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A Classwise Vulnerable Part Detection
Method for Military Targets

Hanyu Wang ", Qiang Shen”, Juan Li

Abstract—Accurate vulnerable part detection based on full tar-
get detection results shows great importance in improving the
damage effectiveness of the military drone. However, traditional
object detection methods have difficulty in handling inaccurate full
target bounding boxes and fail to model the semantic relationships
between various class full targets and their key parts, resulting
in low localization accuracy. The proposed approach includes a
classwise feature recalibration module, which effectively models
the dependencies between the prior knowledge obtained from the
full target detector and the location of the key part. Additionally, an
optimized spatial transformation module is designed to preprocess
the input image and eliminate interfering objects. Furthermore, a
carefully constructed loss function is employed, linking the classifi-
cation branch with the regression branch, thereby emphasizing the
importance of localization accuracy. Our proposed model surpasses
the performance of existing state-of-the-art models, demonstrating
a significant advantage with maximum improvements of +24.9%,
+30.2%, and +28.3% in mean average precision on the standard
test set, generalized test set, and real-world dataset, respectively.
The effectiveness and robustness are also confirmed through ex-
tensive ablation studies.

Index Terms—Deep learning, key parts, military targets, prior
knowledge.

1. INTRODUCTION

ITH the advance of unmanned aerial vehicles (UAVs)
W equipped with computer vision systems, object detec-
tion based on deep learning plays an important role in various
military tasks, such as precision strikes, reconnaissance, and
situational awareness [1], [2], [3]. However, taking antitank
as an example, the number of tanks damaged as a result of
hitting the turret was nearly nine times higher than that hit by
other parts during the 2014-2015 armed conflict in Ukraine [4].
Therefore, it is of utmost importance and significance to delve
deeper into the detection method for specific key parts based on
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UAV images, leveraging the detection results obtained from the
full target detector.

Currently, object detection tasks in military scenarios heavily
rely on human-in-the-loop approaches. With the advancements
in deep learning, research efforts toward intelligent recognition
have gained notable momentum. Qin et al. [5] developed a
multilayer feature extraction network specifically tailored for
military ship detection from satellite images, achieving an aver-
age precision of 97.0%. Kong et al. [6] proposed a lightweight
network for detecting military targets in complex backgrounds,
reaching an average accuracy of 89.3% in a real scene dataset.

Nevertheless, the identification of critical parts of military
targets still poses significant challenges even after achieving full
target detection. First, each target exhibits unique key parts. For
instance, in the case of an infantry fighting vehicle being detected
by the full target detector, the key part detector should accurately
locate its tracks. Similarly, when an airplane is identified, the
engine should be specifically highlighted. Our model needs to
possess the ability to capture these diverse relationship pairs,
which necessitates a high level of adaptive perceptual capability.
The classification information, which decides the location of
the key part, is already obtained from the full target detector
but is ignored totally in the traditional detection networks, thus
decreasing the localization accuracy. Additionally, the back-
ground of the image during the attack is often complex and
full of disruptive objects, which will divert the attention of
the model during training, especially for the cropped images
that contain only a limited number of pixels. Therefore, the
extraction accuracy of key parts highly depends on the quality
of the detected bounding box of the full target, where small
positioning errors are inevitable. The classic methods struggle
to adaptively process these cropped images, resulting in a model
that is highly susceptible to the influence of interfering objects
and exhibits low detection efficiency. Third, as previously men-
tioned, the effective damage to the target relies on accurately
hitting its key parts. As such, irrespective of the classification
accuracy, a low localization accuracy would render the attack
invalid. Consequently, our military target critical part detection
task places greater emphasis on achieving high localization
accuracy. However, the cross-entropy loss for classification is
independent of the localization task and leads the model to
learn all the positive anchors with high classification scores
regardless of regression accuracy, which hurts the localization
accuracy seriously [7]. Hence, the special optimization of the
loss function is necessary for the key part detector. Finally, the
stringent constraints on computational and storage resources
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in military scenarios exacerbate the aforementioned three
challenges.

To address the multiple challenges mentioned above, we pro-
pose aclasswise key part detection model based on Faster RCNN
[8], namely CWKPD-Faster RCNN. Our main contribution can
be summarized as follows.

1) We proposed a new module to model the semantic rela-
tionship between the full target and the key part, thus im-
proving the detection accuracy of the key part. This simple
yet efficient approach offers the following advantages:

a) versatility in handling diverse “full target-key parts”
pairs;

b) improved discriminative power;

c¢) efficient computational overhead.

As far as we know, we are the first to consider the relationship
between the full target and the key part.

2) We developed a novel spatial transformation module,
which not only neatly reduces the localization error
brought by the full target detector but also resolves the
limitations of the fixed image size imposed by traditional
spatial transformation methods. Additionally, a weighted
classification loss function that enhances the correlation
between classification and localization tasks is also built to
move the model to more focus on the localization branch.

3) We have constructed a new simulated dataset compris-
ing military targets observed by UAVs, expanding the
diversity of existing UAV-looked military target datasets.
Through a comprehensive evaluation of the simulated
and real-world datasets, the superiority of the proposed
CWKPD-Faster RCNN model, not only in precision but
also in generalization ability, has been demonstrated.

II. RELATED WORKS
A. Key Part Identification

Nowadays, there are three main solutions for detecting key
parts: template matching [9], semantic segmentation [10], and
key parts localization method based on the deep object detection
frameworks [11]. Template matching, as the traditional method,
has the advantage of rapid detection, but relies on the precise
expression of preinstalled templates, which shows poor accuracy
and robustness when facing diverse target shapes and shooting
angles, or partially occluded targets. Meanwhile, the semantic
network understands all the pixels in the whole image, instead
of concentrating only useful parts, resulting in poor real-time
performance. Therefore, researchers preferred the third key part
localization method based on the deep object detection frame-
works. Nadeem et al. [12] proposed a top-down body part detec-
tion framework considering the intrinsic correlation among body
parts. Hao et al. [13] proposed an improved YOLOV4 network
for parts detection in insulator images during UAV inspection.
Liu et al. [14] designed a novel pipeline based on YOLO and
OpenPose, enabling real-time detection of hands from human
images captured by drones. Choi et al. [15] constructed a
modified VGG16 model to detect structural cracks in buildings
from UAV images. Similarly, MUENet [16] describes a crack
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detection algorithm from road images acquired via UAVs, which
fully utilizes the morphology and color characteristics of cracks.
However, these methods solely focus on the detection of key
parts for individual class targets, without explicitly modeling
the diverse semantic relationships that exist between different
class targets and their corresponding key parts. The research
for identifying different specific parts of multiclass targets has
rarely been studied directly. Furthermore, while certain studies
have made efforts to incorporate the dependencies between
the full target and the key part into the key part detector,
these attempts heavily rely on the accurate representations of
shapes. Consequently, this approach not only compromises the
robustness of complex scenes but also suffers from limitations,
such as feature dimensionality and computational complexity.
The applicability of these models is limited to specific part
detection problems, so the direct generalization to others is
impractical. Therefore, the primary objective of this article is
to explore a universal and efficient method for modeling the se-
mantic relationship between full targets and their associated key
parts.

Meanwhile, the key part detection task in military scenarios
also faces typical challenges encountered in object detection
in UAV images, such as domain shift, small objects, and lim-
ited real-time performance. Many highly inspiring studies [17],
[18], [19] are proposed to alleviate these problems, which hold
immense significance in fostering the progress of drone image
object detection in various fields. For instance, Biswas et al.
[20] substantially reduced the number of learnable parameters of
YOLOVS through compressed convolutional techniques, trans-
fer learning, and backbone shrinkage. In contrast, this article will
concentrate on the specific challenge of identifying key parts
of military targets and aim to explore the potential benefits of
incorporating the prior classification knowledge in enhancing
the effectiveness of UAV object detection.

B. Informed Machine Learning

One way of recovering from the first problem is to regard
the classification results as prior knowledge and then integrate
it into learning systems. Formally, the knowledge can be rep-
resented as logical rules, simulation results, graphs, etc., and
can be integrated into the networks via distinct ways, such
as additional loss terms, serving as a consistency check, and
forming adjacency matrices in gated graph neural networks [21].
Chen et al. [22] converted the prediagnosis results based on
the structural analysis into correlation graphs to improve the
diagnosis accuracy. Zhao et al. [23] proposed an interpretable,
weakly supervised deep learning framework incorporating prior
knowledge to decode pathological images. However, the em-
phasis of our model is to utilize the strong correlation between
knowledge and predictions to drive the model to adoptively focus
on vulnerable areas, which is not suitable for the representation
approaches of logical rules and simulation results. Graph neural
networks can implicitly model semantic relationships, but are
computationally intensive and require a large number of model
parameters. How to solve this problem in a lightweight way to
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improve the model prediction accuracy and robustness is a major
interest of this article.

C. Spatial Transformation Models

Various adaptive transformation models based on deep learn-
ing have been studied to overcome the second challenge. Xiong
et al. [24] built the generative adversarial network to acquire
images from different viewpoints. Ding et al. [25] proposed
the affine variational autoencoder to learn the transforms ex-
plicitly in the latent space. Jaderberg et al. [26] proposed the
spatial transformer network (STN) model, which learns the
affine transformation parameters in an unsupervised way and
then automatically adjusts the image. Compared to the first
two methods, the STN model demonstrates more simplicity
and efficiency, which shows good performance in human pose
estimation, hyperspectral image classification, and pedestrian
heading estimation [27], [28]. However, the STN model re-
quires a fixed input image scale, which contradicts target de-
tection tasks. The direct integration of the STN model into
the detection model is anticipated to result in a decrease in
accuracy.

D. Accurate Localization

Improving localization accuracy continues to be a signifi-
cant focus in the field of object detection. Increasing the IoU
threshold for positive objects is a well-established and powerful
trick, which also introduces a higher risk of false detections
[29]. Moreover, the threshold needs to be adjusted manually for
different tasks and datasets, limiting its flexibility. In addition,
incorporating contextual information has shown the potential
to enhance localization accuracy, which introduces additional
computational overhead and renders the model vulnerable to
interference from complex backgrounds, unfortunately [30]. In
contrast, establishing the correlation between classification and
localization tasks through a loss function is a more concise
and efficient approach. Wu et al. [31] appended an IoU pre-
diction branch, and Wu et al. [32] designed an IoU balance
loss consisting of an IoU balance classification loss function
and an IoU balance localization loss function. Li et al. [33]
derived a power a-Gaussian loss to avoid boundary discontinuity
in rotated bounding box regression. However, rare methods
balance between the localization accuracy improvement and in-
creased model complexity, especially based on two-stage object
detectors.

III. METHODS

A classwise detection model started with Faster RCNN is
proposed, whose framework is shown in Fig. 1. First, after being
cropped based on the regression results of the full target detector,
an image patch is passed into the spatial transformer module
optimized by spatial pyramid pooling (SPP) [34], named as
STMO-SPP, to be preprocessed. Then, the feature map is gener-
ated through the backbone network. Third, a classwise feature
recalibrated (CWFR) module is designed to model the classifi-
cation results from the full target detector as channel descriptors
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Fig. 1. Network structure of the proposed method.

and learn the strong correlation between prior knowledge and
the detection results. The feature map is reorganized. Next, the
recalibrated feature maps are passed into the region proposals
network (RPN), the classification, and regression branches se-
quentially. Additionally, the proposed weighted classification
loss function and localization loss function are used to guide the
training process.

A. Spatial Transformer Module Optimized by SPP Layer

As shown in Fig. 2, the structure of the STMO-SPP module
consists of three parts. The first part is a localization net opti-
mized by SPP, whose input is the cropped image based on the
results of the full target detectors. This part is aimed at acquiring
the transformation matrix Ay whose shape is determined by
the expected transformation types. 2-D affine transformation is
chosen in our model, which could represent transformations such
as translation, rotation, scaling, and flips.

Table I presents the architecture of the built localization net
optimized by SPP. Taking images with the size of 96 x 128,
and 128 x 128 as examples, the transformation process of input
images and the flexible adjustment process of parameters in the
pooling layers are demonstrated. A convolutional layer with a
kernel of 7 x 7 is used in the first place, to adjust the number of
feature channels and extract salient features. Then, the feature
map is down-sampled by a maximum pooling layer, where the
sliding window size is 2 and stride size is 2, reducing the mean
shifterror caused by the convolutional layer and preserving more
texture information. Subsequently, the ReLu activation function
is adapted to perform a nonlinear transformation on the extracted
features. These three steps are repeated to acquire a small-scale



8740

o ——— o o o

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

——— i ————

yd “" Localization net optimized by SPP N,
/ . Fl; 1 I \
Max pooling (n=4) HTT1] i
ﬁ—A i
| 1
convolutional layers S j _ Linear | Transformation
= cx4x4 matrix
exwiy Xy, Max pooling (n=1) ]
Grid
generator
\ ’
\\\\~ cx1x] ””I
»  Sampler
Fig. 2. Architecture of the proposed STMO-SPP block.
TABLE 1
STRUCTURE OF THE LOCALIZATION NET
Number Type Filter 1 Stride 1 Output 1 Filter 2 Stride 2 Output 2
0 Input - - 3x96x128 - - 3x128x128
1 Convolutional 7x7 1 24x90%122 7x7 1 24x122x122
2 Max pooling 2 2 24x45x61 2 2 24x61x61
3 Convolutional 5%5 1 30x41x57 5%5 1 30x57%57
4 Max pooling 2 2 30%x20%28 2 2 30%28%28
5 Max poolingl (n=1) 20x28 20x28 30x1x1 28x28 28x28 30x1x1
5 Max pooling2 (n=4) 5x7 5x7 30x4x4 Tx7 7x7 30x4x4
5 Concatenating - - 510 - - 510
6 Linear - - 32 - - 32
7 Linear - - 6 - - 6

feature map retaining crucial information. At this time, the size
of the output feature map is not fixed and cannot be directly
passed into the fully connected layer.

Therefore, we introduced SPP to generate fixed-size feature
vectors. The size of the feature map is represented as (¢, hin, win),
where c is the number of channels, h;, is height, and wjy, denotes
width. As shown in Number 5 of the model structure in Table I,
the parameters of the pooling layer, including the size of the
sliding window, kj, k., and the size of the stride, sy, s, are
adjusted adaptively to keep the output size as (¢,n,n). The
subscripts 4 and w denote the height and width directions. The
relationship between pooling layer parameters and input and
output sizes is modeled as

kn = [hin/n]
kw = [win/n]
sp = |hin/n]
Sw = |win/n| ()

where n is selected as 1 and 4 in our framework, and [-] and
|- |denote ceiling and floor operations.

Once the feature vector of a predefined size is obtained,
it is subsequently passed through the fully connected layers

to generate the affine transformation matrix, comprising six
parameters.

The second part is the grid generator, which achieved the
coordinates of each pixel in the transformed image, through
parameterized grid sampling and affine transformation

u T
M =4y @)

where (z,y) is the coordinate in the input image and (u, v) is
that of the output correspondingly.

The sampler, as the last part of the proposed STMO-SPP
module, corrects the coordinates of the points generated by
the gird generator based on the Bilinear interpolation method,
ensuring the pixels in the output image are always integer values.

B. Classwise Feature Recalibration Module

The proposed CWFR module is a computational unit, to
improve the quality of representations produced by the network,
by explicitly modeling the interdependencies between the prior
class results of the full target x.,5s and the channels of the feature
map. It can be built upon a transformation G, mapping an input
X e RHXWXC to X c RH><W><C

X = Gtr(ga X)
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Fig. 3. Structure of the proposed classwise feature recalibration module.

g = F(X, mclass)~ (3)

Asillustrated in Fig. 3, we first use global average pooling F,
to represent global spatial information into a channel descriptor
U € RY™C The input X and output U are denoted in channel
dimension as

(11 22 - ]

X
[ul Uy v UC] . (4)

X
U

The conversion is derived as

Up = Fap(xn)

1 H W
:wazzlc(l7j)vn:]-v2avc &)

i=1 j=1
Subsequently, the high-dimensional feature representation
U e RV s acquired by convolving all channels through
FCOHV .
In the other parallel branch, we opt to employ a simple gating
mechanism with a sigmoid activation to process the input prior

knowledge z.ass, Which is converted to a channel descriptor
s € R1><1><C’

s = FFC(xClaSSa K) = U(g(xclassa K))
=02 (KQUl (Klzclass)) (6)

where the gating mechanism is designed as two fully connected
layers, to limit model complexity and aid generalization. In (6),
o1 refers to the ReLu activation function and o5 is the sigmoid
activation function. Meanwhile, K; and K are adjustable pa-
rameters for two activation functions, to increase the flexibility
and expressive power of the model. K; € R™*! and K, € R'*",
and rdenotes the expansion ratio.

Then, we follow it with a multilayer perceptron (MLP) oper-
ation, Fyy p, which consists of two linear transformation layers
and two nonlinear activation functions, intending to perfectly
learn the channelwise features as well as the interdependences

S

between the class feature s and the localization results

Zy = FMLP(Sa f]) =02
(W301 (W18 + WoU + b1> + WU + b2> @)

where Wy, Wy, W3, and W, represent
whereas by and b, denote bias vectors.

Afterward, the dimension-addition layer F,q is performed to
rescale the output to the same dimension as input X, obtaining
the feature descriptor related to class knowledge Z

Z = Fu(Zy), Z € R¥C. (8)

weight matrices,

Formally, Z is also denoted as
Zz[zl 29 e zc]. 9
Finally, the output is reorganized by Z

T :Fscale(xnazn) = ZpTp,n=1,2,...,C. (10)

It is noted that in the above operations, the reason that the
mapping is in the channel instead of the spatial or the triple,
including spatial and channel, is explained and verified in Sec-
tion VL.

C. Loss Function

In the Faster RCNN model, the smoothed L1 loss function
and the cross-entropy loss function are used to supervise the
regression and classification branches, respectively, which are
isolated from each other. To enhance the focus of the model on
localization tasks, we proposed the weighted classification loss
function, correlating with the localization accuracy

w; (GloU;) = 1 — GloU
CE (pi, pi) = —log [pipi + (1 — p;) (1 — ps)]

Zi]\éPos Wi (GIOUi) * CE (piaﬁi) + Z?éINeg CE (phﬁi)
Ncls

Lwcls =

(In
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Fig. 4.

Examples of the dataset. (a) ULMT-Key dataset. (b) Real-world dataset.
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TABLE II
DATASETS SETTINGS

Number of Unique
Dataset Type Terrain Appearances Numbers
Tank RV
Training set grass, desert, military camps 4 1 6019
ULMT-Key Validation set grass, desert, military camps 4 1 752
dataset Standard test set grass, desert, military camps 4 1 752
Generalized test set beach 7 2 700
Equivalent scaling test grass, snowfield, Urban Road
Real-world . o
dataset Flight test desert, military camps / / 300

Satellite images

military camps

where Pos and Neg represent the sets of positive and negative
training samples, respectively, CE(p;,p;) denotes the cross-
entropy loss function, p; indicates the predicted probability
of each anchor box being a positive sample while p; is the
ground truth, and w;(GIoU;) is the results of the GIoU loss
function for each positive sample, as the weight assigned to
the corresponding results of the cross-entropy loss function.
Equation (11) demonstrates that samples with GloU values are
assigned higher weights, resulting in larger gradients during
training. This weighted function also facilitates the model in
effectively learning the interdependencies between classification
and localization tasks.

The localization branch is penalized by GIoU loss functions,
and the total loss function is the sum of those

12)

Ltotal = Lwcls + )hLloc~ (13)

IV. EXPERIMENTAL SETUP
A. Dataset

1) Simulated Dataset: Considering that establishing a large-
scale military target dataset in real-world scenarios is unrealistic,
we referred to the dataset-making methods in fields such as
autonomous driving and drone SLAM [35], [36] and constructed
a UAV-looked military targets (ULMT) dataset through Unreal
Engine. The ULMT dataset contains four types of terrain: grass,
desert, military camps, and beach, each of which consists of two
classes of targets with 2—5 kinds of appearances: tanks and radar
vehicles (RV).

The dataset employed for validating key part detection, named
the ULMT-Key dataset, is obtained through cropping images in
the ULMT dataset, based on the prediction results of the full tar-
get detector, which is chosen as the Faster RCNN. The size of the
cropped images varies from (4143) to (658 566). The vulnerable
part of a tank target is defined as the top turret part, while that

of an RV target is defined as the antenna part. Examples of the
ULMT-Key dataset and their labels are illustrated in Fig. 4(a).

To assess the generalization capability of our model, the test
set of the ULMT-Key dataset is categorized into two types: the
standard test set, which maintains consistency in terrains and
target appearances with the training set, and the generalized test
set, which introduces variations. The detailed settings are shown
in Table II. In addition, the training, validation, and standard test
sets are divided through random sampling [37], allocating 80%
of the data to the training set and 10% each to the validation and
standard test sets. Meanwhile, the ratio of numbers of the two
classes of objects is 3:2 in all sets.

2) Real-World Dataset: To assess the robustness of the pro-
posed classwise detection model in real-world scenarios, we
created a real-world dataset, which includes three parts: drone
testing based on equivalent scaling models, recorded videos
[38], [39], [40], [41] during the military exercises, and satellite
images [42]. Examples and their labels are shown in Fig. 4(b).
Evidently, the real-world samples exhibit substantial differences
compared to the simulated ones, stemming from variations in
textures, appearances, lighting conditions, and scene layouts,
among other factors. Furthermore, the presence of a jitter in
drone footage occasionally results in blurred imagery.

B. Experiment Settings

In this article, all experiments were performed with the Win-
dows 10 operating system, implemented on the MMDetection
platform [43] and the Pytorch 1.7 framework. CUDA 11.2 was
used to speed up the calculation, and the processor on the
computer was Intel (R) Xeon (R) W-2255 CPU @3.70GHz, with
64 GB memory and an RTX A4000 graphics card. The batch size
is set to 48. Each model is trained using the AdamW optimizer
for 12 epochs with 0.05 weight decay, momentums ;= 0.9 and
B2=0.95. The initial learning rate was set to Se-5. The original
images are cropped into 112 x 112 pixels. Moreover, input
images are augmented by random flips. The localization loss
weight A is set to 1.0. Batch normalization is employed, whose
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TABLE III
COMPARISON RESULTS WITH STATE-OF-THE-ART METHODS

mAP, 5095 on ULMT-Key dataset mAP; 50,05 0N Model Computational
Types Model real-world size complexity FPS
Standard Generalized dataset (MB) (GFLOPS)

DINO [44] 55.7% 11.8% 29.4% 47.54 365 114

Transformer DDQ [45] 45.8% 10.0% 27.6% 48.31 199 9.7
RT-DETR [46] 51.4% 18.5% 17.1% 125.17 108.0 108

Yolov7-L [47] 58.0% 12.1% 11.2% 37.2 104 55

One-stage Yolov8-L [48] 62.3% 35.5% 24.7% 42.5 165 71
Faster 62.9% 27.7% 27.0% 41.13 118.23 22.4
Cascade [49] 67.9% 37.7% 32.8% 68.93 120.26 18.0
Grid [50] 63.9% 30.7% 25.0% 64.24 231.7 15.7

Libra [51] 66.8% 37.7% 29.6% 414 118.87 21.1
RCNN Double-Head [52] 66.8% 25.9% 20.1% 46.72 392.42 124
Dynamic [53] 66.8% 33.2% 31.8% 41.13 118.23 22.0
Sparse [54] 63.8% 35.8% 13.6% 105.95 94.19 18.4

Boosting [55] 57.2% 15.7% 18.1% 83.22 248.76 13.5

Decoupled [56] 50.4% 12.4% 25.0% 47.68 168.37 14.5
Ours 70.7% 40.2% 39.5% 41.14 119.89 16.6

The bold values indicate the highest-performing results within their respective columns.
parameters will also be updated during training. To ensure fair- V. RESULTS

ness in subsequent comparative experiments, the widely adopted
ResNet50 has opted as the backbone, which is pretrained on
ImageNet. In addition, our backbone consists of four stages,
with the first stage being frozen, thereby rendering the pretrained
weights from this stage as non-trainable parameters.

C. Evaluation Metrics

We reported the five indicators of mean average precision
(mAP), production accuracy (PA), user accuracy (UA), overall
accuracy (OA), and F1-score to evaluate the effectiveness of the
model, which are calculated using the following equations:

TP
PA_TP+FN
TP
A= —
U TP + FP
OA — TP + TN
TP + TN + FP + FN
2x PxR
="
! P+R

AP = / ' P(R)R
0

N
mAP = % ZAP(@') (14)
i=1

where TP represents the number of correctly detected positive
instances, TN represents the number of correctly identified neg-
ative instances, FP represents the number of instances where the
model mistakenly detects positive instances that do not exist,
and FN represents the number of instances where the model
misses the detection of positive instances. Additionally, P refers
to precision and R refers to recall.

To assess the effectiveness of the proposed CWKPD-Faster
RCNN model on key part detection for UAV imagery, compara-
tive experiments are conducted with state-of-the-art algorithms
on our ULMT dataset and real-world dataset first, where all mod-
els are fine-tuned on the real-world dataset. Visualization studies
are then conducted to more intuitively confirm the validity of our
method.

A. Comparison Results

The task of detecting key parts for multiclass targets based
on the outputs of complete target detectors has not been specif-
ically investigated to date. Furthermore, the existing part detec-
tors made use of domain-specific expert knowledge, rendering
them unsuitable for evaluation on our dataset. Therefore, we
choose the state-of-the-art object detection methods in recent
years as baselines, including RCNN-based models, one-stage
models, and transformer-based models. The comparative re-
sults are presented in Tables III and IV, with “RCNN” be-
ing omitted when referring to RCNN-based models. It can be
seen that our model always performs optimally in mAP, accu-
racy metrics, and Fl-score, on both simulated and real-world
datasets.

In comparison to all RCNN-based models, our model is
almost the smallest, differing from the first place by only 0.02%
in the number of model parameters. In terms of computational
complexity, compared with Sparse RCNN, only an addition
of 27.28% of model complexity can be traded for a 25.9%
increase in accuracy on the real-world dataset, an average 5.65%
increase on the simulated dataset as well asa 61.17% decrease on
model size. As for the computational time, our model exhibits
a slight decrease in computational speed by 25.89% in con-
trast with Faster RCNN. However, it demonstrates substantial
improvements in mAP and overall accuracy, with an average
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TABLE IV
ACCURACY RESULTS WHEN IOU = 0.75

ULMT-Key dataset (standard)

ULMT-Key dataset (Generalized)

real-world dataset

Types Model
PA UA  OA F1 PA UA  OA Fl PA UA OA Fl
DINO 078 058 048 067 016 0.2 006 0.14 03 0.1 027 015
Transformer DDQ 072 072 054 072 002 053 005 004 02 005 023 008
RT-DETR 059 084 049 069 03 034 012 032 037 014 025 020
Ono-stage Yolov7-L 063 078 053 070 027 028 006 027 018 014 013  0.16
Yolov8L 074 086 070 079 037 035 025 036 036 016 029 022
Faster 089 041 055 056 023 009 009 0.3 032 011 008 016
Cascade 09 044 075 059 038 02 023 026 032 0.5 017 020
Grid 086 055 068 067 035 023 025 028 02 005 009 008
Libra 089 044 058 059 04 018 022 025 032 009 011 0.4
RCNN D;’I‘e‘gif' 089 042 066 057 022 016 012 019 028 0.9 0.1 0.14
Dynamic 085 042 072 056 036 017 025 023 026 0.1 015  0.15
Sparse 08 02 053 032 056 00l 025 002 007 00l 0.1 0.02
Boosting 08 035 051 049 016 003 003 005 016 0. 004  0.12
Decoupled 058  0.82 057 068 037 002 004 004 021 006 005  0.09
Ours 09 08 079 089 041 036 027 038 037 031 033 034

The bold values indicate the highest-performing results within their respective columns.

enhancement of 10.15% and 1.21 times on the simulated dataset,
and a remarkable improvement of 12.5% and 3.13 times on the
real-world scene dataset.

In comparison to YOLOVS, which shows superior overall
performance among all transformer-based models and one-stage
models, our model experiences a decrease of 76.6% in com-
puting speed. However, it compensates for this by delivering
significant savings of 27.3% in terms of computing resources
and 3.2% in storage resources. Importantly, our model exhibits
notable enhancements in average precision by 6.55% and overall
accuracy by 10.4% on the simulated datasets, while demonstrat-
ing remarkable improvements in average precision by 14.8% and
overall accuracy by 13.8% on the real-world dataset. Overall,
considering the constraints imposed by the frame rate of cameras
mounted on UAVs and the demanding nature of storage, com-
puting resources, and accuracy in real-world applications, the
slight additional computational cost incurred by our enhanced
model is both valuable and significant.

B. Visualization Results

Furthermore, Fig. 5 presents four examples illustrating the
detection results of the five most competitive models on both the
simulated dataset and real-world datasets. The first two columns
correspond to the flight test sets and equivalent scaling test sets
in the real-world dataset, while the last two columns represent
the generalized test set in the ULMT-Key dataset. In Fig. 5, the
green and purple bounding boxes correspond to the ground truth
and predictions of the tank, respectively. Similarly, the orange
and red boxes indicate the ground truth and predicted locations
of the RV. It is evident that our model consistently outperforms
the others, which is not only reflected in precise positioning
but also higher confidence scores. In conclusion, our proposed
network demonstrates remarkable advantages in remote sensing
vulnerable part detection tasks.

VI. DISCUSSIONS

In this section, a comprehensive set of ablation experiments
is conducted to validate the innovativeness and superiority of
the proposed modules. Subsequently, the impact of the chosen
backbones on the performance of our model is further assessed.
Additionally, we analyze and discuss the instances where our
model fails.

A. Ablation Study

The ablation study is conducted to verify the effectiveness of
each improvement strategy. The experimental results are shown
in Table V. It can be found that introducing each module sepa-
rately yields performance improvements while incorporating all
modules collectively leads to the most significant enhancement.
A particularly illustrative comparison is among the improvement
strategies 1-4 on the standard test set, where the STMO-SPP
module plays a more significant role in the advancement of
detection accuracy. This improvement stems from the dual
characteristics of the proposed STMO-SPP module: precise
transformation to mitigate the negative impact of localization
in full object detectors, and the ability to handle unrestricted
input image sizes where the intrinsic features of the target are
preserved. For the generalized dataset, the CWFR module plays
a stronger role under the same comparisons, which demonstrates
that the incorporation of semantic relationship pairs between
targets and their key parts in the model can significantly enhance
both the detection accuracy and generalization capability of key
part detectors.

Furthermore, in the case of strategy 4, where only our de-
signed weighted classification loss function is introduced, the
model also exhibits a considerable improvement in localization
accuracy. Particularly in scenarios where high localization ac-
curacy is demanded, such as when the IoU is set to 0.95 for the
standard test set and 0.85 for the generalized test set, this module
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Fig. 5. Comparison of visualization results.
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TABLE V
ABLATION STUDY

Standard test set

Generalized test set

No. Improvement
strategy APy AP, APy AP APs;s  As;  APis APy APis APy Asy
0 Baseline 2.4% 9.5% 32.2% 59.1% 76.7% 89.8% 0.5% 1.3% 6.4% 11.1% 46.1%
1 + STMO-SPP 7.3% 23.4% 45.8% 68.2% 86.9% 90.3% 1% 7.3% 8.7% 20.2% 55.4%
2 + CWFR 7.1% 21.6% 44.5% 67.8% 82.3% 90.5% 0.8% 2.8% 12.6% 19.9% 57.7%
3 +Lios 5% 22.5% 42.9% 66.3% 82.2% 90.3% 1.2% 5.4% 9.3% 14.8% 50.1%
4 +Lyers 4.7% 14.7% 38.6% 56.9% 81.1% 90.3% 0.8% 4.7% 8% 13.8% 52.4%
5 +Liotar 7.5% 23.5% 44.8% 70.2% 84% 90.4% 2.3% 5.8% 9.5% 14.9% 54.6%
6 +all 9.2% 27.6% 54.8% 75% 87.4% 90.6% 4.8% 6.5% 14.2% 23% 62.6%
TABLE VI
ADVANTAGE VERIFICATION OF THE PROPOSED CWFR MODULE
Standard test set Generalized test set Model
Model .
AP o5 AP, AP s APy AP 55 As.; APy  APss  APg AP Ass size/MB
Baseline 1.6% 12.7% 37.3% 68% 81.1% 90.2%  03% 24% 7.5% 16.7% 41.9% 41.13
+ CWFR 4.4% 24.3% 49.6% 72.5% 88.4% 90.6%  04% 2.6% 8.9% 17.9% 49.8% 41.14
+ CWFR-Spatial 4.2% 23.3% 49.2% 70% 86.9% 90.5%  03% 3.6% 8.3% 18.3% 49.1% 41.24
+ CWFR-Triple 4.7% 20.4% 47.4% 70.2% 87.6% 90.6%  0.4% 4% 87%  22.5% 49.5% 63.85

astonishingly enhances the mAP by 0.95 times and 2.61 times,
respectively. This can be attributed to the enhanced correlation
between the classification and location tasks, which empowers
the model to achieve more precise localization.

B. Advantage Verification of CWFR Module

1) Quantitative Evaluation: Our proposed classwise feature
recalibration module encodes the prior knowledge as the feature
descriptor in the channel dimension, instead of the spatial or
triple dimension, the advantages of which will be evaluated.
Four networks are compared: the Faster RCNN, the Faster
RCNN model with the classwise feature recalibration module
in the spatial dimension, and the Faster RCNN model with the
classwise feature recalibration module in the triple dimension
of spatial and channel. It should be remarked that the input size
of the image is random in spatial, resulting in difficulties for
the improvement in the spatial and triple modules. To show
the performance obviously, we just crop the input image at a
fixed size for the four models in this subsection. The detection
accuracy results under different IoU thresholds are shown in
Table VI.

Compared to Faster RCNN, the introductions of the CWFR
block in the channel, spatial, and triple dimensions results in an
additional model size increase of 0.04%, 0.26%, and 55.24%,
respectively. Concurrently, it leads to substantial enhancements
in detection accuracy, such as an improvement of 0.91 times,
0.83 times, and 0.6 times on the standard test sets when the
IoU threshold is 0.85, and an improvement of 0.18 times, 0.11
times, and 0.16 times on the generalized test sets when the IoU
threshold is set to 0.8. It is concluded that the slight additional

storage burden on the channel dimensions has a significant effect
on the improvement of detection accuracy.

In summary, the proposed CWFR module exhibits a simple
and efficient approach for modeling semantic relationships for
all classes of targets, which contributes significantly to the
improvement of both detection accuracy and robustness with
little increase in storage resources.

2) Qualitative Evaluation: Fig. 6(a) shows the original fea-
ture map corresponding to four distinct scenes, and Fig. 6(b)
shows those adjusted by the CWFR module. It is apparent that
the feature maps that learned prior knowledge can pay direct
attention to the vulnerable areas, rather than the background
and other parts of the target.

C. Advantage Verification of STMO-SPP Module

1) Quantitative Evaluation: To demonstrate the superiority
of the proposed spatial transformation module optimized by SPP,
we compare the performance of three networks with different
structures under the test sets: Faster RCNN with random input
size, namely the baseline; Faster RCNN optimized by STN,
whose input only could be fixed size; the proposed Faster RCNN
optimized by STMO-SPP with random input size. The experi-
mental results are shown in Table VII. Our proposed network
optimized by STMO-SPP outperforms all other models on each
metric on both standard test sets and generalized test sets. When
the localization accuracy requirements gradually increase, the
improvement driven by the STMO-SPP significantly increases,
especially when the IoU threshold is greater than 0.75.

The maximum increase on the standard test set is two times
when IoU = 0.95, and that on the generalized test set is 4.6
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Fig. 6. Visualization of CWFR module. (a) With CWFR module. (b) Without CWFR module.
TABLE VII
ADVANTAGE VERIFICATION OF THE PROPOSED STMO-SPP MODULE
Standard test set Generalized test set
Model
AP o5 APy APgs APy AP ;5 As.g APy APgs APy AP ;5 As.g

Baseline 2.4% 9.5% 32.2% 59.1% 76.7% 89.8% 0.5% 1.3% 6.4% 11.1% 46.1%

+STN 2.1% 11.7% 34.8% 62.4% 77.8% 90.2% 0.1% 3.8% 7.7% 16.6% 50.6%

+STMO-SPP 7.3% 23.4% 45.8% 68.2% 86.9% 90.4% 1% 7.3% 8.7% 20.2% 55.4%

50 50

(c) (d)

50 50

(@ (b)
Fig. 7. Visualization results of STN and STMO-SPP. (a) Input of STN. (b) Output of STN. (c) Input of STN STMO-SPP. (d) Output of STMO-SPP.
Fig. 8. Failure cases. (a) Miss of the full target detector. (b) Failure case owing to domain shift.

times when IoU = 0.85, at which point the baseline is al-
most completely invalidated. This demonstrates the proposed
STMO-SPP is especially beneficial for accurate localization.
Whereas, when only the STN module is introduced, the de-
gree of improvement of the detection accuracy is substantially
reduced, even lower than the baseline at IoU = 0.95 on the

standard test set and at IoU = 0.9 on the generalized test set,
whose reason can be deduced from the following visualization
results.

2) Qualitative Evaluation: In Fig. 7, we visualize the input
and output images of the networks optimized by the STN module
and STMO-SPP module respectively to display explicitly the
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TABLE VIII
COMPARISON RESULTS WITH VARIOUS BACKBONES

Backbone Models

ULMT-Key dataset

ULMT-Key dataset real-world dataset

(standard) (Generalized)
Faster RCNN 62.1 18.2 17.45
Cascade RCNN 67.4 316 27.69
ResNeXt
eshe Dynamic RCNN 61.4 21.4 2827
Ours 68.1 41.9 32.58
Faster RCNN 61.2 28.9 11.4
. Cascade RCNN 67.2 29.1 13.60
Swin-Transft
Wi transtormer Dynamic RCNN 64.8 352 15.44
Ours 69.0 37.5 20.17

learned affine transformation. Two images are taken as exam-
ples, where the full target is partially occluded or there are other
interfering objects. The first column, i.e., Fig. 7(a), shows the
input image of the STN module, whose size is always cropped
to 112 x 112, and the second column is the corresponding
output. Fig. 7(c) shows the input image of the STMO-SPP
module without any preprocess and its output is demonstrated in
Fig. 7(d). We find that the output images of the STN module are
closer to the original images shown in Fig. 7(c), which means
the STN module for the detection task tends to scale fixed-size
images to appropriate proportions and sizes, yet rarely being
cropped or rotated. Considering that the STN module cannot
recover the input image perfectly, the target ratio always changes
inevitably and reduces the detection accuracy to some extent.
On the contrary, the proposed STMO-SPP module effectively
addresses the limitations of the fixed input image size in STN
and fully utilizes its advantages. Specifically, the STMO-SPP
module preserves the original aspect ratio of the input image
while eliminating interference objects through adaptive transfor-
mations, leading to a significant enhancement in the precision of
key part detection. The interference areas autonomously cropped
by the STMO-SPP module are highlighted in red in Fig. 7(c),
aiming to enhance their prominence. It should be noted that very
few interfering objects are completely removed, as this could
also result in the accidental removal of essential components of
the target.

D. Evaluation of the Influence of the Chosen Backbone

Furthermore, we conducted additional validation of the per-
formance of our model using different backbones. Alongside
Faster R-CNN, two RCNN-based models are also included as
comparative models: dynamic R-CNN and cascade R-CNN,
which exhibited favorable overall performance according to
Tables IIT and IV. ResNeXt [57] and Swin-Transformer [58] are
employed as alternative backbone architectures of ResNet50.
As shown in Table VIII, regardless of the selected backbone
architecture, our model consistently achieves superior average
accuracy, further demonstrating its competitive advantage.

E. Failure Cases

Since the proposed method is based entirely on the results
predicted by the full target detector, the designed key part detec-
tor cannot compensate for profoundly adverse mistakes made
by the full target detector, such as misclassification or totally

missing the regression box. In addition, our model shows re-
duced detection accuracy on visually distinct images compared
to the training images owing to domain shift. Fig. 8 illustrates
two failure cases.

VII. CONCLUSION

This article builds a key part detector for UAV remote sensing
images, aiming to locate the key part accurately based on the full
target detection results, in which the spatial transformer module
optimized by SPP and the classwise feature recalibration module
are designed. The STMO-SPP block can adaptively crop out the
interfering objects to encourage the model to focus more on
the target, which is suitable for random sizes of input images.
The CWFR module introduces the prior class information from
the results of the full target detector, motivating the model to
learn the dependencies between the prior knowledge and the
location of the key part. Meanwhile, we proposed a classification
loss function related to GIoU to alleviate the problem that
the traditional cross-entropy loss function is irrelevant to the
location task. The experimental results show that our proposed
model exhibits better localization results and robustness both on
the simulated dataset and real-world dataset.

In the future, we will enlarge our dataset by supplementing
more classes of targets and backgrounds, as well as exploring
various tricks and other localization loss functions to optimize
our model, such as increasing the IOU threshold for positive
objects, distance-IoU loss functions, and transfer our model
onto transformer-based models or one-stage models. Moreover,
we will be committed to building an integration framework
combining the full target detector and key part detector closely
and leveraging domain adaptive models in object detection in
military scenarios to enhance the practicality of our model.
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