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A Simple and Reliable Method for Estimating
Building-Scale Height Based on Multisource Datasets
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Abstract—Building height dataset is crucial in urban studies,
holding significant importance in understanding the interactions
of human activities and the built-up environment. However, high-
resolution three-dimensional building datasets covering large areas
are limited. A rapid and accurate method for revealing fine-scale
urban morphology is required. In this study, we developed a
method for estimating building heights at the building scale. First,
we integrated multisource datasets (i.e., synthetic aperture radar,
optical, terrain, social-economic, and vector-based datasets) and
built the machine learning model for building height estimation.
Second, we applied the model to 11 cities in the U.S. and assessed its
performance. Our results were consistent with the reference data,
indicating that the effectiveness of our method is applicable [i.e., the
R’ was 0.82, and the root mean square error (RMSE) was 3.39 m].
The evaluated results in various cities, across different height in-
tervals, and within distinct regions also show the good agreement
with reference heights according to the correlation (R*: 0.51-0.86,
RMSE: 2.57-5.97 m in cities) and similar height distribution.
Moreover, our results also showed the superiority by comparing
with other height datasets at different scales. Finally, we mapped
the building-scale height to characterize the urban morphology.
These results demonstrate our proposed method’s usable accuracy
and the vast application potential in estimating building heights.
Our proposed method’s refined building height information can
significantly help socioeconomic and climatological urban studies.

Index Terms—Building height, high-resolution, multisource
datasets, urban morphology, urbanization.

I. INTRODUCTION

HREE-DIMENSIONAL (3-D) morphology of buildings
T significantly influenced socio-economic indicators during
the process of urbanization. A comprehensive and quantita-
tive understanding of buildings is instrumental in achieving
the United Nations” 2023 Sustainable Development Agenda,
particularly the objectives related to “Sustainable Cities and
Communities.” During the accelerated urbanization in the past
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two centuries, the vertical form of buildings has been rapidly
changed, reshaping the 3-D structure of cities [1], [2], [3], [4],
[5]. These changes are closely linked to issues such as urban
energy usage [6], [7], human activity intensity [8], [9], and
climate change [10], [11]. As the vertical dimension of building
structures, the acquisition of building height data plays a crucial
role in assessing the environmental impact of human activities,
facilitating urban planning and management, and realizing sus-
tainable development goals [12], [13].

Recently, remote sensing and geographic information systems
(GIS) have been widely used in building height estimation
studies. Three distinct types of data are used individually for
high-resolution building height estimation, including:

1) high-resolution optical images;

2) airborne light detection and ranging (LiDAR);

3) interferometric synthetic aperture radar (InSAR).

High-resolution optical imageries provide spatial information
of land surface. Through geometric analysis of the interactions
among the sun, buildings, and shadows in high-resolution im-
agery, we can obtain information related to building heights [13],
[14], [15], [16]. These high-resolution images provide detailed
spatial information, enabling estimation of building heights
at fine scales (i.e., <10 m). However, high-resolution optical
images are limited in estimating building heights in areas with
dense buildings [e.g., central business district (CBD)] where
shadows cover each other [17]. Alternatively, LIDAR shows the
potential to remit this issue. LIDAR can capture 3-D information
of objects through point clouds. By analyzing the points related
to building structures, it is possible to obtain building heights at
individual building scale since the point cloud directly provides
the coordinates of building roofs [18], [19], [20]. Although
this type of data is efficient, it is costly, time-consuming, and
labor-intensive in processing. Thus, the coverage of LiDAR is
still limited, remaining it difficult to estimate the building height
on a big scale. By contrast, InSAR can obtain 3-D information in
urban and rural areas [21], [22], [23]. InSAR measures changes
of the elevation on the ground surface by comparing the phase
of two or more synthetic aperture radar images collected at
different times. [24], [25], [26]. Li et al. [27] proposed an
indicator of backscatter intensity and estimated building height
in seven cities using the Sentinel-1 ground range detected data.
The results showed that the InSAR-recorded backscatter values
are strongly related to building height. However, this InSAR
index performs well in estimating building heights above 500 m,
with a decrease in accuracy at the scale of individual buildings
[28]. In addition, the radiation of InSAR includes all objects
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indiscriminately, resulting in irrelevant information (e.g., trees)
contained in the received data, which brings about a negative
impact on building height estimation. In addition, some stud-
ies combined these datasets together and got better estimated
heights using machine learning algorithm, indicating that the
synthetic use of multisources datasets can be taken into ac-
count to avoid the uncertainty [29], [30], [31], [32]. For exam-
ple, Frantz et al. [33] synthesized Sentinel-1 and multispectral
Sentinel-2 time series and estimated the building height using
random forest algorithm, increasing the accuracy compared to
single-dataset model. Additionally, this method is suitable for
estimating building heights at a finer scale, providing insights
into building-scale height estimation.

However, most of the derived building height datasets are
currently limited in terms of spatial resolution, especially lack-
ing methods for estimating heights of individual buildings at a
regional or national scale. The United States Geological Sur-
vey (USGS) released a national-scale building height map that
was collected using radar [34]. However, the dataset was at
a block scale with category information (ranging from “low”
to “very high”), making it challenging to reveal the upward
structure of buildings in fine-grained urban studies. Li et al.
[27] produced a 1 km building height map in Europe, the
United States (U.S.), and China using SAR (i.e., Sentinal-1) and
other optical remote sensing images (i.e., Landsat and MODIS).
However, the 1 km building height dataset is too coarse for urban
system studies. Similarly, Li et al. [28] estimated the building
height in major U.S. cities at a 500 m scale with the help of
Sentinel-1 Ground Range Detected data. However, these 500-m
grid-scale maps are still too coarse for urban studies due to the
complex landscape within the city. In addition to these global
building height results, some products have been developed to
characterize building heights at a more fine-grained resolution,
although these studies were mostly performed at small-regional
scale (e.g., city scale) [13], [35], [36], [37], [38]. Thus, it is
challenging to acquire data on a national or global scale, owing
to the considerable time required for both pre-processing and
model training. In addition, some studies have used machine
learning techniques to estimate building heights at high resolu-
tion [33], [39], which rely heavily on the detailed vector shape of
buildings.

To fill the research gap mentioned above, we propose a method
for mapping building-scale height based on multisource datasets
and evaluated the accuracy of our model. This study focusses on
the following objects.

1) Propose a simple and reliable building-scale height esti-

mation method based on machine learning and estimate
the building height of 11 cities in the U.S.

2) Integrate multisource features (SAR, optical, socio-
economical, terrain, and vector-based) and incorporate
statistical values of remote-sensing images to enhance
accuracy of building height estimation model.

3) Demonstrate the competitive applicability and effective-
ness of the model to cover large region by validation
in various cities, across different height intervals, within
distinct regions, and intercomparison with other existing
datasets.
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Fig. 1. Locations of 11 U.S. cities (a) and the enlarged view of (b) Seattle,
(c) Boulder, and (d) New York.

II. MATERIALS
A. Study Area

Intotal, 11 cities in the U.S. were selected to apply our model,
including seven big and four small cities. These cities include
some of the most densely populated megacities, such as New
York, Los Angeles, and Houston, as well as cities with small
population size, such as Portland and Newport News. Consider-
ing the heterogeneity of buildings, we chose cities widely located
in all regions of the U.S. (see Fig. 1), enabling us to validate the
feasibility of the height estimation model for the conterminous
U.S. With a diverse morphology (e.g., building height, area, and
the spatial patterns) of big cities (e.g., New York and Seattle)
and small cities, we can comprehensively validate the model’s
robustness and effectiveness under complex urban landscapes.

B. Datasets

1) Multisource Datasets for Model Training: We utilized a
diverse range of data sources to training building height es-
timation model in our study, including SAR, optical, terrain,
social-economical, and vector data.

We extract synthetic aperture radar (SAR) features from
Sentinel-1 and phased array type L-band synthetic aperture
radar (PALSAR) images. Sentinel-1 is equipped with a C-band
SAR, designed to provide high-quality radar imaging data for
monitoring Earth’s surface changes. This satellite provides two
types of images [i.e., ground range detected (GRD) and single
look complex (SLC)] at high resolution (i.e., 10 m) [40]. We used
the backscatter coefficient with dual polarization (V.V. and V.H.)
from GRD images to capture the structural and electromagnetic
properties of urban elements [41]. We also used PALSAR as the
auxiliary SAR features. PARSAR employs radar signals in the
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TABLE I
FEATURES WITH MULTIPLE SOURCES USED IN OUR STUDY
Category Datasets Feature Resolution  Provider Link
name
Sentinel-2 B2.B3 European
(band2. band3. o 10m Uniow/ESA/Coper  https://earth.esa.int/
B4,B8 .
band4. band8) nicus
Optical data Earth Observation
Group, Payne https://payneinstitute.
Nighttime light  light rad 463.83m Institute for Public P> /P2y )
N mines.edu/
Policy. Colorado
School of Mines
. R European
. Sentinel-1 (VV, VV, VH 10m Union/ESA/Coper  https://earth.esa.int/
Synthetic VH) 5
nicus
aperture radar
data PALSAR (HH. N N https://www.eorc.jax
5
HV) HH, HV 25m JAXA EORC ajp/ALOS/
DEM 30m NASA/USGS/JPL-  https://cmr.earthdata.
Caltech nasa.gov/
Terrain data dem, dsm,
ndsm” JAXA Earth htps://: I
DSM 30m Observation a p/SAL‘:)‘;? -eorejax
Research Center P
Population . . 5 - https://www.worldpo
data WorldPop population  92.77m WorldPop poorg/
.:relad .of single Area /
utlding https://wiki.openstree
Vector- . tmap.org/wiki/Micro
derived data Perimeter of Microsoft soft_Building_Footpr
. - Length / .
single building < int_Data

*ndsm is calculated by DSM-DEM

L-band frequency range to capture high-resolution images (i.e.,
25 m) of the Earth’s surface.

Sentinel-2 provides the spectral features as the inputs of the
model. Sentinel-2 is a pivotal Earth observation program under
the ESA’s Copernicus initiative. It equipped with the multi
spectral instrument (MSI), which can capture data across 13
spectral bands, including visible light (e.g., blue, green, and red),
near-infrared, red-edge, and shortwave infrared. We selected
Bands 2, 3, 4, and 8 at 10-m resolution. These bands provide
valuable information related to impervious surface characteris-
tics, as they capture data in the visible and near-infrared spectra
[42].

We utilized the NASA topography mission elevation data
and the advanced land observing satellite digital surface model
(DSM) to enrich our comprehension of terrain elevation and
surface conditions.

In addition to these primary satellite datasets, we incorporated
various auxiliary datasets into our modeling approach, including
WorldPop Global Project Population Data and Visible Infrared
Imaging Radiometer Suite day/night datasets. These social-
economical datasets are associated with building morphology.

We also calculated two key geometric indicators to capture
geometric features that have proven effective in building height
estimation [39]. The area and premiers of buildings were com-
puted as predictor variables.

The utilization of these diverse datasets allowed us to con-
struct a comprehensive model to estimate building heights.
Further details on the features sourced can be found in Table I.

2) Reference Height Data and Building Footprints: We col-
lected the building footprint datasets of 11 cities from Mi-
crosoft Building Footprints. The US Microsoft Building Foot-
print dataset is an open dataset provided by Microsoft in 2018,
aiming to offer geographic information about building outlines
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Fig. 2. Microsoft building height samples in the conterminous U.S.
TABLE II
BUILDING HEIGHT DATA FORM GIS GOVERNMENT PORTAL
City Datasets Link
Boulder Buildings in Boulder, Wyoming
Pasadena Buildings in Pasadena, California
Portland Buildings in Portland, Oregon
Jefferson Buildings in Jefferson County, Jefferson  1ttps:/hub.arcgis.com
Newport T e
News Buildings in Newport News, Virginia
Sauk

Buildings in Sauk, Wisconsin

and spatial locations across the United States [43]. The deep neu-
ral network model and polygonization methods were employed
for extracting building boundaries. The footprints achieved an
accuracy of 98.5% precision and 92.4% recall, providing precise
building boundaries for height estimation.

The reference building height were collected from Microsoft
and GIS government portals of cities. While releasing building
footprints, Microsoft also provided partial building height data
in 44 states (see Fig. 2). However, these height datasets primarily
focus on urban centers with high-rise buildings and do not
encompass entire cities and rural areas. For example, 2% of
buildings in New York State were released with height infor-
mation. To balance the sample representation of smaller cities,
we also collected height dataset from through GIS government
portals in some cities (see Table II).

III. METHODOLOGY

This study proposed a multisource feature fusion method to
estimated building height of 11 US cities at fine-scale (i.e.,
building scale) and assessed the accuracy and applicability of
the model through various validation methods (see Fig. 3). First,
we extracted the statistical features of multi-source remote sens-
ing datasets and calculated the geometry features of buildings.
Second, we trained the model using random forest regression
model. We evaluated the synthetic use of multisource data and
the effectiveness of statistical values in building height model.
Also, we evaluated the model accuracy in in various cities, across
different height intervals, and within distinct regions. Third, we
mapped the building-scale height in 11 cities and compared the
accuracy of our estimated building height with other existing
height products.
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Fig. 3. Overall framework.

A. Feature Preparation and Preprocessing

We used SAR, optical, socio-economical, terrain, and vector-
based features for model training. We filtered the high-quality
images and calculated the statistical values of the images before
training the model.

We constructed a multisource dataset to reflect building
properties. Firstly, we utilized the VV and VH polarization
bands of SAR (i.e., Sentinel-1), as the backscatter coefficient
reflects the reflection and scattering information of buildings
[44]. Second, we integrated visible light bands (blue, green,
red) and near-infrared bands of Sentinel-2 as input features.
Visible light provides information on building boundaries and
textures, while the near-infrared band can reflect the thermal
radiation capability of materials, which is related to building
height [17]. In addition, we utilized terrain features to reflect
surface undulations. Especially, difference of DSM and DEM
can reflect the heights of surface objects [45]. Furthermore, we
included building area and perimeter, as morphological features
of buildings are related to height according to fractal theory
[46]. In addition, we inducted population and nighttime light
data as auxiliary data, as these datasets reflect land use intensity
in relation to buildings [47]. Finally, 93 features were used in
our height estimation model.

To ensure the quality of input features, we filtered out images
in which the percentage of clouds was above 20% and calculated
the mean value of all the images in 2020. All images were
resampled to 10-m resolution for feature extraction.

To fully use the information of images, we calculated the
statistic values (i.e., mean values, mean value, standard devi-
ation, and quantiles (i.e., 5%, 25%, 50%, 75%, and 95%) of
the raster pixels intersecting with building polygon vectors as
the remote-sensing features. Subsequently, we integrated the
statistical values and vector features of each building as the inde-
pendent features to characterize different dimensions of building
attributes, providing a more comprehensive information related
to building heights.

B. Model Training and Validation

We used the random forest regression to develop the building
height estimation model. We used stratified sampling to strategy
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to extract training and testing samples, covering all U.S. states.
Within each state, we conducted stratified sampling at predefined
intervals. The number of training samples at each interval was
adjusted to correspond the height distribution in studies by Esch
et al. [48] and Li et al. [27], ensuring that the sample height
distribution closely resembled the nationwide distribution.

We conducted a sensitivity analysis of input sample sizes for
the model. We employed a ten-fold cross-validation strategy and
selected the most suitable model for height estimation in this
study, considering both the model’s efficiency and accuracy.
We used ordinary least squares regression to evaluate model
performance and quantified the height uncertainty using the
coefficient of determination (R?) (1) and the root mean square
error (RMSE) (2). We also plotted the distribution of height
values to assess the height precision in the comparison across
different height intervals and within different regions (i.e., in
CBDs and low-rise areas)

pro - oV (He = He®
(n—2)37_ 1 (Hei — Hy, )"
n L N2
RMSE = \/ Liz1 (Hn ) : )

C. Building-Scale Height Mapping

We mapped the building height of 11 U.S. cities based on the
height estimation model. We compared our height datasets with
those of other existing datasets. The building-scale height map
was aggregated to different scales (i.e., 1 km, and block scales)
(3) for comparison with Google Earth Pro building height,
building height in Li et al. [27], and building height provided
by USGS, respectively

XA
where H; and A; represent the height and area of individual

buildings, respectively, while > " A; denotes the total area of all
buildings within the statistical area (i.e., 1 km grid and block).

BH 3)

IV. RESULTS
A. Synthetic Use of Multisource Data

A synergistic model with multisource data input, including
radar, optical, terrain, socioeconomic, and vector features, is
better than a single feature-based model for predicting building
height. To quantitatively understand the role of different cate-
gories of remote sensing data in height model, we compared
the accuracy of seven models trained with different categories
of features. The results show that radar-only and optical-only
models can estimate building height at R*> of 0.56 and 0.63,
respectively [see Fig. 4(a) and (b)], indicating that radar and
optical features can reflect considerable vertical information
[33], [48]. Terrain-only model can get good results, with an
R? of 0.62, similar to the results estimated by the model using
optical features only [see Fig. 4(c)]. The nDSM feature (cal-
culated by DSM-DEM) characterizes the height of objects on
the Earth’s surface by calculating the differences between the



8306

E E
£ £
3 5
g g
2 £
- 3
g ]
S 3
g g
& IS

150 200

Referenced Height (m) Referenced Height (m)

Predicted Height (m)
Predicted Height (m)
Predicted Height (m)

(g) radar +
() radar + (1) radar + optical + optical + terrain
optical + terrain P terrain + socioeconomic = socioeconomic + vector
150 200 o s0 100 150 200 50 100 150 200
Referenced Height (m) Referenced Height (m)

Referenced Height (m)

Fig.4. Regression results of different input feature: (a) radar-only; (b) optical-
only; (c¢) terrain-only; (d) radar and optical; (e) radar, optical and terrain; (f) radar,
optical, terrain, and socioeconomic; (g) radar, optical, terrain, socioeconomic,
and vectors. The red lines represent the ordinary least squares regression line in
each city. The white lines are the one-to-one lines.

0.16) 0.15
0.09 W radar
0.22 M optical
socioeconomic
0.39 terrain
¢~ (@) vector
1] (b)
o
t
o
Q |
E o
g
2
©
Y o
L VO >0 >>2NN>2NNC 2NN Ccn
OCOUQAVIAINQATIO QO TN
agang 00 jege Qo a0 a
- o< ggoN 15 ®eT 1O ig i
E e ) W &0 CcCeom IUNEE ‘E
5 _%ml |00 gmlg Em\m‘_,l"‘E"’
2 SE R/ ®BES gE £°g°
) 2 38”7 °3 2 ¢
2 > 2% -
o
a

Fig. 5. Feature importance of the predictors used in the regression model.
(a) Contributions from each category. (b) Ranking of variable importance.

DSM and DEM, providing significant building vertical infor-
mation. However, it is worth noting that synthetic models can
obtain more accurate estimated height results. The synergistic
model using radar and optical datasets is more accurate than
single-dataset models using radar-only or optical-only features
[see Fig. 4(d)]. Furthermore, the model synthetically using radar,
optical, and terrain datasets can estimate height with R? of 0.77
[see Fig. 4(e)]. Socioeconomic datasets, including population
and nighttime-light features, slightly improved the accuracy of
the model [see Fig. 4(f)]. In addition, geometric features can
effectively increase the accuracy of the height estimation model
[see Fig. 4(g)] by providing information related to building
forms.

By further calculating the model’s feature contributions, we
quantified the impacts of different categories of features (see
Fig. 5). We further calculated the Gini index of features to
quantified contributions of different categories of datasets. The
Gini index of each feature represents its ability to ensure the
purity of the divided datasets in classification and regression
trees, which is the base learner in the random forest model [49].
Terrain and radar features contributed significantly (61%) to
the model’s accuracy according to the calculated Gini feature
importance. These two features provide vertical information
about surface objects. In the terrain category, the difference
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between the DSM and DEM distinctly depicted the height of
objects relative to the land surface, contributing the most to
the model, followed by the SAR images. SAR images provide
interferometric stripes containing the topographic information
of target regions, reflecting the height of buildings [50]. The
high resolution of the Sentinel-1 datasets (i.e., 10 m) was also
effective for building scale estimations. Vector-derived features
are also critical variables for estimating building height. Notably,
the two vector-derived features (i.e., area and perimeter) are both
in the top five in the feature importance ranking. The geometric
attributes of buildings tend to maintain specific ratios to ensure
functionality (e.g., to acquire natural light-penetrating buildings)
[51], indicating the relationship between other geometric fea-
tures and building heights. In addition to these categories, optical
and socioeconomic features provide information for estimating
the building height. Optical images contain information re-
garding ground objects, whereas socioeconomic features reflect
the built-up environment and anthropogenic activities that are
crucial for building height estimation.

B. Effectiveness of Statistical Values in Building Height
Models

The difference of RMSE between models with and without
quantiles indicated that using quantiles as input features im-
proved the accuracy of model, especially for high-rise buildings
(see Fig. 6). We respectively calculated the RMSEs for models
using solely the mean values and other statistical values (i.e.,
standard deviation, 5%, 25%, 50%, 75%, and 95% quantiles)
of the raster within building boundaries as the input features.
These calculations of RMSEs were performed on the test dataset
within various height intervals (i.e., <10 m, 10-20 m, 20-30 m,
30-50 m, 50-100 m, >100 m). The results indicate that quantiles
exhibit a relatively minor influence on accuracy enhancement
when estimating low-rise buildings. For instance, when esti-
mating heights less than 10 m, the inclusion of quantiles only
results in an improvement of RMSE by approximately 0.01 m.
However, as estimating higher buildings, the impact of quantiles
on accuracy becomes increasingly significant. The utilization of
quantiles can lead to a reduction in RMSE by approximately
3 m (comparable to the height of a single-story building) when
estimating buildings with height range of 30-50 m. Further-
more, these quantiles enhanced accuracy by approximately 6
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TABLE III
BUILDING HEIGHT VALIDATION ON 10% LEFT SAMPLES

City R? RMSE(m)
New York 0.86 4.13
Philadelphia 0.85 5.97
San Francisco 0.83 3.65
Houston 0.62 4.40
Seattle 0.79 331
Denver 0.77 2.85
Jacksonville 0.51 3.11
Portland 0.62 2.57
Louisville 0.61 3.11
Boulder 0.61 3.16
Newport News 0.56 4.37
All 11 cities 0.88 4.32

and 7 m in estimating buildings with height of 50-100 m and
>100 m, respectively. The comparative results demonstrate the
utility of the quantiles as input features in height estimation
model.

C. Validation of the Estimated Building Height

To evaluate the model’s accuracy and its robustness across
different urban scenarios and spatial contexts, we evaluated
the model accuracy in various cities, across different height
intervals, and within distinct regions (i.e., CBDs and low-rise
building dominated areas). Details of the model spatial transfer-
ability can be found in Section V-B.

1) Performance in Cities: Overall, the model can reasonably
estimate building heights in both big and small cities, demon-
strating the model application in cities with different sizes. The
R? between estimated and referred building heights is 0.88, and
the RMSE is 4.32 m (i.e., around the height of one story of
3 m) (see Table III) in total 11 cities. In big cities, the estimated
heights agree with the reference heights. The R? of big cities is
close to 1 (e.g., 0.83 in San Francisco, 0.85 in New York, and
0.79 in Seattle), with RMSEs of approximately 3 m. However,
although R? in New York reached 0.85, the RMSE was relatively
large (9.97 m), which was caused by the underestimation of
skyscrapers in the Manhattan region (i.e., the central area of New
York City). In small cities, the reference heights were consistent
with the predicted heights. The R? in small cities reached around
0.6, and the height uncertainty (i.e., RMSE) ranged from 2.57
to 4.37 m, which is usually lower than that for one story.

2) Performance on Different Height Intervals: The fre-
quency distributions of the estimated and reference heights
were in good agreement in all height intervals in all 11 cities,
suggesting good model performance in estimating both high-
rise and low-rise buildings (see Fig. 7). The line of the mean
estimated heights in all height classes (with an interval of
1 m) of the reference heights was close to the one-to-one
line [see Fig. 7(a)]. However, for high-rise buildings (above
30 m), the estimated heights fluctuated violently, indicating an
increase in the uncertainty of predicting the height of high-rise
buildings. The line has a small bump at height intervals of
less than 10 m, indicating a slight overestimation of low-rise
buildings.
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The distribution of estimated heights and reference heights
were well matched in each big and small cities [see
Fig. 7(b)-(1)], suggesting the applicability in both high-rise
and low-rise dominated cities. As for the big cities with more
high-rise buildings, their mean building height ranged from 13
to 15 m. The mean difference between the two datasets for these
cities was approximately 0.6 m. In particular, the building in
New York City was notably higher than other cities, with a mean
height of 32.14 m. The difference between the estimated and
reference height in New York was 0.01 m, demonstrating that
our model is applicable to such cities dominated by high-rise
buildings. Besides, in small cities with the mean height about
5—-8 m, the mean difference between estimated and the reference
heights was about 1 m (e.g., the difference was only 0.24 m in
Louisville.). The results showed that the model also achieves
relatively accurate results in areas dominated by low-rise
buildings.

3) Model Performance in CBD and Low-Rise Areas: Our
dataset showed the consistency with the reference height in
both CBDs and low-rise areas, confirming that our model can
provided heights in dense high-rise building scenarios and sparse
low-rise building scenarios. We plotted the distribution of build-
ings in these two regions separately, and compared them with
reference height and results in Li et al. [27]. We distinguished
the buildings in the 5 km x 5 km extent centered on the CBDs
[28], and the remaining were regarded as located in the low-rise
building dominated areas. The number of buildings at all height
intervals (i.e., 5 m) of our estimated height datasets was close to
that of the reference height datasets in the CBDs [see Fig. 8(a)].
The mean difference between our estimated heights and the
reference heights was approximately 0.3 m in the CBDs, which
outperforms the results of Li et al. [27] (approximately 8 m). For
buildings in low-rise building-dominated areas, our estimated
height performed better than the results of Li et al. [27] [see
Fig. 8(b)]. The mean difference between our height datasets
and the reference height was approximately 2 m in low-rise
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Fig. 9.

Map of building height in example cities.

building-dominated areas, which is closer to the reference height
datasets.

D. Three-Dimensional Morphology Within the Cities

The underlying urban surface showed a distinct roughness
owing to variations in building heights according to our building-
scale height results (see Fig. 9). The height of buildings in large
cities and small cities show different height patterns. The average
height of buildings in big cities was higher than that of buildings
in small cities. For instance, in big cities, the average building
height usually exceeds 10 m, whereas, in small cities, the average
building height is generally less than 10 m. In addition, the height
of the buildings decreased from the city center to the surround-
ing fringe areas within the cities. Generally, tall buildings are
located in the core areas of cities (e.g., CBDs), whereas low-rise
buildings are dominant on the fringes of cities.

V. DISCUSSION
A. Cross-Validation With Other Existing Height Datasets

1) Validation at the Building Scale: The results for both big
and small cities showed relatively high agreement regarding
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Fig. 10.  Scatter plots between measured height on Google Earth and estimated
heights in (a) seven big cities and individual (b-h) big and (i-1) small cities.

accuracy compared to the manually measured heights from
Google Earth Pro. We measured the height of 50 buildings in
each city with the help of 3D ruler tool in Google Earth Pro.
The total R? was 0.70, and the total RMSE was 17.50 m, with
the test samples randomly selected from the entire city [see
Fig. 10(a)]. The model characterized the building heights in
big cities with an R? of approximately 0.70 [see Fig. 10(b)-
(h)]. The heights of buildings in big cities ranged from low to
high, increasing the uncertainty of the estimated heights. We
found that buildings below 50 m in height could be accurately
estimated. The results may be underestimated or overestimated
when building heights exceed 50 m. The model also accurately
estimated building heights in small cities [see Fig. 10(1)—(1)].
The R? of small cities was approximately 0.85, and the RMSEs
of small cities were approximately 6 m. In small cities, building
heights were mostly concentrated at approximately 10 m (e.g.,
Newport News, Louisville, and Boulder), above which a slight
overestimation was observed. Notably, buildings that could be
measured on Google Earth were located mainly in the city center,
where high-rise buildings with larger height values are domi-
nant; therefore, the RMSEs were relatively larger, especially in
big cities.

2) Validation at 1-km Resolution: The spatial patterns of our
estimated and reference heights demonstrate the spatial consis-
tency of the two datasets at a resolution of 1 km (see Fig. 11).
The reference building height was collected and aggregated from
Microsoft buildings with height in their attributes. The height
result in Li et al. [27] was estimated at 1 km-scale using Earth
observation datasets with random forest algorithm. Compared
with the heights in Li et al. [27], our estimated results are similar
to the reference height in terms of the spatial patterns of building
heights in most representative cities. Our results can accurately
depict high-rise buildings within cities [e.g., Manhattan in New
York, see Fig. 11(a) and the CBD in Houston, see Fig. 11(b)],
where high-rise building-dominated areas are primarily under-
estimated. For low-rise buildings, slight overestimations exist
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in both our results and the height in Li et al. [27], although
it is worth noting that the overestimation is more noticeable
in Li et al. [27]. In addition, our results accurately depict the
height from the CBDs to the surrounding areas in big and small
cities, showing noticeable spatial heterogeneity across cities. For
example, in Seattle, high-rise and low-rise building regions were
similar to those in the reference heights [see Fig. 11(c)].

3) Validation at Block Scale: Our estimated results are con-
sistent with the USGS product [34] for different height cate-
gories, suggesting the high accuracy of our predicted heights.
The USGS building height dataset was acquired from the Na-
tional Aeronautics and Space Administration (NASA) Shuttle
Radar Topography Mission. It provides a qualitative description
of building height within each block in the US, including cate-
gories of “Low (primarily 1—2 story buildings),” “Low-medium
(primarily 2-3 floor buildings),” “Medium (primarily 3—4 story
buildings),” “Medium-high (primarily 3-5 story buildings),”
“High (primarily 4-9 story buildings),” “Very high (buildings
average 10 stories or higher).” We plotted the USGS categories
for all blocks within 11 cities, assuming that the height of each
story is 3 m [52], and compared USGS height to estimated
heights.

Most of our estimated height results were in the corresponding
height ranges identified by the USGS categories, especially in
medium, medium-high, and high (see Fig. 12). However, some
uncertainties existed in the low and very high categories. Our
estimated heights are higher than those of the USGS products in
the Low category. In addition, underestimations existed in the
very high category. Notably, uncertainty was also observed in
the low and very high categories in the comparison between the
reference and USGS heights.

B. Spatial Transferability for National-Scale Mapping

Spatial transferability reflects the ability of models that train
on a certain region and applied to a new region. The method
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proposed in this research has the potential for estimating building
heights in different regions in large scale.

We ensure model transferability by combining synthetic fea-
tures and a stratified sampling approach. First, we enhance
spatial transferability by incorporating diverse feature cate-
gories, such as nDSM (DSM-DEM), building area, and building
perimeter, directly reflecting building structure. These features
significantly contribute to building height estimation (see Fig. 5).
Second, we employ stratified sampling within each state to cover
a wide range of height distributions, including samples from
urban centers to rural areas. Our strategies efficiently capture
spatial patterns and sample diversity, enhancing accuracy in
supervised learning. Our approach offers a robust way to acquire
training and testing data features, ensuring reliable accuracy.

In Section IV, we compared our estimated heights within
different cities, height intervals, and urban scenarios (CBDs
and low-rise areas). Our method’s transferability is evident
according to the results. First, estimated heights across cities of
various sizes and patterns showed the consistency with reference
height (i.e., R*: 0.51-0.86, RMSE: 2.57-5.97 m). For a megacity
like New York with approximately 800 skyscrapers, our method
can also achieve an R? of 0.86. Second, estimated heights within
height intervals closely matched reference data, showcasing our
model’s ability for high and low buildings across the U.S. Third,
our model provided reliable height estimates across diverse
cityscapes. In CBDs with high building density, our method
achieves consistent results with reference data while traditional
shadow-based methods often yield uncertain height estimates. It
also performed well in sparser, low-rise buildings (e.g., buildings
in city edges or rural areas).

To assess the applicability of our method for height estimation
in urban areas with different building density levels, we cal-
culated the model accuracy in different building density zones
within the cities. We chose New York, Houston, and San Fran-
cisco for this experiment because buildings in these developed
cities are more concentrated where shadows and layovers are
more likely to introduce biases in estimation results. First, we
converted building polygons into points and calculated the den-
sity for each building. Second, we categorized building densities
into four levels according to quantiles; for example, building
density in the 0.75-1.00 quantile range represents buildings in
the areas with the highest building density. We calculated the
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TABLE IV
BUILDING HEIGHT VALIDATION ON 10% LEFT SAMPLES IN OTHER FIVE CITIES

City States R? RMSE(m)
Baltimore MD 0.78 3.71
Tempa FL 0.62 4.40
Columbus GA 0.58 2.89
New Orleans LA 0.78 5.30
Syracuse LA 0.79 3.31

R? and relative error (i.e., the proportionate difference between
predicted value and the corresponding actual value) for buildings
within each density quantile range (see Fig. 13). The results
showed that in high-density areas, the R? is relatively low (0.65);
however, the accuracy of the relative error is comparatively
good (0.18). This indicates that although the accuracy in the
high-density area is lower than that in other areas, because
the influence of shade and layover, the overall estimation is
acceptable. This may because that our multisource feature fusion
method can complement and correct errors present in different
data sources. For example, SAR data can compensate for the
missing spectral information in optical data shadows and correct
the errors caused by shadows [53]. At the same time, the night
light data and population data we choose are not affected by
the shadow, and can also mitigate the impact of the shadow and
layover [54].

To further evaluate the transferability and the applicability to
use for continental scale building height mapping, we tested the
accuracy in five other cities in U.S. (see Table IV). Baltimore,
Tempa, and New Orleans are relatively larger, with population of
about 590000, 399700, and 383 000, respectively. And Colum-
bus and Syracuse are relatively small, with population of about
196500 and 142 000. The estimated heights are consistent with
the reference height in these cities. The R? of these cities ranges
from 0.58 to 0.80, with a highest R? reached 0.79 in Syracuse,
Louisiana. And the RMSEs All cities have RMSE below 5.3 m,
which is also relatively small.

VI. CONCLUSION

This study proposes a method for mapping building-scale
heights over continental or regional areas. By incorporating
multisource remote sensing features and calculating statistical
values of features, our model can effectively estimate the heights
of buildings. The model R? achieved 0.82 and an RMSE of
3.39 m when training with multi-source datasets (i.e., SAR,
optical, terrain, social-economical, vector-based datasets). We
also found the effectiveness of statistical values in building
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height estimating. especially for the higher buildings (i.e., the
RMSE decreases by 3-8 m when estimating buildings that
exceed 30 m). Our estimated heights are consistent with the
reference height showed by the evaluation of model accuracy
in in various cities, across different height intervals, and within
distinct regions (i.e., CBDs and low-rise building dominated
areas). The R? was approximately 0.80 and 0.60 in big and small
cities, respectively.

We mapped the 3-D map of the 11 U.S. cities using our
height estimating model and found a distinct roughness of the
underlying surface. The mapping results also showed the supe-
riority of our dataset comparing to datasets from Google Earth
Pro, height in [27], and USGS height. Our estimated heights
showed consistency (i.e., R > 0.70 in big and small cities) with
the heights manually measured from Google Earth Pro in the
building-scale comparison. Regarding the 1 km scale validation,
the estimated height better depicted the spatial pattern and was
closer to the reference dataset than to the heights predicted by
Li et al. [27]. And most of our estimated height results were
within the corresponding height range identified by the USGS
categories.

Our method can be used to acquire regional or global building
height datasets, improving the fineness and the spatial extent of
the three-dimensional urban morphology estimation. The results
exhibited our method’s satisfactory and accuracy of our method,
indicating that the method based on multisource datasets has
great potentials for building-scale height mapping at large scale.
The method proposed in this study can build a global height
estimation model. Especially, the method is useful for estimating
building heights in nations with limited building-scale height
datasets.

With the help of 3-D building information, we can further
understand the complex interactions among urban form, climate,
and human activities [55], [56], [57]. Using building height
datasets, the upward and outward growth of cities can be de-
picted, providing a deeper understanding of the urbanization
process. We can also analyze the relationship between urban
morphology and local climate by calculating urban canopy
parameters using height datasets [58], [59], [60], [61]. In ad-
dition, we can analyze anthropogenic activities and improve the
accuracy of estimating socioeconomic factors (e.g., population,
carbon emissions, and energy use) with the help of building
height datasets [62], [63], [64], [65], [66].
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