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SAR Ship Instance Segmentation With Dynamic
Key Points Information Enhancement

Fei Gao , Xu Han , Jun Wang , Jinping Sun , Member, IEEE, Amir Hussain , and Huiyu Zhou

Abstract—There are several unresolved issues in the field of ship
instance segmentation in synthetic aperture radar (SAR) images.
First, in inshore dense ship area, the problems of missed detections
and mask overlap frequently occur. Second, in inshore scenes, false
alarms occur due to strong clutter interference. In order to address
these issues, we propose a novel ship instance segmentation network
based on dynamic key points information enhancement. In the
detection branch of the network, a dynamic key points module is
designed to incorporate the target’s geometric information into the
parameters of the dynamic mask head using an implicit encoding
technique. In addition, we introduce a dynamic key points encoding
branch, which encodes the target’s strong scattering regions as
dynamic key points. It strengthens the network’s ability to learn
the correspondence between local regions with strong scattering
and overall ship targets, effectively mitigating mask overlap issues.
Moreover, it enhances the discriminative ability of network between
ship targets and clutter interference, leading to a reduction in false
alarm rates. To further enhance the dynamic key points informa-
tion, an instancewise attention map module is designed, which de-
codes the key points during the mask prediction period, generating
instancewise attention maps based on 2-D Gaussian distribution.
This module further enhances the sensibility of network to spe-
cific instances. Simulation experiments conducted on the Polygon
Segmentation SAR Ship Detection Dataset and High-Resolution
SAR Images Dataset demonstrate the superiority of our proposed
method over other state-of-the-art methods in inshore and offshore
scenes.

Index Terms—Implicit encoding, key points detection, ship
instance segmentation, synthetic aperture radar (SAR).

I. INTRODUCTION

DUE to the excellent penetration capability, synthetic aper-
ture radar (SAR) produces high-resolution images in all
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weather and all time. The SAR technology has witnessed rapid
development and has been widely applied in marine observation
tasks [1], including fisheries monitoring and maritime vessel
management [2], [3]. The key to SAR image ship detection lies
in obtaining the ship’s location. Horizontal bounding box (HBB)
detection represents the target’s position using a horizontal rect-
angular box. However, for ship targets with a large aspect ratio,
the HBB often covers a significant amount of background clutter.
Moreover, in inshore dense ship area, the HBB of different ships
overlap with each other, which is the disadvantage of subsequent
interpretation. To overcome the limitations of HBB detection,
researchers have proposed oriented bounding box (OBB) de-
tection to obtain the OBB results that compactly enclose each
object [4], [5]. The OBB not only reduces the background ratio
within the bounding box but also provides target’s heading in-
formation, which is crucial for advanced tasks, such as trajectory
prediction [6]. Since the ship is still selected by rectangular
boxes, the shape information of the target is missing. Instance
segmentation, on the other hand, goes a step further by assigning
category labels pixel by pixel, obtaining pixelwise masks that
contain information about the target’s category, location, and
contour. However, as a more sophisticated detection method for
ship targets, instance segmentation faces significant challenges
in achieving high precision, especially in inshore scenes [7].

Currently, researchers have proposed various instance seg-
mentation architectures that achieve outstanding performance in
natural scenes, such as Mask R-CNN [8], Cascade R-CNN [9],
Hybrid Task Cascade (HTC) [10], and InstaBoost [11]. However,
the complex contours of targets in inshore scenes pose significant
challenges to the performance of the network. Some researchers
have conducted extensive research on contour-based detection
methods, and proposed methods that encode the mask contour
into a set of concrete encodings, called explicit encoding [12],
[13], [14], [15], [16]. In these methods based on explicit encod-
ing [12], [13], [14], [15], [16], the network structures are often
complex and require careful design of encoding and decoding
methods.

With the deepening research on contour-based instance seg-
mentation methods, some researchers have discovered the
tremendous potential of using implicit encoding [17], [18], [19],
[20]. The earliest research can be traced back to the “You Only
Look At CoefficienTs” (Yolact) method proposed by Bolya
et al. [17]. Inspired by Yolact, researchers have done some
research based on implicit encoding [18], [19], [20]. Among
these methods, CondInst [19] and SOLOv2 [20] have achieved
outstanding accuracy. Unlike previous instance segmentation

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-1489-0812
https://orcid.org/0009-0000-4892-6097
https://orcid.org/0000-0001-5186-0148
https://orcid.org/0000-0002-7184-5057
https://orcid.org/0000-0002-8080-082X
https://orcid.org/0000-0003-1634-9840
mailto:feigao2000@163.com
mailto:hanxu2017@buaa.edu.cn
mailto:wangj203@buaa.edu.cn
mailto:sunjinping@buaa.edu.cn
mailto:a.hussain@napier.ac.uk
mailto:hz143@leicester.ac.uk


11366 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 1. Issues in the results of instance segmentation. (a) Ground truth.
(b) False alarms (red rectangles). (c) Missed detections (blue rectangles).
(d) Mask overlap (yellow rectangles). The green rectangles represent results
of HBB detection.

methods, neither of them reduces the dimensionality of mask
features, which means they use massive parameters to represent
the masks. Considering that instance masks often have complex
contours, this choice may be the key to their success. Never-
theless, CondInst and SOLOv2 are designed for optical images,
and when it comes to SAR images, the presence of interference,
such as speckle noise, can affect the features extracted by the
network [21], [22], [23], [24], [25], [26], leading to a decrease
in segmentation accuracy. It is particularly evident in inshore
scenes, as shown in Fig. 1, where ship targets densely distribute,
making it prone to mask overlap issues. Moreover, influenced
by land clutter and interference between ships, false alarms and
missed detections are likely to occur.

To address the limitations of the above methods, this article
proposes a ship instance segmentation method for SAR images
based on key points information enhancement. The method
contains two main modules: the dynamic key points module
(DKPM) and the instancewise attention map module (IAMM).
The DKPM encodes the strong scattering region of each target,
particularly the ship’s bow, into a set of dynamic key points.
Through implicit encoding, the key points information, includ-
ing the target’s size, shape, and strong scattering region, is
embedded into the parameters of the dynamic mask head. This
refinement of features improves the network’s performance in
inshore and offshore scenes. The IAMM module further en-
hances key points information. Specifically, it decodes dynamic
key points information and generates an instancewise attention
map based on a 2-D Gaussian distribution, thereby increasing the
network’s sensitivity to specific targets. Specifically, considering
the prior knowledge that ships have large aspect ratios, we
employ binary coded label to encode the angles of ship targets
firstly [27]. Furthermore, by exploiting the prominent scattering
characteristics exhibited by the bow region of ship targets due to
its distinctive structural features, we adopt a dynamic sampling
approach with nonuniform key points to accurately predict the
bow contour. By combining angle prediction with nonuniform
key points sampling, we encode the strong scattering region of

ship targets, enhancing the correspondence between the target
center and the strong scattering region. Harnessing the pow-
erful feature representation potential of implicit encoding, we
incorporate the prediction of angle and key points containing
the information of strong scattering region into the parameter
generation branch of the dynamic mask head. This enhances
the sensitivity of the dynamic mask head to the target con-
tour. In the mask branch, we augment the CondInst with a
2-DGaussian distribution heatmap [28]. We take this heatmap
as an instancewise attention map, which includes target angle,
width, key points information, etc. This further strengthens the
information of the strong scattering region. The 2-D Gaussian
distribution heatmap is obtained by decoding the prediction
of angle and key points encoding in the detection branch. By
enhancing the dynamic key points information twice in the
detection branch and mask branch, the segmentation accuracy
is improved in scenes with dense ship and strong clutter inter-
ference. A series of experiments are conducted on the Polygon
Segmentation SAR Ship Detection Dataset (PSeg-SSDD) and
High-Resolution SAR Images Dataset (HRSID) [29], [30], [31]
to validate the effectiveness of the proposed DKPM and IAMM
based on the 2-D Gaussian distribution heatmap. Comparative
experiments with other typical instance segmentation methods
demonstrate the superior segmentation performance of our pro-
posed method.

The main contributions of this article are summarized as
follows.

1) DKPM: It is proposed to encode the strong scattering
region of the ship. Through incorporating fine-grained
features into the implicit encoding process of the dynamic
mask head parameters, the module enhances the perfor-
mance of the network in both inshore and offshore scenes.

2) IAMM: It is proposed to generate attention map based
on 2-D Gaussian distribution, which further enhances
the perception of the network for specific instances. The
module further alleviates the issues of mask overlap and
false alarms.

3) Experiments are conducted on the PSeg-SSDD and
HRSID. Comparative results with state-of-the-art (SOTA)
instance segmentation methods show that our proposed
method outperforms comparative methods.

The rest of this article is organized as follows. Section II
provides a brief review of related works on instance segmenta-
tion and key points estimation. Section III presents a detailed
description of our proposed method. Section IV provides a
detailed description of the experimental setup and presents the
results of our method on the PSeg SSDD and HRSID datasets.
Section V discusses the ablation studies and parameter settings.

II. RELATED WORK

A. Instance Segmentation

Mask R-CNN [8] is a representative method in deep learning-
based instance segmentation. It extends the classical two-stage
detection method, Faster R-CNN [32], by adding a parallel mask
branch alongside the detection branch. It proposes the use of
region of interest (RoI) pooling instead of RoI align, achieving
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good segmentation results with reduced computational cost.
Cascade R-CNN [9], on the other hand, improves the overall net-
work performance by designing a cascaded network and using
different intersect over union (IoU) thresholds in different sub-
networks to gradually enhance the performance. Subsequently,
Chen et al. [10] proposed the HTC, which generates direct
spatial context information through a fully convolutional branch,
combining the refining operations for different subnetworks
into a multistage processing task. InstaBoost [11] introduced
a mechanism for local information fusion, which reinforces the
network’s attention to the target by performing enhancement
on multiple regions of the image and fusing the enhanced local
images. This approach ultimately improves the segmentation
accuracy. Huang et al. [33] recognized the limitations of using
classification confidence as the mask quality criterion and in-
troduced Mask Scoring R-CNN. They proposed a module to
learn the quality of instance mask predictions and designed
a mask scoring strategy that allows the predicted masks to
approach the ground truth in terms of quality scores. Consistent
and significant improvements were achieved across different
models. Cheng et al. [34] proposed a class-specific attention
encoding (CAE) module to enforce the convolutional neural
networks (CNNs) to explicitly encode class attentions. The CAE
module can be conveniently embedded into current CNNs to
build an end-to-end CANet to extract highly category-related
feature representations.

Some researchers have noticed that adding attention mech-
anism to instance segmentation networks can improve the net-
work performance [35], [36], [37], [38]. Yang et al. [35] noticed
the limitations of the HBB, which often include redundant back-
grounds and even docks or other ships with significant scattering
interference. Therefore, they proposed an instance segmentation
network based on the OBB detection, called SRNet. Similar
to attention mechanism, SRNet can focus more on specific in-
stances while reducing interference from surrounding sea, land,
and other ships. This further improves the detection accuracy. Ke
et al. [36] addressed the issue of limited bounding box localiza-
tion capability affecting the instance segmentation accuracy of
networks. They proposed a global context boundary-aware net-
work that utilizes a global context information modeling block to
increase the network’s receptive field and a boundary-aware box
prediction block for better cross-scale bounding box predictions.
Zhang and Zhang [37] identified two limitations of the region
of interest extractor (RoIE) in SAR ship instance segmentation
methods, namely, single-level and noncontext extraction. They
proposed a full-level context squeeze-and-excitation RoIE that
extracts contextual information on feature maps at all scales
of the feature pyramid network (FPN) [39]. By highlighting
valuable features and suppressing irrelevant features, the seg-
mentation accuracy of the network is improved. To further
enhance the performance of SAR ship instance segmentation
models, especially for small objects, Zhang and Zhang [38]
subsequently proposed a mask attention interaction and scale
enhancement (MAI-SE) network. MAI utilizes asymmetric spa-
tial pyramid pooling to obtain multiresolution feature responses,
while SE employs the content-aware reassembly of features
block to generate additional pyramid levels at the bottom to
improve performance on small ships. Some studies [36], [37],

[38] demonstrate the positive impact of combining attention
mechanism with bottom feature maps in improving network
segmentation accuracy, particularly for small objects. When
dealing with small objects, their small size often makes them
easily occluded by the surrounding background, resulting in
inaccurate results. However, the introduction of attention mech-
anism enables the network to automatically learn and focus on
the crucial features for object segmentation. In addition, the high
resolution of the bottom feature maps maximizes the effective-
ness of the attention mechanism, leading to more precise and
reliable segmentation results.

In the above studies, the attention mechanism is often intro-
duced by processing the context information. For example, in
the spatial dimension, the context information is extracted from
output feature maps for each scale of FPN. Correspondingly in
the channel dimension, the weight of each channel is learned
adaptively. This approach introduces two problems. First, it
introduces new convolutional layers, which require additional
training time and computational resources. Second, due to the
use of attention mechanism globally, it is still susceptible to
interference from strong scattering areas on land and densely
distributed ships.

B. Key Points Detection

In inshore scenes, the clutter from land region, such as ports
and docks, introduces strong interference, and the inherent
speckle noise in SAR images poses a challenge to the accuracy
of instance segmentation methods. Therefore, in inshore scenes,
SAR images detection has always been a challenging task. Some
researchers noticed the particular scattering characteristics of
ship targets in SAR images and proposed detection methods
based on key points estimation. For example, Ma et al. [40]
proposed a SAR ship detection method based on key points
estimation and attention mechanism. They optimized the se-
lection process of target centers in dense distributions using a
DKPM and utilized attention mechanism to improve the net-
work’s ability to extract target information, suppressing noise
and achieving high precision in horizontal box prediction. Sun
et al. [41] introduced a SAR image OBB detection method based
on strong scattering points. Specifically designed for large-scale
SAR images, they extracted strong scattering points from SAR
images and performed regression on the OBB, achieving SOTA
performance on large-scale SAR image datasets. Yi et al. [42]
proposed BBAVector, which used the midpoints of the four edges
of the OBB as key points. By predicting vectors from the center
of the OBB to the midpoints of the four edges, they decoded the
OBB results. However, BBAVector neglected the scattering char-
acteristics of ship targets in SAR images. Inspired by BBAVector
and considering the scattering characteristics of SAR images, He
et al. [43] introduced a polar coordinate encoding method. They
increased the sampling number of key points and extended key
points from edge midpoints to the entire OBB. This approach
represented the OBB using a set of vectors pointing from the
ship target’s center to the boundary points, called polar coordi-
nate encoding. By using polar coordinate encoding instead of
traditional width and height regression in training and inferring
processes, the network enhanced its perception of ship contours
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Fig. 2. Overall architecture of our method. The network consists of four main parts: feature extraction network, shared bottom feature module, shared detection
head enhanced with key points information, and dynamic mask branch. The four branches of shared head output: the center heatmap P, the box map B, the angle
codes A, and the distance map D.

and improved detection performance. On the basis of polar
coordinate encoding, Gao et al. [44] noticed that the bow region
of ship targets often exhibits strong scattering characteristics.
They redesigned the key points sampling method based on this
characteristic. Instead of sampling key points on the OBB, such
as He et al.’s method [43], they obtained the inscribed ellipse
through the OBB annotation and performed key points sampling
on the ellipse. Compared with key points sampling on the OBB,
ellipse sampling better conforms to the contour of ship targets,
resulting in superior detection performance. Ge et al. [45] pro-
posed a detection method called KeyShip based on anchor-free
key points. They modeled ships as a combination of three kinds
of key points: the center of the shorter sides, the center of the
longer sides, and the target center of the OBB. By detecting these
key points separately and clustering them based on predicted
shape descriptors, they constructed the final OBB result. This
method implicitly learns the shape information of the target
through key points information and achieves high-performance
of the OBB detection. Zhang et al. [46] conducted an in-depth
analysis of the scattering characteristics of targets in SAR images
and designed a method called scattering-point-guided oriented
ship detection, which achieved higher precision in rotation box
detection. To address the interference of background and noise
in SAR images, they designed a scattering-point-guided region
proposal network (SPG-RPN) based on the scattering character-
istics of SAR. The SPG-RPN predicted potential key scattering
points and improved its focus on the vicinity of these key scat-
tering points during the regression and classification stages. In
addition, they introduced contrastive learning to alleviate minor
differences between target categories.

Compared with the methods of sampling key points on the
four sides of the OBB, the method proposed by Gao et al. [44] has
better performance in the OBB detection because it makes use of
the prior knowledge that the ship’s bow exhibits strong scattering
characteristics. However, the bow region of ship targets is not
strictly an ellipse, and encoding key points distributed on the
inscribed ellipse as ground truth during key points sampling
is equivalent to introducing lower quality annotations during
network training. The mismatch between the encoding results
and ground truth can ultimately lead to a decrease in accuracy. In
addition, most methods based on key point detection are used for
HBB detection and OBB detection, while there are few research
works on the application of key points detection to instance
segmentation.

III. METHODOLOGY

In this section, the DKPM and IAMM are developed, and
details of the implementation procedures are also presented.
First, we provide a brief overview of the network architecture.
After that, every module of the proposed method is described
in detail to show how it works. Finally, the loss function of the
proposed method is given.

A. Overview

The overall architecture of our approach is shown in Fig. 2,
which consists of four components: feature extraction, shared
bottom feature module, shared head, and dynamic mask branch.
Next, we will provide a detailed introduction to the four com-
ponents.
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1) Feature Extraction: In feature extraction, a ResNet50 [47]
network and an FPN are used to extract features from an
input SAR image.

2) Shared Bottom Feature Module: The shared bottom fea-
ture module follows the configuration in [19], which is
used to generate high-quality and high-resolution basic
mask feature map Fmask.

3) Shared Head: The shared head processes the feature maps
at different scales and consists of four subbranches: ship
center estimator branch, HBB regression branch, angle
encoding estimator branch, and key points distance re-
gression branch. The inputs of the four branches are the
multiscale feature maps from the FPN. Each branch con-
sists of four cascaded 3 × 3 convolutional layers. The ship
center estimator and HBB branch, respectively, produce
the center heatmapP ∈ RH̃×W̃×1 and the HBB parameter
map B ∈ RH̃×W̃×4, where HBB results B are solely used
for the NMS process. The structures of these two branches
are similar to the anchor-free detection method FCOS,
which saves the number of parameters and the amount of
computation through the anchor-free design [48]. The an-
gle encoding estimator and key points distance regression
branch output angle codes A ∈ RH̃×W̃×M and distance
map D ∈ RH̃×W̃×N separately, where M denotes the
number of bits for angle codes, and N denotes the number
of sample points. For the ship center estimator branch, fo-
cal loss is employed for supervised training; cross-entropy
loss is utilized in the angle encoding estimator to compute
the loss between angle codes and ground truth; the other
two branches employ smooth L1 loss for loss calculation.
We combined these four parts of losses to form the overall
loss function guiding the network regression. In the shared
head, the HBB branch, angle encoding estimator, and
key points distance regression jointly form the DKPM. In
DKPM, we concatenate the intermediate feature maps of
the three branches and generate dynamic filter parameters
through an implicit encoding method. This implicit encod-
ing method effectively incorporates the information of key
points into the instance segmentation network, which will
be introduced in detail in the following.

4) Dynamic Mask Branch: The dynamic mask branch mainly
consists of the IAMM and the dynamic mask head. IAMM
takes the basic mask feature map Fmask, the attention map,
and the relative coordinate map as inputs. Fmask is an eight
channels feature map obtained from the shared bottom
feature module. For each positive sample point obtained
from the shared head, the relative coordinate feature map
is generated by calculating the difference between the
coordinates of each point on the feature map and the coor-
dinates of the positive sample point. The predictions from
DKPM are then decoded to obtain a 2-D Gaussian dis-
tribution map that contains information about the target’s
angle, size, and key points distribution as an instancewise
attention map [28]. The Fmask, relative coordinate feature
map, and 2-D Gaussian heatmap corresponding to each
positive point are concatenated to enhance the angle and

key points information of the target, and then fed into the
dynamic mask head to obtain the segmentation result.

B. Dynamic Key Points Module

The DKPM can be divided into two parts, dynamic key points
encoding and implicit encoding. Both of them are explained in
detail as follows.

1) Dynamic Key Points Encoding: The dynamic key points
encoding method consists of two parts, namely, dense label
encoding (DCL) [27] and symmetric nonuniform key points
distances sampling.

In the field of OBB detection, predicting the angle of target
has always been a challenge. There are two typical approaches
to angle prediction. One is based on regression, which directly
calculates the loss between the predicted angle and the ground
truth angle to make the prediction converge to the ground truth.
However, this approach suffers discontinuity at the boundaries
due to the periodicity of angles. The loss function undergoes a
sudden change at the angle definition boundaries and causing
inconsistency in the regression form between the boundary and
nonboundary cases, leading to instability during the training
process. The other approach is based on classification, where
the angle prediction is transformed into a classification prob-
lem to avoid the issue of discontinuity. The methods of angle
prediction based on classification are one-hot encoding, circular
smooth label (CSL) [49], and DCL. However, the prediction
layer of one-hot encoding and CSL is too thick to require lager
computing resources and longer training time than DCL [27]. So,
we introduce DCL to encode and decode the angle information.
For the target angle represented using the long edge representa-
tion, the angle can be converted into decimal encoding LDecimal

using the following equation:

LDecimal =

⌊
θ

Δδ

⌋
,Δδ =

180◦

2n
(1)

where Δδ represents the angular interval between adjacent cate-
gories and n is the number of encoding bits. Subsequently, con-
verting the decimal encoding LDecimal to binary encoding LBin

yields the result of dense label angle encoding. In the decoding
process, each bit of the n-dimensional angle category prediction
result can be rounded to obtain standard binary encoding. Then,
converting LBin to decimal encoding LDecimal and multiplying it
by the angular interval Δδ yields the angle of the target.

This method can represent a larger range of values with fewer
encoding lengths, effectively mitigating the problem of long
encoding lengths in CSL and one-hot encoding methods. It
reduces the thickness of the prediction layer and keeps the angle
error within an acceptable range. For example, when using a
7-bit dense binary encoding to represent angles, the angle error
can be calculated as following:

n = �log2(AR/Δδ)� (2)

where n represents the encoding length, AR represents the angle
range, and in the long-edge representation, the angle label is the
angle between the target’s major axis direction and the x-axis,
with an angle range of [0, 180◦). Therefore, AR is set to 180◦, and
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Fig. 3. Aspect ratio distribution of ship targets in different datasets. (a) PSeg-
SSDD. (b) HRSID.

Δδ represents the difference between adjacent angle categories.
Hence, when using a 7-bit dense binary encoding, the angle error
isΔδ/2, which is 0.7◦. The impact on accuracy can be neglected.

The symmetric nonuniform key points distances sampling
strategy is inspired by the large aspect ratio of ships, which is
the significant geometric feature and prior knowledge. In order
to ensure that key points can sample the strong scattering region
at the bow of the ship, we analyze the aspect ratio distribution
of ship targets in the dataset to determine the sampling range.
In Fig. 3, the aspect ratio distribution of ship targets in the
PSeg-SSDD and HRSID is shown in Fig. 3(a) and (b), separately.

Based on the statistical results shown in Fig. 3, it can be
observed that the aspect ratios of the majority of targets (94% in
PSeg-SSDD and 97% in HRSID) are smaller than 6. In order to
accommodate ship targets with various aspect ratios and enable
network to effectively sample the strong scattering region of the
bow, we design a strategy for symmetric nonuniform sampling
within a 60◦ range centered around the ship’s direction, as
illustrated in Fig. 4.

Our sampling strategy can be summarized as follows: we
sample at angle α, as well as angles that are 5◦, 15◦, and 30◦

away from the main axis direction. The reason for sampling
within a range of 60◦ is that the aspect ratios of ship targets
have both large numerical values and a wide range of variations.
The nonuniform angle sampling is performed because our focus
is on the strong scattering region at the bow of the ship, and
we do not pay excessive attention to information of direction
perpendicular to the main axis. In addition, considering that the
ship dataset uses the long-side representation for the OBB, where

Algorithm 1: Dynamic Key Points Encoding Algorithm
Based on Symmetric Nonuniform Sampling.

Input: The set of discrete points of the target contour
PD = {p′i | p′i = (x′

i, y
′
i) , i = 1, 2, . . . ,M}, major axis

direction θM , target center c = (xc, yc).
Output: Coding vector of the dynamic key points−→
V = (d1, d2, . . . , d14).

1: Connect discrete sets of points PD in turn to obtain the
continuous point set of the target contour
P = {pi | pi = (xi, yi), i = 1, 2, . . . , N};

2: Calculates the angles of the points in P with respect to
the target center point θ,

θ =

{
θi | θi = arctan

(
yi − yc
xi − xc

)
, i = 1, 2, . . . , N

}

3: From θM and angle template for symmetric
non-uniform sampling, obtain the set of sampling
angles θs = {θs1, θs2, . . . , θs14};

4: for i = 1 to 14 do
5: (1) Find the angle θj closest to θsi in angle set θ;
6: (2) Calculate the distance code di corresponding to θj ,

di =

√
(xj − xc)

2 + (yj − yc)
2

7: return
−→
V = (d1, d2, . . . , d14).

the angle annotation represents the angle between the longer
side of the rectangle and the x-axis, the angle annotation does
not always correspond to the direction of the ship’s bow but
rather the angle of the ship’s main axis within the range of [0,
180◦). Similarly, the target angles predicted by the angle branch
also correspond to the angle of the ship’s main axis within the
range of [0, 180◦). Therefore, to ensure that the sampling angles
for key points effectively fall within the strong scattering region
at the bow, we not only need to perform nonuniform sampling
within the range of [α-30◦, α+30◦], but also symmetrically per-
form nonuniform sampling within the angle range of [α+150◦,
α+210◦]. Hence, the nonuniform angle sampling strategy can
be summarized as follows: for the main axis angle α of the ship,
we set the sampled angles obtained by combining it with the
angle template as {α-30◦, α-15◦, α-5◦, α, α+5◦, α+15◦, α+30◦,
α+150◦, α+165◦, α+175◦, α+180◦, α+185◦, α+195◦, α+210◦}.
The specific algorithmic flow is shown in Algorithm 1.

In instance segmentation, the target’s polygon mask is often
defined by a sequence of ordered discrete points. By sequentially
connecting these discrete points, a set of points with continuity
representing the target contour can be obtained, where continuity
refers to that adjacent points in the set are within each other’s
8-neighborhood. Based on the coordinates of the contour points
and the center point, the angle of each point relative to the center
point can be calculated. However, in cases where the target size
is small, the points on the target contour may not precisely
match specific sampling angles. Therefore, it is necessary to
find the contour point that is closest to the sampling angle as
an approximate representation of the dynamic key points. The
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Fig. 4. Illustration of symmetric nonuniform sampling and key points distances encoding. (a) Original image. (b) Ground truth. (c) Encoded result.

Fig. 5. Illustration of sampling results of targets with different aspect ratios.
(a) Aspect ratio = 1.09. (b) Aspect ratio = 5. (c) Aspect ratio = 10.81.

corresponding distance encoding result can be calculated based
on the coordinates of the contour point (xi, yi) and the target’s
center point (xc, yc) using the following equation:

di =

√
(xi − xc)

2 + (yi − yc)
2. (3)

In order to validate the effectiveness of the sampling strategy
for ship targets with various aspect ratios, we conducted tests
specifically for ship targets with an aspect ratio of 5, as well
as targets with the maximum and minimum aspect ratios in the
dataset. The results of these tests are shown in Fig. 5.

Fig. 5(a) and (c), respectively, shows the sampling results
for targets with extreme aspect ratios of 1.09 and 10.81, while
Fig. 5(b) presents the sampling results for a ship target with an
aspect ratio of 5. Based on the sampling results in Fig. 5, it can
be observed that when the target has an aspect ratio of 1.09, the
network performs dense and detailed sampling in the bow. When
the target has an aspect ratio of 10.81, the sampling points are
dispersed along the overall contour of the ship, but at least three
points are still sampled in the bow, indicating effective sampling
of the bow region. The remaining points distributed perpendic-
ular to the ship’s main axis direction may not sample the bow
region directly, but they contribute to generating more accurate
instancewise attention maps. The results demonstrate that our

Fig. 6. Parameter generation process of the dynamic mask head using an
implicit encoding method.

nonuniform sampling strategy effectively samples the strong
scattering region of the ship’s head under representative and
extreme conditions.

2) Implicit Encoding: The process of obtaining parameters
for the dynamic mask head through the convolution operation
on the feature map of the detection branch is referred to as
implicit encoding [19]. In this process, the shape and position of
the bounding box are encoded into the generated parameters.
Usually, the feature map used for generating the mask head
filtering parameters is the same as the intermediate feature map
used for generating the four parameters of the HBB. Implicit
encoding has been proven to be a powerful method for feature
representation in [19]. Therefore, it is natural for us to consider
whether using more refined features as the input to the dynamic
filter parameter generation network can further enhance the
sensibility of the dynamic filter for fine-grained features of the
target. We design a dynamic mask head parameter generation
module that strengthens the information of the target’s key
points, as illustrated in Fig. 6.

We first extract the intermediate feature maps from the HBB
detection branch, angle encoding prediction branch, and key
points distances regression branch. The channel numbers of
these intermediate feature maps are 256, 128, and 128, respec-
tively. Each of these feature maps undergoes a 3×3 convolu-
tional decoding operation to obtain the corresponding parame-
ters (e.g., the HBB detection branch produces horizontal box
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TABLE I
CORRESPONDENCE BETWEEN THE PARAMETERS OF THE CONVOLUTIONAL

LAYERS IN THE DYNAMIC MASK HEAD AND THEIR RESPECTIVE CHANNELS

Fig. 7. Illustration of IAMM.

detection results with a shape of H×W×4). To preserve the
feature representation capability of the feature maps, we use
the intermediate feature maps directly as inputs to the parameter
generation branch of the dynamic mask head. Specifically, we
concatenate the three intermediate feature maps and then apply a
3×3 convolution to obtain the 177 channels dynamic mask head
convolutional parameters. The 177 channels correspond to the
parameters of the three convolutional layers. Channels 1–88 and
89–96 contain the weights and biases of the first layer Conv_1,
of the dynamic mask head, respectively. Similarly, channels
97–160 and 161–168 correspond to the weights and biases of
the second layer Conv_2, respectively, while channels 169–176
and 177 correspond to the weights and biases of the third layer
Conv_3, respectively. The mapping between parameters and
channels is given in Table I, where Cin and Cout represent the
input and output channel numbers of the convolutional layers,
respectively.

C. Instancewise Attention Map Module

Motivated by the idea of combining high resolution feature
maps and attention mechanism in [36], [37], [38], we designed
the IAMM, as shown in Fig. 7. The IAMM consists of three
components: the shared bottom feature module, attention map
generation module (AMGM), and relative coordinate module.
The resolution of the input feature map in the mask branch
plays a crucial role in the accuracy of the segmentation results,
especially in inshore scenes. Therefore, we adopt the shared
bottom feature map module and relative coordinate module
from [19] to generate high-resolution and high-quality bottom

feature maps, which is constructed by concatenating the basic
mask feature map Fmask and the relative coordinate map. In
addition, we design the AMGM to generate the attention map,
and we introduce the attention mechanism by concatenating it
with the bottom feature maps.

Fig. 7 illustrates the process of generating the mask feature
map and provides an overview of the generation process for
the basic mask feature map Fmask, relative coordinate maps,
and attention maps. It is worth noting that the shared bottom
feature map module depicted in Fig. 7 generates imagewise
feature maps. This means that for a single image, the basic mask
feature map Fmask is computed only once. On the other hand,
the feature maps generated by the relative coordinate module
and the AMGM are instancewise feature maps. This means
that different targets within the same image will have different
feature maps, and the instancewise information is derived from
the shared detection head. Using relative coordinate maps is a
method to enhance the sensibility of the dynamic mask head
for corresponding targets [19]. It involves the concatenation
of a relative coordinate map onto the basic feature map Fmask.
In the relative coordinate map, the value of each pixel represents
the difference between the pixel’s absolute coordinates and
the center coordinates of the target. The relative coordinate
map essentially acts as an attention map centered around the
instance’s center coordinates, decaying at the same rate along
both the x-axis and y-axis. Since the values in the relative coor-
dinate map are solely determined by the difference between the
pixel’s absolute coordinates and the target’s center coordinates,
it contains minimal additional information about the target, apart
from the coordinates of the target center.

Therefore, to provide the dynamic mask head with more
refined information of specific target, we design the AMGM.
Building upon the basic mask feature map Fmask and the relative
coordinate map, AMGM decodes the angle and key points
predictions from the detection branch. This decoding process
generates a 2-D Gaussian distribution heatmap [28] containing
the target’s angle, aspect ratio, and key points information. To-
gether with Fmask and the relative coordinate map, this heatmap
is inputted into the dynamic mask head, enabling the network
to focus on regions with a higher likelihood of containing
the target. The decoding algorithm for IAMM is outlined in
Algorithm 2. The key points information of the strong scattering
regions in the targets is encoded implicitly into the parameters
of the dynamic mask head. In addition, the introduction of the
2-D Gaussian distribution heatmap serves as an instancewise
attention mechanism, further enhancing the information related
to the distribution region and strong scattering regions of specific
instances.

During the decoding process, we first decode the angle code
from the shared detection head to obtain the main axis angle
θM of the target. Then, a set of sampling angles θs is obtained
using predefined angle templates. For each sampling angle,
the corresponding key points distance encoding is assigned,
resulting in a set of dynamic key points relative coordinates P .
The dynamic key points set is then fitted to elliptical parameters
using the direct least-squares fitting approach. The equation
of an ellipse in a Cartesian coordinate system can be repre-
sented as x2 +Axy +By2 + Cx+Dy + E = 0. To calculate
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Algorithm 2: Dynamic Key Points Decoding Algorithm.
Input: DCL of the target angle L, coding vector of
dynamic key point

−→
V = (d1, d2, . . . , d14), target center

c = (xc, yc).
Output: Parameters of 2-D Gaussian distribution {μ,Σ}.

1: Decode the DCL L to get the major axis direction of
the target θM ∈ [0, 180◦);

2: From θM and angle template for symmetric
non-uniform sampling, obtain the set of sampling
angles θs = {θs1, θs2, . . . , θs14};

3: The relative coordinate set of dynamic key points P is
calculated according to the dynamic key point coding
vector

−→
V and sampling angle θs,

P = {pi | pi = (xi, yi) , i = 1, 2, . . . , 14}
where xi = di × cos(θi), yi = di × sin(θi);

4: Use direct least squares to fit a set of dynamic key
points to a set of elliptical parameters {xc, yc, a, b, θ};

5: {xc, yc, a, b, θ} is converted to parameters of 2-D
Gaussian distribution {μ,Σ};

6: return {μ,Σ}.

the parameters {A,B,C,D,E} that best fit the point set, we
minimize the objective functionF (A,B,C,D,E) using a direct
least-squares fitting approach. The expression of F is shown in
the following equation:

F (A,B,C,D,E)

=

2N∑
i=1

(
x2
i +Axiyi +By2i + Cxi +Dyi + E

)2
. (4)

To obtain the minimum value of F , we need to solve the
system of equations where the partial derivatives of F with
respect to each parameter are set to zero. Based on the solved
result {A,B,C,D,E}, the ellipse parameters can be calculated
as follows:

xc =
2BC −AD

A2 − 4B

yc =
2D −AD

A2 − 4B

a =

√√√√ 2 (ACD −BC2 −D2 + 4BE −A2E)

(A2 − 4B)
(
B −√

A2 + (1−B)2 + 1
)

b =

√√√√ 2 (ACD −BC2 −D2 + 4BE −A2E)

(A2 − 4B)
(
B +

√
A2 + (1−B)2 + 1

)

θ = arctan

(
sqrt

(
a2 − b2B

a2B − b2

))
(5)

where (xc, yc) represents the center coordinates of the ellipse, a
and b are the major and minor axes of the ellipse, respectively,
and θ is the orientation angle of the ellipse, ranging from 0
to 180◦. Based on the aforementioned ellipse parameters, the

corresponding 2-D Gaussian distribution parameters {μ,Σ} can
be calculated as follows:

μ = (xc, yc)

Σ = R · Σ0 ·R� (6)

where μ denotes the mean and Σ denotes the covariance matrix.
R denotes the rotation matrix, and Σ0 for the covariance matrix
at angle 0. The expressions for R and Σ0 are as follows:

R =

[
cos θ − sin θ
sin θ cos θ

]

Σ0 =
1

12

[
a2 0
0 b2

]
. (7)

After calculating the parameters of the 2-D Gaussian distribu-
tion using (6) and (7), the probability density of the distribution
can be computed following the method described in [28], as
shown below:

f(X) =
1

2π|Σ|1/2 exp

(
−1

2
(X − μ)TΣ−1(X − μ)

)
(8)

where X represents the coordinates, which is a 2-D vector.
According to (8), each pixel on the feature map can be assigned
a value of the 2-D Gaussian distribution corresponding to a
specific instance. The closer the pixel is to the target center,
the larger the value of the pixel will be. The covariance matrix
Σ includes the information about the target’s angle and aspect
ratio.

D. Loss Function

Multitask loss function for network training in this article
can be divided into three parts: the HBB detection branch, the
dynamic key points detection branch, and the mask prediction
branch. The multitask loss function is as follows:

Loverall = LFCOS + λLDKPM + μLmask (9)

where LFCOS represents the loss function for the HBB detection
branch, LDKPM represents the loss function for the key points
detection branch, and Lmask represents the loss function for
the mask prediction branch. λ and μ both are equal to 1. The
following is a detailed introduction to the three parts of the loss
function.

Since we adopt the FCOS framework [48] as the HBB detec-
tion branch, the loss function for this part is designed follow-
ing the same principles as in [48], including the classification
branch, bounding box regression branch, and centerness branch,
as follows:

LFCOS =
1

Npos

[∑
x,y

Lcls
(
cx,y, c

∗
x,y

)
+
∑
x,y

Lreg

(
tx,y, t

∗
x,y

)

+
∑
x,y

Lcenterness
(
mx,y,m

∗
x,y

)]
. (10)

where Lcls denotes the focal loss, Lreg represents the IoU loss,
and Lcenterness represents the cross entropy loss. Npos is the
number of positive samples. cx,y and c∗x,y are the predicted and
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ground truth class labels at positive sample points, respectively.
Similarly, tx,y and t∗x,y are the predicted and ground truth HBB
parameters, respectively. In addition, mx,y and m∗

x,y are the
predicted and ground truth centerness values, respectively.

The loss functionLDKPM for the dynamic key points detection
branch consists of angle encoding loss and dynamic key points
distance encoding loss. The angle encoding is performed using
DCL, where the angle information is encoded as a set of natural
binary codes. The supervised training is done using cross entropy
loss. In addition, considering that prediction errors in higher
order bits may lead to larger angle errors, the class weights are
set to linearly decay from higher order bits to lower order bits.
The dynamic key points distance encoding is represented as a
14-D vector, and we use the smooth L1 loss function [50] for
supervised training. The calculation formula is as follows:

LDKPM =
1

Npos

[∑
x,y

Langle
(
θx,y, θ

∗
x,y

)

+
∑
x,y

LKPD
(
Vx,y, V

∗
x,y

)]
(11)

where Langle represents the cross entropy loss function used in
the angle encoding branch, and LKPD represents the smooth L1
loss used in the dynamic key points distance encoding branch.
θx,y and θ∗x,y represent the predicted and ground truth values for
angle encoding, respectively. Similarly, Vx,y and V ∗

x,y represent
the predicted and ground truth values for key points distance
encoding, respectively.

The mask branch is supervised with the dice loss [51], which
evaluates the quality of the predicted mask by calculating the
overlap between the predicted mask and the ground truth mask.
The loss function is defined as follows:

Lmask =
1

Npos

∑
x,y

Ldice
(
Mx,y,M

∗
x,y

)
(12)

where Ldice denotes the dice loss. Mx,y and M ∗
x,y are predicted

mask and ground truth mask, respectively.

IV. EXPERIMENTAL RESULTS AND EVALUATION

In this section, we conduct experiments to evaluate the detec-
tion performance of the proposed method. First, we introduce
the dataset and the settings of related experiments. Next, the
evaluation criteria are described. At last, we conduct com-
parative experiments between our proposed method and other
SOTA methods on the PSeg-SSDD and HRSID to validate the
effectiveness of our approach.

A. Dataset and Settings

The dataset SSDD is a publicly available SAR ship image
dataset used for horizontal box detection [29]. Due to subsequent
extensions by researchers, which include annotations for the
OBB and instance segmentation, it is also referred to as the PSeg-
SSDD or SSDD++. The dataset consists of 1160 marine SAR
images with resolutions ranging from 1 to 15 m. These images
are captured by different sensor models and polarization, and

contain a total of 2587 ships. In our experiments, following the
official release standards of PSeg-SSDD [30], we split the dataset
into 928 training images and 232 testing images. The testing
set comprises 46 images from inshore scenes and 186 images
from offshore scenes. We conducted a series of experiments on
the PSeg-SSDD to validate the effectiveness of our proposed
method.

The dataset HRSID contains 138 panoramic SAR imageries
with ranging resolution from 1 to 5 m, and 5605 slices with 800
× 800 resolution under the overlapped ratio of 25% representing
various imaging modes, polarization techniques, and resolu-
tions, along with 16 951 ship targets [31]. Compared with the size
distribution of targets in the PSeg-SSDD (2009 small targets,
507 medium targets, and 71 large targets), the size distribution
of targets in the HRSID is more balanced, which includes 9242
small objects, 7388 medium-sized objects, and 321 large objects.
In our experiments, following the official release standards of
HRSID [31], we split the HRSID into 3642 training images and
1962 testing images to assess how well each model performs in
various scenes.

In the training process, we use ResNet50 as the backbone
network and initialize it with pretrained weights from the
ImageNet dataset. For the newly added layers, we initial-
ize them using the Kaiming initialization method. The net-
work is trained using stochastic gradient descent for 20 K
iterations, with an initial learning rate of 0.001. The learn-
ing rate is reduced by a factor of 10 at 15 and 18 K iter-
ations. The weight decay and momentum are set to 0.0001
and 0.9, respectively. The experiments are conducted using the
MMDet framework [52]. The comparative methods, including
Mask R-CNN [8], Yolact [17], PointRend [53], SOLOv2 [20],
QueryInst [54], Mask2Former [55], SparseInst [56], and RT-
MDet [57] are also implemented using the MMDet framework.
The CondInst [19] is implemented using the AdelaiDet frame-
work [58]. All experiments are performed on a platform with
Ubuntu 20.04, 32 GB memory, and a GTX 3090 GPU.

B. Evaluation Metric

In the field of instance segmentation in SAR image inter-
pretation, the accuracy of mask prediction is defined by the
IoU between the predicted mask and the ground truth. The
calculation formula for mask IoU is

IoUMask =
Maskpred

⋂
MaskGT

Maskpred ∪MaskGT
(13)

where Maskpred and MaskGT are predicted mask and ground
truth mask, respectively.

To evaluate the segmentation accuracy of the methods under
different IoU threshold conditions, we introduce three evalua-
tion metrics from Microsoft Common Objects in Context [59]:
average precision (AP), AP50, and AP75. Generally, AP is the
most commonly used evaluation criterion as it represents the
AP of the segmentation network across IoU thresholds in the
range of [0.5, 0.95] with a step of 0.05, providing a comprehen-
sive reflection of the network’s performance. AP50 and AP75

represent the precision of the network at IoU thresholds of
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0.5 and 0.75, respectively. Clearly, AP75 is more challenging
and better represents the segmentation accuracy of the network.
In addition, since the dataset contains ships of different sizes
and varying segmentation difficulties, we introduced APS, APM,
and APL to evaluate the network’s segmentation capability for
different-sized ships. Similar to AP, they represent the AP of
the segmentation network across IoU thresholds in the range of
[0.5, 0.95] with a step size of 0.05. APS corresponds to small
targets with a mask area less than 322, APM corresponds to
medium-sized targets with a mask area between 322 and 642,
and APL corresponds to large targets with a mask area larger
than 642. Furthermore, to visually demonstrate the performance
of each network, we plot precision–recall (PR) curve for each
network. The PR curve intuitively illustrates the variation of
segmentation performance of the network across IoU thresholds
in the range of [0, 1]. A larger area under the PR curve indicates
better segmentation performance of the network.

In addition, some evaluation metrics for network complexity
are introduced, such as model size, the number of parameters,
and floating point operations (FLOPs). Model size and the
number of parameter count represent the storage cost of the
model, where a larger parameter count requires more training
data. With limited training data, a larger number of parame-
ters make the network more prone to overfitting. FLOPs, on
the other hand, represent the computational complexity of the
network.

C. Experimental Results

To validate the effectiveness of our method, we selected
Mask R-CNN [8], Yolact [17], PointRend [53], SOLOv2 [20],
CondInst [19], QueryInst [54], Mask2Former [55], Sparse-
Inst [56], and RTMDet [57] for comparison, as they have demon-
strated excellent performance in instance segmentation. A brief
introduction of these methods is provided below.

1) Mask R-CNN: It is a classic two-stage instance segmenta-
tion method. It extends Faster R-CNN by adding a parallel
mask branch along with the detection branch. It per-
forms mask prediction on RoI regions, resulting in better
performance while incurring only a minimal increase in
computational overhead compared with Faster R-CNN.

2) Yolact: It is one of the earliest attempts at real-time
instance segmentation methods. It utilizes a fully con-
volutional model to construct a one-stage detector and
decomposes the instance segmentation task into mask pro-
totypes and corresponding mask coefficients. This method
achieves fast and straightforward instance segmentation
based on global masks.

3) PointRend: Taking a novel perspective, PointRend treats
the instance segmentation problem as a rendering prob-
lem. It introduces a point-based rendering neural network
module and utilizes an iterative refinement algorithm to
perform segmentation at adaptively selected positions.

4) SOLOv2: Inspired by the ideas of Yolact, SOLOv2 further
reduces dependency on bounding boxes and decouples
mask generation into predictions of mask kernels and
mask feature maps. It separately generates convolutional

kernels and the input feature map for the kernels, and
achieves great performance.

5) CondInst: CondInst not only frees instance segmentation
from relying on bounding boxes but also eliminates the
need for mask prototypes. Instead, it adopts the concept
of dynamic filters to predict a corresponding mask head
for each instance. The shape and size of the mask are
implicitly encoded in the convolutional parameters of the
mask head, reducing the parameter size and computational
complexity of the mask head, which enables the network
to predict the global mask directly.

6) QueryInst: QueryInst offers a new perspective for instance
segmentation by employing a query-based multistage end-
to-end network. It unifies the representation of instance
attributes, such as class, bounding box, and mask into a
single framework.

7) Mask2Former: The authors propose a concise and
versatile model that addresses both semantic seg-
mentation and instance segmentation tasks, called
masked-attention mask transformer (Mask2Former). By
incorporating masked attention within the transformer ar-
chitecture, it achieves faster convergence and performance
improvements.

8) SparseInst: SparseInst is a novel and efficient fully convo-
lutional instance segmentation framework. Unlike many
instance segmentation methods that rely on object de-
tection, this network represents objects using a set of
sparse instance activation maps. It aggregates informa-
tion from highlighted regions of each instance to obtain
instancewise segmentation results. In addition, based on
a bipartite matching approach, it achieves one-to-one in-
stance prediction, avoiding the need for postprocessing
nonmaximum suppression operations and speeding up the
inference process.

9) RTMDet: RTMDet is an efficient real-time object detector.
The model is built on the architecture that has compatible
capacities in the backbone and neck, which is constructed
by a basic building block that consists of large-kernel
depthwise convolutions. It achieves the great parameter
accuracy tradeoff for various application scenarios.

Table II presents the instance segmentation performance of
different methods on the PSeg-SSDD in both inshore and off-
shore scenes. From Table II, it can be seen that our method
achieves the highest accuracy in both inshore and offshore
scenes. Although there are comparative methods that show
similar accuracy to our method when evaluated separately in
inshore or offshore scenes, such as PointRend with an AP
score only 0.2% lower than our method in inshore scenes,
and Mask2Former with an AP score only 0.5% lower than our
method in offshore scenes, these methods often fail to perform
well in both scenes simultaneously. In contrast, our method not
only balances the accuracy in both scenes, but also achieves the
highest accuracy in both scenes. Particularly for small targets in
inshore scenes, our method exhibits the best segmentation per-
formance. Even the method with the best performance among the
comparative methods in inshore scenes, PointRend, falls behind
our method by 2.2%. This is due to the fact that small objects
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TABLE II
INSTANCE SEGMENTATION PERFORMANCE OF DIFFERENT METHODS ON THE PSEG-SSDD

in inshore scenes are often densely distributed and susceptible
to strong scattering interference from the land, making them
more challenging to detect. However, our method tackles this
difficulty by predicting and assigning strong scattering points
for each target, as well as utilizing instancewise attention maps
generated based on the information of strong scattering points,
thus optimizing the network’s perception for each instance un-
der the interference of adjacent ships and land region. Among
the comparison methods, Mask2Former achieves the highest
accuracy for medium targets in inshore scenes, indicating that
its introduced attention mechanism effectively enhances the
network’s perception capability for larger objects. However, the
gain for smaller targets is not as strong as for larger targets.
On the other hand, while SparseInst performs well in offshore
scenes, its performance significantly drops in complex inshore
scenes. This may be attributed to the adoption of instance
activation mapping for sparse prediction, where densely dis-
tributed small targets in SAR images and interference from
land clutter greatly affect the process of aggregating features. In
addition, the clutter introduces significant interference in feature
extraction for small objects. Since targets with small size are
the majority in inshore scenes, the performance of SparseInst
experiences a rapid decline in inshore scenes. Analyzing the
accuracy of these methods in both offshore and inshore scenes
reveals the difficulty of achieving good performance in both
scenes. This is due to the varying levels of clutter interference
and the differences in number of targets between the two scenes.
In contrast, our method optimizes accuracy in inshore scenes
while also benefiting accuracy in offshore scenes. It achieves
a balance in instance segmentation performance between in-
shore and offshore scenes. Particularly, for the challenging AP75

metric, which represents the network’s fine-grained detection

capability, our method achieves the highest AP75 in offshore
scenes, surpassing QueryInst by 1.8%. In inshore scenes, our
method ranks second with an AP75 score only 0.4% lower
than the highest performing PointRend. Considering the overall
detection metrics in both scenes, our method demonstrates the
highest level of fine-grained detection.

According to the results of comparative experiments on the
HRSID in Table III, our method still maintains a leading po-
sition in most metrics, especially in inshore scenes. which is
similar to the experimental results on the PSeg-SSDD. Although
our method did not achieve the highest AP50 metric in off-
shore scenes, the PointRend with the best performance only
outperforms our method by 0.8%. Moreover, in terms of the
challenging AP75 metric, our method leads by 3.5% in offshore
scenes and 3.7% in inshore scenes. Due to the more balanced
distribution of targets of different sizes and the higher resolution
of the original SAR images in the HRSID, the performance gap
in detection accuracy between our method and others for large
targets has been further narrowed. Our method even achieves
the highest APM in offshore scenes.

Fig. 8 shows the PR curves, which comprehensively demon-
strate the instance segmentation performance of various methods
in inshore and offshore scenes. Overall, the area under PR
curve of the same method is significantly smaller in the inshore
scenes compared with the offshore scenes, indicating greater
segmentation difficulty in inshore scenes. From Fig. 8(a), it can
be seen that the CondInst and PointRend perform well in inshore
scenes of PSeg-SSDD, even slightly outperforming our method
at lower recall. However, as the recall increases, the precision
of the CondInst and PointRend decreases noticeably faster than
our proposed method. As for the results in offshore scenes of
HRSID in Fig. 8(c), it is evident that both RTMDet and our
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TABLE III
INSTANCE SEGMENTATION PERFORMANCE OF DIFFERENT METHODS ON THE HRSID

Fig. 8. PR curves of different methods in different datasets. (a) PR curves in the inshore scenes of PSeg-SSDD. (b) PR curves in the offshore scenes of PSeg-SSDD.
(c) PR curves in the inshore scenes of HRSID. (d) PR curves in the offshore scenes of HRSID.
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Fig. 9. Results of different methods in the offshore scenes of PSeg-SSDD. The red rectangles indicate false alarms, the blue rectangles represent missed detections,
and green rectangles represent results of HBB detection (only some of these methods support detecting HBB).

method exhibit a significant lead compared with other methods.
Our method achieves higher precision at low recall, whereas
RTMDet demonstrates higher precision at high recall. Overall,
our method holds a slight advantage in performance compared
with RTMDet. In summary, the results depicted in the Fig. 8
validate the superior performance of our proposed method.

In order to compare our method with the other methods, the
segmentation results of experiments conducted on PSeg-SSDD
and HRSID are given in Figs. 9– 12. Figs. 9 and 10, respectively,
illustrate the results in the offshore scenes of the PSeg-SSDD
and HRSID. Similarly, Figs. 11 and 12, respectively, illustrate
the results in the inshore scenes of the PSeg-SSDD and HRSID.

From Figs. 9 and 10, it can be observed that although small
targets are abundant in the offshore scenes, they are sparsely
distributed and not affected by strong scattering interference
from land clutter. Therefore, the differences among the com-
parison methods are not obvious. Mask R-CNN, due to its
low resolution of feature map, is not particularly favorable for
small object detection and exhibits some false alarms in Fig. 9.
Even in the high-resolution SAR images of HRSID depicted in
Fig. 10, Mask R-CNN exhibits both missed detections and false
alarms in the detection of small targets in scenes. Among the
results depicted in Figs. 9 and 10, QueryInst shows more missed
detections in both the PSeg-SSDD and HRSID. In SparseInst,
the mask results of each target are aggregated from multiple
activation regions, which may be affected by sea clutter and

incorporate some noise as target features during the aggregation
process, resulting in partial false alarms. However, overall, due
to the relatively low detection difficulty in the offshore scenes,
both the comparison methods and our proposed method perform
well.

Figs. 11 and 12 illustrate the results of different methods in
the inshore scenes. The red rectangles represent false alarms,
the blue rectangles indicate missed detections, and the yellow
rectangles represent mask overlap. The green rectangles repre-
sent HBB results as supplements to the segmentation results, but
only some of these methods support detecting HBB. Compared
with Figs. 9 and 10, it is evident that segmentation in the inshore
scenes is more challenging.

Based on the segmentation results in Fig. 11, it can be
observed that Mask R-CNN, Yolact, and SparseInst perform
poorly. This is because the upsampling process of low-resolution
feature maps in Mask R-CNN cannot accurately capture the
mask contours of the targets, thus failing to improve the accuracy
effectively. Yolact utilizes the prediction of mask prototypes
and the corresponding mask coefficients, which are aggregated
to obtain the final prediction. This places higher demands on
the feature extraction capability of the network. When the net-
work fails to adequately differentiate between target features
and interference, its performance rapidly deteriorates. Similarly,
SparseInst relies on sparse feature predictions and aggregation,
which are susceptible to interference from land region with
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Fig. 10. Results of different methods in the offshore scenes of HRSID. The red rectangles indicate false alarms, the blue rectangles represent missed detections,
and green rectangles represent results of HBB detection (only some of these methods support detecting HBB).

strong scattering in SAR images, leading to missed detections.
In addition, the network lacks the ability to distinguish densely
distributed objects, resulting in mask overlap and ultimately
causing missed detections in the second row of the images.
CondInst exhibits missed detections in the images of the first
and second rows. The missed targets are docked at the pier
that is surrounded by high scattering interference from land
region and densely distributed target, respectively. The contours
of most artificial structures in land are rectangles with a large
aspect ratio, which make the network easy to misclassify the
ship targets as land structures, and eventually lead to missed
detections. Furthermore, Mask R-CNN, SparseInst, CondInst,
and RTMDet exhibit evident mask overlap issues in the images
in the second row. This is because the ships in the second
row of Fig. 11 are densely parked together, resulting in blurred

boundaries between individual targets, posing a challenge to the
discriminative ability of network. Based on the segmentation
results in the inshore scenes of HRSID, as shown in Fig. 12, it can
be observed that the detection difficulty is higher in the HRSID
compared with the PSeg-SSDD. Despite the higher resolution of
images in the HRSID, the inshore scenes of images in HRSID are
more complex, such as the port with tremendous cargo handling
capacity or the crisscrossed busy canals throughout the trading
cities. The interference from artificial structures, such as ports
and docks, is intense in inshore images. Simultaneously, a great
deal of large containers and small islands similar to ship targets
lead to a significant number of false alarms in contrastive meth-
ods. As shown in the second row of results of each comparative
method in Fig. 12, rich prismatic structure in artificial structures,
such as large containers and docks, exhibit strong scattering
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Fig. 11. Results of different methods in the inshore scenes of PSeg-SSDD. The red rectangles represent false alarms, the blue rectangles represent missed
detections, the yellow rectangles represent mask overlap, and green rectangles represent results of HBB detection (only some of these methods support detecting
HBB).

characteristics and possesses a large aspect ratio, making them
prone to being detected as ship targets. Similarly, small islands
near the shore are also prone to being detected as ship targets,
as illustrated in the first row images of PointRend, CondInst,
and Mask2Former in Fig. 12. It is worth noting that false
alarms are particularly severe in all the contrastive methods, and
most false alarms are associated with small targets. Therefore,
improving the network’s ability to distinguish small targets from
background is crucial for enhancing detection performance. This
is also the reason why PointRend achieves good AP metric by
using an iterative subdivision algorithm to perform point-based
segmentation predictions at adaptively selected locations. In
contrast, our proposed method demonstrates consistent opti-
mization for the small targets detection in HRSID, similar to
PSeg-SSDD, significantly reducing the number of false alarms
in the detection results, as shown in Fig. 12.

The occurrence of false alarms, missed detections, mask over-
lap issues in the inshore dense ship region and land interference
conditions depicted in Figs. 11 and 12 can be attributed to the
network’s failure to learn the correspondence between local
strong scattering regions and the overall ship targets. The false
alarms observed in most comparative methods indicate a lack of
discriminative capacity of the network in distinguishing inter-
ference from ship targets. To address these issues, we employ a
set of key points to represent the strong scattering regions of the

targets and encode them implicitly into the dynamic mask head.
In addition, we use 2-D Gaussian distribution heatmaps decoded
from the key points to generate instancewise attention maps,
further enhancing the network’s perception of specific targets.
From Figs. 11 and 12, it can be concluded that our proposed
method achieves better detection results in the inshore scenes,
with significant improvements in false alarms and mask overlap
issues. This demonstrates the positive effect of introducing key
points information in achieving higher accuracy in instance seg-
mentation, validating the effectiveness of our proposed method.

V. DISCUSSION

In this section, we set up an ablation experiment to verify
the effectiveness of the DKPM and IAMM, and we conducted
a series of experiments to investigate the impact of sampling
number on the performance of the network. At last, we compared
the model size, FLOPs, and the number of parameters of the
proposed method with other methods.

A. Ablation Experiment

In order to demonstrate the effectiveness of the DKPM and
the IAMM based on 2-D Gaussian heatmaps and quantitatively
assess their impact on the network’s performance, we conduct
ablation experiments on both modules. The DKPM includes the
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Fig. 12. Results of different methods in the inshore scenes of HRSID. The red rectangles represent false alarms, the blue rectangles represent missed detections,
the yellow rectangles represent mask overlap, and green rectangles represent results of HBB detection (only some of these methods support detecting HBB).

TABLE IV
RESULTS OF ABLATION EXPERIMENTS ON THE PSEG-SSDD

dynamic key points distance encoding as well as nonuniform
sampling strategy modules. The results of the ablation experi-
ments are given in Tables IV and V.

The results of the ablation experiments in Table IV demon-
strate that the standalone application of IAMM leads to
improvements of 1.2% and 1.1% in offshore and inshore scenes,

respectively. Nevertheless, the standalone application of DKPM
results in improvements of 1.9% and 1.6% in offshore and
inshore scenes, respectively. It can be seen that the two modules
mainly improve the detection accuracy for small and medium
targets in the PSeg-SSDD. DKPM focuses on the strong scatter-
ing regions of the targets, and objects with different sizes often
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TABLE V
RESULTS OF ABLATION EXPERIMENTS ON THE HRSID

exhibit different scattering characteristics in imaging. On the
other hand, IAMM guides the network to pay more attention to
specific target. Therefore, both DKPM and IAMM are instance-
wise feature enhancement modules that are affected by data
imbalance problem. The number of targets with different sizes in
the PSeg-SSDD is quite different. Small targets predominate in
both inshore and offshore scenes, whereas large targets account
for a small proportion. The number of large targets in inshore
and offshore scenes is 19 and 52, accounting for 3.58% and
2.54% of the total targets in the two scenes, respectively. The
ratio of small targets to medium targets is also large, nearly
4:1 (2009 small targets to 507 medium targets). The problem
of imbalanced data in the PSeg-SSDD leads the two modules
to primarily focus on the key points features of small targets,
while not receiving equally sufficient training on large targets.
From the table, it is evident that both modules significantly
improve the detection performance of small targets, while the
improvement for large targets is inapparent. In addition, due
to the small amount of large targets in PSeg-SSDD, metric may
suffer from larger fluctuations. However, considering the overall
precision for small and medium targets, both modules contribute
significantly to the accuracy of the network.

The results of ablation experiments on the HRSID are pre-
sented in Table V. In contrast to the PSeg-SSDD, the distribution
of samples with various sizes in HRSID is more balanced.
In inshore and offshore scenes, the quantities of small and
medium targets are roughly equal, while there is also a certain
number of large targets for the network to learn from. Therefore,
we conducted additional ablation experiments on the HRSID
dataset as a supplement to the experiments on the PSeg-SSDD
dataset. From Table V, it can be observed that the standalone
application of IAMM or DKPM leads to improvements across
all metrics in inshore and offshore scenes. Specifically, using
IAMM alone achieves a 3.0% and 1.2% improvement in AP
metrics in inshore and offshore scenes, respectively, whereas
using DKPM alone results in a 4.8% and 2.3% improvement in
AP metrics in inshore and offshore scenes, respectively. In the
PSeg-SSDD, the improvement brought by the use of both IAMM
and DKPM is mainly reflected in the small and medium targets
detection. However, in the HRSID, the use of both two modules
not only improves the detection accuracy of small and medium
targets, but also achieves the best performance of large targets
in offshore scenes among the ablation experiments. For large
target detection in inshore scenes, using DKPM alone achieves

the best performance in ablation experiments, but the gap of APL

metrics is within 0.5% in the experiments using single and both
modules. It can be seen that due to the more balanced and diverse
samples of different sizes in HRSID, the IAMM and DKPM
exhibit positive effects on the detection accuracy of large target
samples, which further validates the effectiveness of these two
modules.

By comparing the improvement of the two modules, it can
be observed that DKPM has a stronger effect than IAMM,
especially in terms of accuracy at high IoU thresholds. For
example, the AP75 metric is improved by 2.3% and 3.5% in
inshore and offshore scenes of PSeg-SSDD, respectively, which
is close to the performance achieved by using both modules si-
multaneously. This indicates that DKPM is the key to enhancing
the network’s fine-grained detection capability and demonstrates
the feasibility of introducing dynamic key points information for
improving fine-grained detection in instance segmentation tasks.
Between the two modules, DKPM has the higher complexity,
and IAMM requires the predicted results from DKPM as in-
put, allowing the strong scattering region information obtained
in the detection branch to be further enhanced in the mask
branch. Thus, the two modules complement each other. Based
on the results of the ablation experiments of both modules,
it can be concluded that using both modules simultaneously
can provide the network with more fine-grained segmentation
performance.

B. Influence of Different Sampling Number

The number of sampling points N in the key points sampling
process is an important hyperparameter in our method. We
conducted experiments to investigate the impact of different
values of N on the network’s performance, and the results are
given in Table VI.

Table VI demonstrates the impact of different numbers of
sampling points on network performance. When N = 5, the
network shows a smaller improvement compared with the exper-
iment with N = 7. This is because a lower number of samples is
insufficient to adequately represent the strong scattering regions
of the bow, leading to ineffective guidance for network training.
In addition, during the decoding process of key points detection
results to obtain instancewise heatmaps, a smaller number of
sampling points may result in increased distortion when fitting
the ellipse, failing to accurately cover the distribution area of the
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TABLE VI
INSTANCE SEGMENTATION PERFORMANCE OF DIFFERENT SAMPLING NUMBER

ON PSEG-SSDD

Fig. 13. Comparison of model size, FLOPs, and the number of parameters
across different methods.

ship targets. As the number increases, the network’s performance
remains stable. Overall, selecting N = 7 as the number of sam-
pling points maintains good performance in both scenes while
achieving higher efficiency. Hence, in this article, we choose 7
as the final hyperparameter for the number of sampling points.

C. Computational Efficiency

To discuss the computational efficiency of different methods,
we compute the size of the models, FLOPs, and the number of
parameters used during the testing process, as shown in Fig. 13.
Due to the network architecture of QueryInst, which includes
one query-based detection branch and six parallel-supervised
dynamic mask heads, it has significantly higher number of
parameters and model size compared with other methods. How-
ever, QueryInst requires less computational resources during
the inference stage compared with all other methods except
RTMDet. The FLOPs and number of parameters of RTMDet
are significantly smaller than other methods, so it is suitable for
deployment on devices with limited computing resources. Since
our network incorporates dynamic key points related detection
branches, such as angle branch and key points distance encoding
branch, there is a slight increase in the number of parameters and
model size compared with CondInst. However, the number of
parameters and model size of our method remain close to those
of other comparative methods. In terms of FLOPs, our method
has a 40% increase compared with CondInst. The additional
computations are mainly for the dynamic key points prediction

and the encoding and decoding processes, which is the cost of
improving the segmentation precision of the network. Overall,
the experimental results demonstrate that although the introduc-
tion of dynamic key points prediction branches and encoding and
decoding processes increases the computational complexity, the
increase in number of parameters and model size is relatively
small, and FLOPs of our method remains close to that of other
comparative methods. Despite the higher computational com-
plexity, it achieves higher detection precision, making it suitable
for applications that require fine-grained detection.

VI. CONCLUSION

In this article, we propose a SAR ship image instance segmen-
tation method based on key points information enhancement.
To overcome the issue of mask overlap in inshore dense ship
areas, as well as the problem of excessive false alarms caused
by land clutter interference in inshore scenes, we propose the
DKPM that encodes the strong scattering region of bow as a set
of dynamic key points and incorporate key points information
into the implicit encoding process, leveraging the powerful
feature representation capability of implicit encoding to encode
the size, shape, and strong scattering region information of
specific targets into the parameters of dynamic mask head. In
addition, to further enhance the key points information, we
propose an IAMM based on 2-D Gaussian distribution, improv-
ing the network’s perception of specific targets. Experimental
results demonstrate that our proposed method achieves better
performance compared with other SOTA instance segmentation
methods, particularly in terms of fine-grained metrics at high
IoU thresholds, validating the effectiveness of our method.
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