF module can effectively fuse features
to provide more detailed location description and richer semantic
information to distinguish between noise and target features. As
a result, the model can show good detection performance.

2) Fig. 16 shows the comparison of the detection results, the
yellow and blue circles in the image represent the missed and
false alarms, respectively. It can be seen that the proposed model
produces fewer misses and false alarms in the dense row of small
ships near the shore, the false alarms on the edge of the image are
significantly reduced, and the proposed model is more accurate
in segmenting ship targets than other methods due to the addition
of the angle-WIoU loss function to the proposed method. The
comparative method improves the existing network with the idea
of deepening the network structure or increasing the attention
mechanism to focus on the near-shore ship targets; however, it
does not notice that the ship features learned by the network may
be similar to some noise features, thus, when some noise features
(land, waves) appear on the land or at the edge of the image, the
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Fig. 17. Feature visualization maps. Feature maps from (a) backbone and
(b) Neck.

network will be misjudged to be incomplete ship features and
thus generate false detections. In addition, certain incomplete
ships are not detected, probably because the training samples of
incomplete ships are small, and therefore the model is not able
to learn such features well.

V. DISCUSSION

A. Feature Visualization

Fig. 17 presents a feature visualization diagram depicting the
output from the final C3 module in the backbone. Notably,
larger ships exhibit focused attention on the bow and stern,
while smaller ships center their attention on the middle section.
However, due to the limited semantic information, as observed
in the fourth column of the row in Fig. 17(a), certain sea and land
features resembling ship features can be misinterpreted, leading
to false alarms.

The Neck module effectively fuses the multiscale features
extracted from the image, in Fig. 17(b), distinguishing between
background environment features and ship features. It separately
learns these two sets of features, aiding in the separation of
background noise from target features. This approach signifi-
cantly enhances the network’s ability to discern between the two.
The results demonstrate that decoupled head-DCNN success-
fully filters out low-quality semantic information and produces
high-quality feature maps through feature extraction and fusion
across the backbone and Neck modules.

The feature maps extracted from different convolutional lay-
ers may have different receptive fields and represent different
semantic information, and usually, the bottom layer feature
maps pay more attention to local details, while the top layer
feature maps capture more global information, so there will
be a difference in the degree of their responses. Second, the
proposed method incorporates the CSG attention mechanism
in the backbone network, so it will make the difference in
the response of the feature maps more obvious, such as the
second column of row in Fig. 17(b), which produces feature
maps with large differences in the corresponding intensities, and
the network’s ability for distinguishing between the foreground
and the background significantly improves with the continuous
learning of these features.

Fig. 18. Decoupled head-DCNN feature map output. The yellow elliptical
dashed circles are the attention that may lead to detection errors.

B. Error Analysis

To delve deeper into the origins of false alarms, we perform
feature map visualization from the decoupled head-DCNN net-
work using a thermal map, as illustrated in Fig. 18. This analysis
focuses on identifying patterns in false alarms and uncovers the
primary reasons for these errors, which include the following.

1) In this case, the model appears to learn certain characteris-
tics associated with small and dark ship targets. However,
due to the resemblance between some background noise
features and these ship target features, this results in mis-
classification. To address this issue, further investigation
can be conducted to differentiate small and dark targets
from background noise features, potentially by exploring
the concept of pseudo-target detection. Another approach
could involve modifying the dataset to label small and
dark targets as distinct categories and adjusting weight
parameters during dataset creation to enhance network
focus.

2) In addition, the image edges are prone to over-attention,
which may be due to the fact that the model may mistake
the land features as unlearned ship targets during training
due to insufficient land background and cause false alarms.
In this regard, the inclusion of small sample learning
mechanism and unsupervised learning mechanism can be
considered to solve the sample insufficiency problem.

VI. CONCLUSION

SAR-based ship detection has extensive applications in mar-
itime management. To enhance the precision and efficiency of
ship detection in SAR images and minimize detection errors, we
propose the decoupled head-DCNN algorithm. This algorithm
improves the detection of near-shore maritime ship targets by
augmenting the network’s expressive capabilities through the
integration of CSG, FMF, decoupled head, and angle-WIoU loss
correction.

To demonstrate the effectiveness and generalizability of the
model, we evaluated it using weights trained on the SAR-Ship-
Dataset and tested it on the HRSID and SSDD datasets. Our
results show that the proposed model performs significantly
better compared with the mainstream algorithms, achieving P of
94.81% and 99.01% on the HRSID and SSDD datasets, which
are 1.35% and 0.94% higher than the control algorithms, respec-
tively. Similarly, mAP reaches 92.06% and 99.50%, which are
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2.32% and 2.51% higher than the control algorithm, respectively.
The performance on the SSDD dataset is significantly improved
and achieves optimal precision and recall compared with the
latest SAR image nearshore vessel detection algorithms.

These experiments showcase the algorithm’s capacity to ef-
fectively extract multidimensional target features, detect ships in
diverse environments, and reduce false positives and omissions
near the shore. For further improvement in detection accuracy,
we can explore methods like pseudo-target detection for ex-
tracting global camouflage features. Additionally, the motion
state information of ships may be present in wave features
within SAR images, allowing us to investigate how sea back-
ground information can be used to infer the ship’s movement
direction.
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