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EGISD-YOLO: Edge Guidance Network for
Infrared Ship Target Detection

Weida Zhan , Cong Zhang , Shufang Guo, Jinxin Guo, and Mingkai Shi

Abstract—In the marine field, infrared detection technology is of
great significance for timely localization and detection of ships in
security missions. However, since infrared ship targets are often in
the environmental conditions of small pixel occupancy, low contrast
and complex background, it poses a great challenge for multi-
ship detection, classification, and localization tasks. Therefore, to
address these problems we propose an edge information-guided
infrared ship target detection (EGISD-YOLO) network, in which a
dense-csp structure is designed to improve the csp module of YOLO
to increase the reusability of the backbone feature information,
and in addition, to address the noise and interference generated
by the image in the complex background, a deconvolutional chan-
nel attention module (DCA) is designed to link the contextual
language to the image, which relates the contextual semantics to
obtain the local information of the target. Crucially, we propose an
edge-guided structure that takes the edge information of low-level
features as a cue to fuse with deep-level features to enrich the target
contour and thus improve the target localization ability, so that the
network still possesses robustness under low-contrast conditions,
and finally, we add a small-size prediction head at the end of the
network to further increase the detection ability of weak targets.
The proposed EGISD-YOLO is experimentally demonstrated to
have better detection performance for infrared ship targets.

Index Terms—Attention mechanism, edge guidance, infrared
target detection, ship image.

I. INTRODUCTION

IN RECENT years, infrared detection technology has been
developing rapidly, and the characteristics of noncontact

as well as passive detection have made it a research hotspot
in the field of civil reconnaissance and detection, which has
been widely concerned by countries all over the world. Infrared
detection technology has been widely used in early warning
system, air defense system, and sea defense system in the marine
field. In the sea defense system, the marine ship target detection
can not only detect the ship target to prevent collision, but also
provide technical support for the sea search and rescue, rescue
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and other work, so it has been widely concerned. Compared with
visible light, infrared has a strong antiinterference ability, 24-h
continuous operation, no need to make up light at night and other
characteristics, and can better detect other target objects at the
same time to hide themselves.

However, due to the unique characteristics of its target factors,
the accurate detection and identification of infrared ships is ex-
tremely challenging. In general, the maritime ship target because
of the imaging distance, resulting in the target in the whole
image occupies small pixels, and because the infrared image
texture features less, and the contrast between the background
is low, it is very easy to submerge in the complex sea clutter,
these characteristics make infrared ship small target detection
more difficult. In the harbor scene, due to the close shooting
distance, the number of docked ship targets is large and each
target occupies more pixels of the whole image, these different
scenes and target sizes bring some difficulty to the detection of
marine ship targets, as shown in Fig. 1 (The images are from
the infrared ship dataset introduced in Section III below.). The
accuracy and real-time performance of the current infrared ship
target detection methods cannot fully meet the needs of the sea
defense scene, so the infrared ship target detection technology
is still the focus and difficulty of the current research.

Earlier traditional target detection methods, usually using
algorithms based on hand-designed features, detect targets by
sliding a window over the image and using classifiers or regres-
sors [1], [2], [3], but mostly due to their limited feature represen-
tation capability, reliance on manually labeled bounding boxes,
lack of robustness to handle scales and rotations, difficulty in
dealing with target occlusion and partial visibility, and relatively
low training and inference efficiency.

Nowadays, with the rapid development of deep learning, it
brings great help to the field of target detection. Currently the
mainstream use of deep convolutional neural networks (CNNs)
to learn features [4], [5], [6], [7], [8], this type of method has a
strong feature expression ability and generalization, in response
to the ship target is in the port and other complex scenes, the
performance of the performance of the ship is better, and does
not need to manually extract the features but directly from the
original image to detect the target, so it can greatly improve the
localization accuracy and efficiency of ship detection.

At present, the methods for detecting ship targets are not
limited, and there is no lack of some traditional and deep
learning methods combined. Articles [9], [10], [11], and [12]
mainly used methods based on morphological reconstruction
and multiscale filter filtering, analyzed the ship features one
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Fig. 1. Example images of infrared ships. We give three infrared ship targets in Fig. 1, the first image shows a weak target under the effect of long-range imaging,
the second image shows a target near the harbor under low contrast, and the third image shows multiple targets under the complex background near the harbor.
Ship targets are indicated by red borders and the first image is zoomed in at the top right corner.

by one, enriched the features while weakening the impact of
the target texture information is insufficient, and interspersed
with thresholding to suppress the background clutter, this type
of method is more stringent in the selection mechanism and
parameters, which leads to the weaker generalization ability.
Therefore, articles [13], [14], [15], and [16] used the joint task
of traditional image grayscale processing and neural networks to
extract target features after improving the contrast between the
background and the ship’s target, which alleviates the difficulty
of the network’s decision-making on the target, and has a higher
generalization ability and detection efficiency.

Although the existing methods have carried out profound
research on the segmentation of ship background and target and
multiscale target features, for the classification task of multiple
ships, optimizing the feature extraction network and feature
fusion methods to improve the detection accuracy will increase
the computational complexity at the same time, so taking into
account the detection accuracy, generalization and real-time is
the focus of the research and the difficulty of the ship detection
needs to pay attention to. As an important basis for localization
and segmentation in neural networks, target edge features can
provide a more accurate description of the shape and structure
of the target with their corner information, but existing research
has paid little attention to this aspect. Thus, we have made
an in-depth exploration of network methods with the ability
of edge-guided semantic information, looking for optimization
measures from feature localization measures in other domains
(which are further described in Section II) to solve the above
difficulties.

Therefore, to address the above difficulties and shortcomings,
an infrared ship target detection network research method is
proposed, and its main work can be summarized as follows.

1) Introducing edge feature-guided network structure in the
yolo-v5 target detection network, fusing the semantic
information in the low-level features that is conducive
to localization into the deep-level network, assisting the
network to understand the shape and contour of the
target to better achieve classification and localization
effects.

2) A dense-csp (DCSP) module is designed to replace the
original csp module of BACKBONE, which improves
gradient propagation and enhances feature reusability by
means of dense connections.

3) To address the important target and background informa-
tion in the original image that may be lost as the network
deepens, a dilated convolutional channel attention (DCA)
module is proposed to enable the network to better fuse the
contextual semantics while capturing the abstract texture
details and prediction distortion.

4) Additional small-size prediction heads are added to the
YOLO network to improve the detection of weak target
ships and classify the targets in more detail.

The rest of this article is organized as follows. Section II
briefly describes the scheme of edge information guidance and
the choice of building the deep learning network. Section III
describes the dataset selection, Section IV describes the design
of the proposed algorithm in detail, and Section V analyzes the
findings of the comparison and ablation experiments and com-
pares them with the state-of-the-art methods. Finally, Section VI
concludes this article.

II. RELATED WORK

A. Edge-Guided Scheme

In the field of image processing and computer vision, the early
research on image edge information is mostly used for image
enhancement or target contour acquisition, e.g., using sobel
operator [17], canny operator [18], and other methods of image
gradient computation and thresholding to recognize the edge
information. However, with the development of deep learning,
based on the image edge features contain rich information about
the shape and contour of the object, and have the quality of
assisting in obtaining the semantics of target localization and
segmentation in neural networks, so they are widely used in the
research of target segmentation and target detection.

In target segmentation research, the articles [19], [20], [21],
[22], [23], and [24] used edge information as a guide to sharpen
the target, and edge information was mostly integrated from
the contextual semantics to obtain the localization information
to assist in the fusion of the synthesized high and low level
feature information and thus achieve segmentation, whereas the
article [24] obtained the edge semantics by using mask-guided
pyramid networks; in target detection research, the articles [25],
[26] used the encoder part of different scales to progressively
fuse features with the target significant edge extraction net-
work to form a U-shaped structure to merge the object features
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and enhance the edges to cope with the rough boundaries of
the object;

However, most of the current research in the direction of target
detection is aimed at the edges of significant targets, and it is still
worthwhile to further improve and explore the structure of the
guidance network for infrared ship images with low contrast and
blurred contour boundaries.

B. Deep Learning Scheme

Early traditional target detection methods, such as haar feature
and AdaBoost cascade methods [1], directional gradient his-
togram based methods [2], feature transform-based methods [3],
but mostly due to some shortcomings such as inadequate feature
representation, sensitivity to illumination variations, complex
background interference, difficulty in view angle change, tar-
get occlusion problem, and low resolution, which limit their
effectiveness in infrared accuracy and robustness in ship target
detection tasks.

Deep learning, as an important branch in the field of computer
vision, has achieved remarkable results in tasks such as target
detection, segmentation, and classification. Such methods can
learn advanced feature representations from a large amount of
image data by constructing a deep neural network model, so as
to realize the understanding and analysis of images.

Currently, the mainstream detection networks are categorized
into two detection classes: 1) single-stage and 2) two-stage.
Single-stage detection algorithms such as YOLO [6], SSD [7],
RetinaNet [27], etc., require only one process of feature extrac-
tion, have a faster detection speed, and are very suitable for
scenes with real-time requirements, but the relative detection
accuracy is lower; two-stage detection algorithms are represen-
tative of the RCNN family of algorithms (Faster RCNN [28],
Mask RCNN [29], etc.), first use a number of candidate frames
generated for feature extraction and classification, and then
adjust the positioning of the candidate frames that are classified
as the target to complete the regression task, which has higher
accuracy but cannot meet the real-time demand of such a task
as maritime monitoring.

Based on recent learning studies, we concluded that networks
using the yolo model as a framework [30], [31], [32] perform
well in a variety of detection tasks. For example, the paper [33]
optimized IoU loss and module calculation methods based on
yolo algorithm to apply them to embedded device deployment
and ship detection. The paper [34], [35] designed structures
based on yolov3 and yolov5, respectively, and added attention
modules to improve the detection accuracy of remote sensing
ship images. In this paper [36], [37], yolov5 was used to conduct
an in-depth study on the lightweight method of SAR ship image
detection model. The end to end regression method is used
to predict the boundary boxes and categories by using image
segmentation, which has strong real-time and global perception
ability, and is suitable for the detection and classification of
infrared ship targets. Therefore, after analyzing and comparing
various structures, we finally selected yolov5 as the network
backbone of the proposed method.

Fig. 2. Segmentation and edge extraction process for image targets.

III. DATASET

The dataset used [38] is provided by Yantai Arrow Opto-
electronics Technology Company for the study of infrared ship
target recognition. The database collects more than 8000 infrared
images, which are acquired in different scenarios using infrared
panoramic radar imaging devices with different resolutions and
focal lengths. The infrared wavelength belongs to the thermal
infrared band and ranges from 3 to 14 micrometers. The spatial
resolution of the images is between 0.3 m and 5 m. The reso-
lutions of the images are 384×288, 640×512, and 1280×1024.
The database records a total of 8000 images of cruise ships, bulk
carriers, warships, sailboats, kayaks, container ships, and fishing
boat targets at sea, in ports, and waterfront areas in different
scenes, at different times of the day, and at different resolutions.
The images in the dataset were labeled using liner, bulk carrier,
warship, sailboat, canoe, container ship, and fishing boat as the
labels for each type of ship target, and the targets were labeled
using rectangular boxes. The main purpose of this database is to
be used to study the target detection and recognition technology
in the real world infrared sea defense field, so a database of
infrared ship target detection in real sea defense scenarios has
been established for verifying the effectiveness of infrared target
detection algorithms in practical applications. We used 7402
images from the dataset for training, 1000 for validation, and
1000 for testing. And extensive experiments were conducted on
this dataset using mainstream detection algorithms.

In addition, in order to study and analyze the image charac-
teristics and algorithm features in detail, as shown in Fig. 2, we
used segmentation algorithms and edge extraction methods to
extract the mask image and edge image, respectively, specifically
in the segmentation process, we convert the xml truth labels of
the dataset into the corresponding labels in yolo format, and
separate the infrared ship target from the background by using
the mobile-sam model in the SAM segmentation method [39],
[40] on the ISAT platform through manual supervision, and
converted into a mask image, then the mask is used to extract
the target edges using Canny operator and morphological oper-
ations to smooth the edges, and finally the edge truth image is
generated to compare with the designed network and evaluate
the corresponding metrics.

The infrared ship target detection method in this study will
fully utilize the advantages and features of this dataset with the
following benefits and implications. Real scenario validation:
This dataset is collected under real sea defense scenarios, cover-
ing a wide range of practical environments such as sea, harbor,
and waterfront. Therefore, our infrared ship target detection
method can be validated in real scenarios, and the validation
results are more effective for practical applications; diversity:
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Fig. 3. Segmentation and edge extraction process for image targets.

The dataset collects infrared images with different resolutions
and focal lengths, and contains seven types of ship targets, and
this diversity allows our method to be tested and evaluated on
different types of ship targets, which increases the method’s
ability to generalize; large-scale data: The dataset contains more
than 8000 infrared images, which provides rich training and
testing data. Therefore, it can effectively improve the perfor-
mance and accuracy of our infrared ship target detection method;
labeling accuracy: The ship targets in the dataset are labeled with
rectangular frames. The xml tag contains the number, size, and
position information of each ship type, so the accuracy of edge
and mask image generation is guaranteed. This labeling accuracy
enables us to perform accurate target detection and identification
and evaluate the effectiveness of our method on tasks such as
target localization and bounding box regression.

IV. METHODS

In this section, we present an introduction to the proposed
edge information-guided infrared ship target detection

(EGISD-YOLO), describing the overall architecture and main
innovations of the proposed network model in the following
subsections.

A. Overall Architecture

The network architecture of EGISD-YOLO is illustrated in
Fig. 3(a). The overall consists of three components: Backbone,
Neck, and Predictor Head. The yolo-v5s model is used as the
basic framework of the network, and its module composition
is illustrated in Fig. 3(b). Compared with several other models
of yolo-v5, this model has a smaller number of parameters and
faster detection speed, which ensures the real-time detection of
ship targets and facilitates us to improve the network.

First, in the Backbone part, we replace all the original CSP
modules with the new Dense CSP module, which increases
the feature expressiveness through feature multiplexing and
gradient flow. Then between Backbone and Neck, as marked
by the yellow part in Fig. 3(a), an edge-guiding structure is
designed, which starts from the CBS module at the bottom of
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Fig. 4. Dense CSP module.

Backbone and performs a jumper connection to the CBS module
at the top in turn, and after integrating to the largest CBS in the
sensory field, the edge information of the feature is imported
into two different scales of the feature in the Neck by an EG
module layers, which enhances the localization ability for targets
submerged in the background. In addition, a channel attention
mechanism is added to the Neck, which echoes the fusion feature
of SPPF, to enhance the target semantic attention without sig-
nificantly increasing the computational effort. Finally, a fourth
prediction head is newly added to the Head section for focusing
on weak targets and reducing the misdetection and omission
rates of the detection results. Compared with the original yolo-v5
structure, our model oriented to infrared ship targets can show
better detection results.

B. Dense CSP Module

The structure of the CSP module can be referred to the
CSP2_X shown in Fig. 3(b), which splits the input features
into two branches for processing, which promotes feature reuse
and information flow; the cross-layer connection ensures the
inference speed of the model and the stability of gradient propa-
gation. The Dense structure [41], [42] can increase the nonlinear
transformations and feature combinations inside the module to
better capture the complex relationships and feature interactions
in the input data, and further enhance the feature expressiveness.
Therefore we combine the two to construct the Dense CSP
module, whose structure is shown in Fig. 4.

The input features first go through a 1× 1 convolutional layer
to change the number of feature channels, and then the channels
are split into two by the split operation, which is connected to the
Res unit of the classical Dense structure, and the tail uses concat
and convolutional layers to integrate the feature information for
output. The process can be expressed as follows:

F1 = conv1×1(Fin) (1)

F2 = Split(F1) (2)

F3 = Dense(R1, R2, R3) (3)

Fout = conv1×1 (cat (F1, F2, F3)) (4)

where Fin and Fout denote the input and output features, respec-
tively, Ri(i = 1, 2, 3) represents the Res unit block, cat repre-
sents the concat operation, and Dense represents the classical
Dense connection structure.

C. Deconvolution Channel Attention Module

The channel attention mechanism can play a role in sup-
pressing the large amount of noise and interference present in
the background of the infrared ship image, and the important
information can be separated by giving higher weights to the
channels with high attention to the feature targets through the
network adaptive computation. However, we found through ex-
periments that for images in the environment of a wide variety of
ships and weak targets, these target features lack local semantic
information, and we need to expand the receptive field to obtain
nonlocal contextual information.

Combining the above conditions and inspired by the litera-
ture [43], we articulate an algorithm combining channel attention
and inverse convolution after Backbone’s SPPF module, first, we
feed the input featuresFeature1 into the channel attention struc-
ture shown in Fig. 5(a), transform the global information into
vector representation by pooling and MLP, and then model the
nonlinear relationship of the one-dimensional features, which
is generated by weighting with the initial Feature2 features;
Then entering the inverse convolution part of the attention in
Fig. 5(b), the process can be represented as follows:

P1 = Dconv3×3(Feature2) (5)

P2 = Dconv3×3 (conv1×1 (cat (P1, F eature2))) (6)

Feature3 = conv1×1 (cat (P1, P2, F eature2)) (7)

where,P1,P2 represents the feature maps obtained after the first
and second deconvolution operations, Dconv3×3 represents the
dilation convolution with a convolution kernel size of 3, with
dilation rates of 2 and 4 (to obtain rich sensory field information
while ensuring the computational efficiency of the network), and
the number of channels is 1/2 and 1/4 of the input, Feature3 is
the output feature, respectively. The use of dilation convolution
after the attention structure can effectively avoid the problem
of information loss caused by the meshing effect, in addition,
reversing the primary and secondary relationship between the
initial and dilation features can also lead to information bias, so
we prevented the omission of information by taking the original
features as the dominant features in the design of the channels.

D. Edge-Guided Network Architecture

Ship targets in infrared images are usually characterized by
low contrast, blurring, and similarity to the background, and
thus have been a challenge and hotspot for research in this field,
where the lack of clear target contours makes it impossible for
general networks to obtain clear target feature localization and
key semantic information from shallow networks. Inspired by
the ideas of the article [25], [26], the target detection method of
mask image segmentation can strengthen the target localization
information through edge features running through the network,
so it is experimentally tested in our study.
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Fig. 5. Inverse convolution channel attention module. Part a: Inverse Convolutional Channel Attention Module Channel Attention Part. Part b: Attention module
anti-convolution part.

Fig. 6. Edge information processing module EG for edge-guided structures.

In order to build an information bridge between different
depths of the network, we design an edge-guided structure, as
shown in the yellow area in Fig. 3(a), where the Backbone part
is bottom-up along the direction of the green arrow, and the deep
features converge to the shallow features in turn. Then, through
the weight allocation to the multiscale semantics of the low-level
contour and localization semantics as the main information, after
the concise processing of the EG module, the edge semantics will
be sent to the Neck and the high-level features to achieve the
fusion of the fusion of the semantics from the bottom layer with
a large sense of the field of the positional information, resulting
in the enhancement of features to obtain a clearer target contour.
The process can be described as follows:

C̃3 = C3 + up (Swi (µ,C4)) (8)

C̃i = Ci + up
(
Swi

(
µ, C̃i+1

))
, i = 1, 2 (9)

where C represents the features output from the CBS module,
Backbone part of the CBS block from top to bottom as C1 to
C4 sequentially, on behalf of the use of bilinear interpolation up
performs the feature upsampling operation, and Swi represents
the convolutional layer used to change the feature channel, µ for
the convolutional layer control parameters. The gain of the low-
level edge information is maximized by incrementally weighting
the channels with the previous level, after obtaining the fused
semantic information of the multilevel features, we threshold the
features at this level using morphological operations and filter
with canny operator to obtain enhanced edges, and then feed the
obtained output edges to the EG module.

The EG module for modifying the edge features is shown in
Fig. 6, which further integrates the information and increases the
edge saliency by a simple combination of 3× 3 convolutional
layer filtering and ReLU function, and adjusts the feature size
at the tail using bicubic interpolation for the final feed into

Fig. 7. Comparison of feature maps of infrared ship images. The left is the
original image of the infrared ship image, the middle is the feature map at the
next level of the fusion edge, and the right is the fused guided output feature
map.

the Neck. Therefore, as shown in Fig. 7, the highlighted part
is the focus area of the target, and the features before fusion
lack the sensitivity to features in the background. However, the
target features guided by edge information significantly shift the
attention from the fuzzy background to the ship target, which
further confirms the effectiveness of our method.

E. Dim Target Prediction Head

In addition to the original three target prediction heads of
yolo-v5, we add a new weak target prediction head to help
the model cope with the small targets in ship images and the
problem of missed detection and wrong detection that occurs
easily in dense scenes, and the multiscale perception capability
can better learn and predict the location and bounding box of
the weak targets to provide more accurate target localization. As
shown in the Neck section of Fig. 3(a), similar to the other three
prediction heads, the outputs of the CBS blocks are concatenated
using two scales, and then introduced into the Head after a CSP
structure, with the difference that we replace the last two layers of
CSP2_X with bicubic interpolation and global average pooling,
avoiding overfitting while maintaining the structural invariance
of the target features.

The new predictive Head feature map scale size is set to
160× 160, which is a quarter of the original image size, in
addition to subsequent experiments showing that fine-grained
feature representations are beneficial to the detection results.

V. RESULT AND DISCUSSION

In this section, we perform a qualitative-quantitative evalu-
ation of the proposed method using the infrared ship dataset
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mentioned in Section III and deeply analyze the experimen-
tal results. We first describe the evaluation metrics used by
the algorithm in Section V-A, followed by the implementa-
tion and experimental configuration details of the algorithm in
Section V-B. In Section V-C, we show the quantitative results
of the algorithm, comparing it with other state-of-the-art ship
detection methods on the same dataset in order to prove its
effectiveness; meanwhile, in Section V-D we show the quali-
tative results of the algorithm, with a visual example of how
the algorithm performs on different images, highlighting the
successful ship detection methods. performance, highlighting
successful ship detection and situations where challenges may
be encountered. In addition, in Section V-E we perform ablation
analysis, evaluate the impact of different components on the
performance of the algorithm and discuss their importance in
the overall performance, and finally, in Section V-F we conclude
with a discussion of possible improvements and shortcomings
of the method.

A. Evaluation Metrics

Considering the characteristics of infrared ship targets, the
following commonly used detection metrics are used to measure
the accuracy and comprehensiveness of the algorithm, so as to
objectively evaluate the target detection performance:

1) Precision: The precision rate is the ratio of the number
of samples correctly detected as positive classes to the
number of all samples detected as positive classes. In target
detection, the precision rate measures how many of the
detected targets are true targets.

2) Recall: Recall is the ratio of the number of samples
correctly detected as positive classes to the number of
samples of all true positive classes. In target detection,
recall measures how many true targets were correctly
detected.

3) Average Precision (AP): Average precision is the area
between precision and recall calculated at different thresh-
olds. In target detection, the corresponding precision and
recall are calculated according to different confidence
thresholds, and then the area under their curves is cal-
culated.

4) Mean Average Precision (mAP): Mean average precision
is the average of the mean precision of all categories. It is
a measure of the average precision of multiple categories
and is used to evaluate the overall target detection perfor-
mance.

B. Implementation Details

To be fair, all our experiments were run using the same server
with CPU Xeon(R) Platinum 8255 C and GPU RTX 2080 Ti
11 GB, and we implemented the proposed EGISD-YOLO on
the framework of Pytorch 2.0 and cuda version 11.8. The images
are adaptively scaled to 640×640 pixels in the model, the initial
learning rate of the network is set to 0.003, the weight decay
is set to 0.0005, the batch size is set to 16, the optimizer uses
Adam, and all the CNN-based detection models are trained on
the dataset for 150 epochs.

Fig. 8. Accuracy evaluation for sailboat, canoe, and fishing boat categories (I).

C. Quantitative Results

In order to fairly evaluate the performance of EGISD-YOLO,
we used seven state-of-the-art target detection methods for
comparison, including SSD [7] using a single-stage multiscale
feature layer, Faster-RCNN [28] with a two-stage detector and
shared features, CenterNet [44] with a centroid detection ap-
proach, and EfficientDet [45] with structural extensions and
bidirectional weighted feature capability of EfficientDet, Reti-
naNet [27] that uses Focal Loss to optimize the classification
problem, and the Yolo family (Yolo-v5, Yolo-v7) that excels
in global sensing and real-time detection. In order to fully
demonstrate the performance and evaluation level of the partici-
pating detection methods in our experiments, we chose to ignore
the traditional methods with poor performance, and adapted
RetinaNet and CenterNet, which are based on the Tensorflow
platform, to Pytorch’s deep learning framework to ensure the
computing speed and stability of the models.

As shown in Table I, EGISD-YOLO and other methods are
evaluated in terms of the most intuitive precision rate, the recall
rate for verifying the authenticity of the detection results, the
average precision evaluation under different thresholds mAP50

andmAP{0.5:0.95}, among them,mAP50 for the broader thresh-
old performance evaluation and mAP{0.5:0.95} in favor of the
strict IoU range control; in addition, the model size and the
detection rate are introduced to measure the model complexity
and real-time performance. The data boldly labeled in the table
represent the best results for each column, and it can be observed
that EGISD-YOLO achieves the highest precision and recall
rates of 96.3% and 91.2% without significant increase in com-
plexity compared to the baseline model, which also maintains a
mAP high level, and the detection rate is basically the same as
that of the baseline.

In addition, for the sailboat, canoe, and fishing boat categories,
which have fewer sample targets in the dataset, the model learn-
ing task is more difficult, and it is a great challenge to improve
the detection of these categories, which requires the model to
show superior target classification ability in training. Therefore,
we analyze their accuracy metrics separately to observe the
classification performance of the network. A comparison of the
accuracy of the three categories is shown in Figs. 8 and 9 below,
which shows that most of the methods have significantly lower
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TABLE I
QUANTITATIVE EVALUATION OF EGISD-YOLO AND OTHER METHODS

TABLE II
QUANTITATIVE EVALUATION OF EGISD-YOLO AND OTHER METHODS

Fig. 9. Accuracy assessment for sailboat, canoe, and fishing boat categories
(II).

accuracy when dealing with these kinds of targets, implying that
there will be more probability of missed and wrong detections in
the prediction, whereas our method still exhibits a high detection
correctness, which side-by-side shows the excellent robustness
of the algorithm.

D. Qualitative Results

As shown in Fig. 10, we use the proposed EGISD-YOLO
algorithm with other methods to conduct prediction experiments
on four representative scenes in the dataset prediction set and
analyze the qualitative results obtained. The first column in the
figure is the original image, and we can observe that most algo-
rithms show different degrees of misdetection and omission in
the first image where the scene is more complex, which leads to
serious bias due to the large number of targets, and the difficulty
in recognizing the difference between the background and the
targets that are in the vicinity of the port in networks with weak

localization capabilities such as SSD and Retinanet. In contrast,
our method not only correctly recognizes the targets, but also
achieves high confidence scores under the precise guidance of
edge information. In the second image, we selected an image
with low contrast between the background and the target, which
is a considerable challenge for the algorithm to evaluate the
confidence of the target, e.g., in Centernet, the confidence of
the target drops to about half, which may result in the loss of
the target for the task of strict IoU threshold processing. In the
third and fourth images, we continue to examine the accuracy
of the network’s classification and prediction frames, and our
algorithms both achieve accurate processing and judgments and
show excellent computing speed.

E. Ablation Studies

In this section, we will discuss the effectiveness of the struc-
ture of each component of the EGISD-YOLO algorithm and
verify the possibility of optimizing the algorithm in turn using
different combinations of forms. As shown in Table II, the
first column represents the nine network structures obtained by
combining the four modules in columns 2–4 with the baseline
model, and the evaluation metrics remain the same as those used
in the quantitative experiments: Precision, Recall, and mAP .

In the experiments, we observe that the edge-guided modules,
when acting alone or in combination with other structures,
show stable and beneficial performance in detection, especially
for precision and mAP{0.5:0.95}, which increased by 18.9%
in Net4 mAP{0.5:0.95} compared to the baseline model, and
by 20.9% in the comparison mAP{0.5:0.95} between Net2 and
Net6, which fully illustrates the role of the edge-feature-guided
mechanism in promoting the classification ability of the model.
ability; moreover, in Net8, it can be seen that the combina-
tion of the three structures DCSP, DCA, and EG is the most
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Fig. 10. Qualitative results of the EGISD-YOLO algorithm compared to other methods.
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significant improvement for the network accuracy rate, which
increases by 3% compared with the baseline model, proving
that there is a good fit between our model structures, and that
the way of fitting multiscale features is also worth further digging
and exploring.

F. Discussion

In the study of the effect of mining edge guidance mechanism
on the localization and classification performance of the object
detection network, we observe that it has a promotion effect
on the improvement of indicators, but how sharp classification
ability this mechanism can provide under different IoU thresh-
olds is still a problem that needs to be considered and discussed.
In addition, the mask image of edge features can expand the
richness of the data set by making the truth value. We can also
try to use it as a sample to improve the loss, and explore its role
in the semantics of target positioning and the impact of recall
changes.

VI. CONCLUSION

In this article, an infrared ship target detection network
EGISD-YOLO based on edge-guided structure is proposed.
First, a DCSP module is designed to improve the CSP module to
capture the complex relationships in the input data and optimize
the feature expression by using the Dense structure to increase
the nonlinear transformation and feature combination inside the
module; then, to address the large amount of noise and interfer-
ence in the background of the infrared ship image, an inverse
convolutional channel attention is proposed to expand the feature
sensing field to obtain nonlocal contextual information, and to
give the nonlocal contextual information. localized contextual
information and give more weights to the channels with high
attention. It should be emphasized that, in order to solve the
problem of low contrast, blurring, and similarity to background
of ship targets in infrared images, an edge information guiding
mechanism is designed to converge the deep features into the
shallow features, and to emphasize the edge and localization
semantic information through the weight assignment in order
to obtain a clearer target contour from the underlying features
and to enhance the localization and classification ability of the
features. Finally, on the basis of the original target prediction
head of the network, a prediction head specialized in detecting
weak and small targets is added to better learn and predict the
location and bounding box of small targets in the ship images
and to cope with the problem of easy omission and misdetection
in infrared images. Numerous experiments in the article demon-
strate that our EGISD-YOLO achieves leading performance in
infrared ship classification detection. In future work, we will
further explore more effective algorithmic frameworks in pursuit
of higher detection technology performance.
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