
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 8581

Object Detection by Channel and Spatial Exchange
for Multimodal Remote Sensing Imagery
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Abstract—Smart satellites and unmanned aerial vehicles (UAVs)
are typically equipped with visible light and infrared (IR) spec-
trum sensors. However, achieving real-time object detection uti-
lizing these multimodal data on such resource-limited devices is a
challenging task. This article proposes HyperYOLO, a real-time
lightweight object detection framework for multimodal remote
sensing images. First, we propose a lightweight multimodal fusion
module named channel and spatial exchange (CSE) to effectively
extract complementary information from different modalities. The
CSE module consists of two stages: channel exchange and spatial
exchange. Channel exchange achieves global fusion by learning
global weights to better utilize cross-channel information corre-
lation, while spatial exchange captures details by considering spa-
tial relationships to calibrate local fusion. Second, we propose an
effective auxiliary branch module based on the feature pyramid
network for super resolution (FPNSR) to enhance the framework’s
responsiveness to small objects by learning high-quality feature
representations. Moreover, we embed a coordinate attention mech-
anism to assist our network in precisely localizing and attending to
the objects of interest. The experimental results show that on the
VEDAI remote sensing dataset, HyperYOLO achieves a 76.72%
mAP50, surpassing the SOTA SuperYOLO by 1.63%. Meanwhile,
the parameter size and GFLOPs of HyperYOLO are about 1.34
million (28%) and 3.97 (22%) less than SuperYOLO, respectively.
In addition, HyperYOLO has a file size of only 7.3 MB after the
removal of the auxiliary FPNSR branch, which makes it easier to
deploy on these resource-constrained devices.

Index Terms—Multimodal feature fusion, remote sensing image
(RSI), RGB-infrared object detection, super resolution (SR).

I. INTRODUCTION

OBJECT detection is an important task in the field of
remote sensing image (RSI) processing, which not only

contributes to applications in monitoring natural disasters and
military reconnaissance but also has far-reaching impacts on
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urban planning and forest management. Traditional image fea-
ture extraction [1], [2] is important in computer vision, but its
performance in object detection is limited by complex visual
patterns and manual engineering. On the contrary, deep learning
significantly improves detection performance by automatically
learning discriminative features. In recent years, due to the
rapid development of deep learning technology, many excellent
algorithms [3], [4], [5], [6] have emerged in the field of object
detection.

However, compared to general object detection tasks, RSIs
have various characteristics such as complex backgrounds, small
and densely arranged objects, and shadow occlusion. Therefore,
it is necessary to adjust and optimize the model structure ac-
cording to the characteristics of RSIs. Traditional object detec-
tion algorithms [7], [8], [9] are typically designed based on a
single modality, primarily utilizing the visual information from
images for detection, lacking the assistance of other modalities’
information. This may result in limited feature representation
capability and difficulty capturing the diversity and contextual
information of objects in complex scenes. In addition, different
sensors may encounter various defects and noise when acquiring
target detection data [10]. These sensors can be influenced by
factors such as weather conditions, terrain, obstructions, and
shadows, leading to a decrease in image quality or incomplete
target information. Therefore, relying solely on a single modality
for target detection may have certain limitations. Furthermore,
certain targets may be difficult to discern in specific modalities
but may become more apparent in other modalities. For instance,
in RGB images, some targets may blend with the background
color, making them challenging to distinguish. However, in
IR images, these targets may exhibit distinct thermal features
compared to the surrounding environment, making them easier
to identify. By fusing information from both RGB and IR modal-
ities, it is possible to enhance the visibility and distinctiveness of
targets under different spectra. Manish et al. [11] improved the
performance of detection through the introduction of a fusion
strategy for multimodal data. To discover potential correlations
between different modalities, many researchers employ complex
fusion modules, such as transformer [12] and illumination-
aware [13], which lead to increased computational complex-
ity. Similarly, widely adopted fusion methods, encompassing
feature-level and decision-level fusion [14], [15], [16] may lead
to redundant computations among different modality branches
or the introduction of additional backbone networks, thereby
restricting the deployment of the model. The recent development
direction of remote sensing object detection algorithms [9], [17],
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[18] involves the use of super resolution (SR) technology to learn
the mapping relationship from low resolution (LR) images to
high resolution (HR) images, enabling the reconstruction and
detection of LR images. Although this approach can improve
the performance of small target detection by increasing the
detailed information in the image, the benefit comes at the cost
of increased model complexity, introducing a certain level of
intricacy and time overhead. Zhang et al. [19] introduced an
auxiliary SR branch to guide the detector in learning high-quality
HR representations, facilitating the distinction of small objects
from the LR input background. It is worth noting that many
upsampling methods, like bilinear and nearest-neighbor inter-
polation, estimate new pixel values from nearby pixels. While
these increase image size, they may lose texture details, and thus,
hinder small object reconstruction in LR images. In addition,
many methods fail to fully utilize multiscale information when
increasing the size of images, which limits their performance.

In recent years, the you only look once (YOLO) series of
algorithms [7], [20], [21], [22], [23] has emerged as a repre-
sentative in the field of object detection due to its rapid, accu-
rate, and proven engineering capabilities. To further enhance
real-time performance and achieve efficient object detection in
computationally constrained environments, several lightweight
and real-time improvement algorithms based on YOLO have
emerged. Zi et al. [24] proposed TP-YOLO, integrating self-
attention mechanisms and omnidimensional dynamic convolu-
tion (ODConv) [25] into YOLOv8 [23] to improve small target
detection while reducing parameters and computational com-
plexity. However, ODConv may not be suitable for sparse image
processing since it requires computing unique convolution ker-
nels for each position and channel, making it difficult to achieve
stable and reliable convolution operations with sparse input data.
In addition, Nvidia’s acceleration library, TensorRT, is not very
friendly toward ODConv operations. Zhang et al. [26] intro-
duced FFCA-YOLO, an improved version of YOLOv5 [22], to
address the issue of insufficient feature representation in small
object detection, achieving performance enhancement through
feature fusion and spatial context-aware modules while mini-
mizing complexity. However, FFCA-YOLO is an algorithm de-
signed based on a single modality, and its detection performance
may not meet expectations when encountering extreme weather
conditions or severe target occlusion.

In light of the aforementioned challenges, we propose a real-
time object detection framework for multimodal RSIs that excels
not only in having fewer parameters and lower computational
complexity but also in delivering exceptional detection accu-
racy. First, we choose the YOLOv7tiny [7] architecture as our
detection baseline. It has a smaller network structure and fewer
parameters, making it easier to deploy and run with limited com-
putational resources. Second, we propose a novel lightweight
fusion module employing channel and spatial exchange (CSE)
to ensure that each modality retains its unique features while
effectively integrating the prominent features of other modali-
ties. Moreover, an efficaciously assisted branch module based on
the feature pyramid network [8] for super resolution (FPNSR),
which uses the PixelShuffle (PS) upsampling [27] method and

multiscale feature information, is designed to preserve the fea-
tures of small targets in LR input within the backbone network.
Meanwhile, it is necessary to remove the FPNSR branch to
avoid additional computational overhead in the inference and
deployment stages. Finally, we introduced a coordinate attention
(CA) [28] mechanism to suppress interference from complex
backgrounds on small objects, while focusing on the regions of
interest to enhance boundary accuracy and preserve fine details.
In summary, the main contributions of our article are as follows.

1) We propose a computationally efficient lightweight mul-
timodal fusion method that symmetrically and compactly
combines internal information in a bidirectional manner,
utilizing spatial and channel relationships to ensure both
upper and lower branches focus on each other’s comple-
mentary information.

2) We designed the FPNSR auxiliary branch to address in-
conspicuous features in small targets within LR inputs,
utilizing SR techniques to enhance the model’s ability to
learn HR feature representations and improve the identi-
fication of small objects in cluttered backgrounds.

3) The FPNSR branch is a flexible component, guiding the
network to enhance the detector’s responsiveness to small
targets during training, and it can be removed during de-
ployment to reduce computational demands while main-
taining target detection accuracy.

4) We introduce the CA mechanism to enable our frame-
work to focus on specific regions within the target image,
thereby more effectively capturing crucial information
and achieving precise localization and recognition of the
target.

II. RELATED WORK

A. Remote Sensing Object Detection

HR satellite RSIs usually contain rich information about
ground objects, making the high-precision extraction of these
objects through the application of remote sensing object detec-
tion a current hot research direction [29], [30]. Object detection
algorithms often fall into two categories: two-stage methods
based on anchor boxes, such as Faster R-CNN [31] and Mask
R-CNN [32], and single-stage detectors like SSD [33] and
the YOLO series [22], [34], [35], among others. Recently,
some anchor-free detectors, such as the fully convolutional
FCOS [36], and transformer-based algorithms like deformable
DETR [37] and Swin Transformer [38], have also achieved
remarkable results. The two-stage detection method consists
of two core components: the feature extraction network and
the candidate region generation network. Initially, the feature
extraction network identifies the regions of interest in the image.
Subsequently, the candidate region generation network further
processes the features to generate potential target candidate
regions. While this two-stage approach achieves high accuracy, it
comes at the cost of slower detection speed. On the contrary, the
single-stage detection method directly predicts the category and
location information of the object without generating candidate
regions to improve the detection speed. Given the significant
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differences between general objects and remote sensing objects,
researchers have proposed various solutions to address the issue
of small object detection in remote sensing imagery for the
one-stage detector YOLO series networks effectively. Zakria
et al. [39] proposed an improvement for the YOLOv4 [21]
network by introducing a nonmaximum suppression threshold
classification setting and an anchor box assignment scheme.
Lin et al. [30] introduced a decoupled detection head and
terminal attention mechanism to enhance the target localiza-
tion performance of the YOLOv5 framework. Yi et al. [40]
used a visual transform for feature extraction and designed an
attention-guided bidirectional FPN to improve the performance
of YOLOv8 for small target detection in RSIs.

Although the aforementioned improvement methods have
made progress in certain aspects, they only utilize unimodal data
and fail to fully exploit the inherent value of multimodal data.
The vibrant advancement of imaging technology offers greater
opportunities for collecting multimodal data in RSIs presenting
new possibilities to improve the accuracy of RSI analysis and
detection.

B. SR in Object Detection

Existing methods for small object detection in RSIs mainly fo-
cus on two aspects: context information and multiscale process-
ing [41], [42], [43]. However, these methods overlook a crucial
issue, which is the severe loss of feature information for small
objects after multiple downsampling operations in RSIs, as well
as the inadequate preservation of HR contextual information. As
a result, the current models exhibit poor detection accuracy for
RSIs. The SR technology is a highly regarded research direction
in the fields of computer vision and image processing [44],
[45]. In recent years, it has made significant advancements and
found widespread application, particularly in the domain of RSI
processing [18]. Ji et al. [9] introduced a two-branch network
for simultaneous SR and target detection, where the SR branch
generates HR feature maps for use in the detection branch, and
jointly optimizes the SR and target detection losses to train the
network. Courtrai et al. [46] improved small object detection in
RSIs by using generative adversarial networks (GANs) and the
EDSR [47] network to generate HR images for input into a detec-
tor. Although the above methods address the challenge of small
target detection to some extent, they are not suitable for practical
deployment of models in real-time application scenarios due to
the introduction of a large number of additional computations,
including the complexity associated with SR techniques and the
fact that HR features increase the complexity of the detection
model.

Recently, Wang et al. [48] and Zhang et al. [19] proposed an
SR module, respectively, which can maintain an HR representa-
tion even with LR inputs, while reducing model computation in
segmentation and detection tasks. However, a limitation of these
SR modules is their underutilization of multiscale features. In
SR networks, multiscale features play a crucial role in enhancing
reconstruction quality and preserving fine details. By integrating
information from different scales, the network can better capture
subtle changes and texture details in the image. Building upon

these structures, we propose a multiscale SR module, namely, the
FPNSR module, that achieves high-quality LR reconstruction to
preserve HR representation by integrating features from multiple
scales.

C. CA Mechanism

The CA mechanism is a computational unit used to enhance
the feature representation capability of convolutional neural
networks (CNNs). Its design purpose is to assist the model in
focusing on important locations and content while addressing
the potential issue of position information loss in the squeeze-
and-excitation (SE) [49] attention module. To counteract spatial
information loss caused by 2-D global pooling layers, the CA
mechanism utilizes two 1-D networks to generate X and Y
1-D features, producing corresponding attention features aligned
with the spatial characteristics of the image. Specifically, as
illustrated in Fig. 2, the CA mechanism utilizes two 1-D global
pooling layers to extract directional features along the vertical
and horizontal directions from image features. Then, these direc-
tional feature maps are concatenated and subjected to dimension
reduction using a 1×1 convolution, followed by nonlinear acti-
vation operations, generating a new feature map. Subsequently,
the feature map is split along the spatial dimension, resulting
in two split features. Each split feature is further subjected to
dimension expansion using a 1×1 convolution and finally com-
bined with a sigmoid activation function to obtain the final atten-
tion vector feature. This operation effectively captures long-term
dependencies in image features along both directions, preserving
spatial information. The combination of these attention vector
features with the original image is achieved through elementwise
multiplication, resulting in image features weighted by attention
scores which indicate the degree of emphasis on the regions of
interest within the image features.

The CA mechanism not only captures crucial features across
channel dimensions but also possesses the ability to perceive
and extract spatial coordinate features in different directions,
effectively highlighting objects of interest in the input features.
In addition, with a low computational cost and complexity, the
CA mechanism can be efficiently utilized in object detection
models, achieving powerful enhancement of features.

III. PROPOSED METHOD

A. Baseline Architecture

Designed for edge computing devices, YOLOv7tiny is a
model in the YOLOv7 series that boasts a smaller model size
and faster inference speed. As shown in Fig. 1, the YOLOv7tiny
network architecture consists of three main components: the
Backbone, Neck, and Head. The Backbone section is composed
of several Convolution-BatchNorm-LeakyReLU (CBL) mod-
ules, UP modules, MP modules, and efficient layer aggregation
network (ELAN) [50] modules. The UP is built using CBL
modules and upsampling operations. The MP performs max
pooling operations. The ELAN, composed of multiple stacked
CBL modules and featuring a two-branch structure, contributes
to the reduction of gradient propagation delay and information
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Fig. 1. Overview of the proposed HyperYOLO framework. Our new contributions include 1) the CSE fusion module, 2) the assisted branch module based on
the FPNSR, 3) the only detector designed to enhance small-scale objects, and 4) the CA mechanism added before the SPPCSPC module.

loss. The spatial pooling pyramid cross stage partial convolution
(SPPCSPC) modules, based on the spatial pyramid pooling
(SPP) [51] modules, add a “residual path” and stack it with
the output of parallel max pooling layers with different kernel
sizes, capturing information at multiple scales. The Neck section
employs the path aggregation network (PANet) [52] structure,
introducing both top–down and bottom–up path aggregation to
merge low-level details with high-level semantic information.
The Head section adopts CBL modules for channel adjustment
to predict bounding box positions, class information, and con-
fidence scores. To enhance the model’s ability for target local-
ization and scale perception, we have introduced a CA attention
module in the preceding layer of the SPPCSPC. This module
can adaptively adjust the weights of different channels in the
feature map, ensuring that channels crucial for the current task
receive more attention, while less important channels receive
less attention. In addition, we removed two detectors from the
PANet structure, leaving only the one that enhances small-scale
objects (small-scale detector). The purpose of this modification
is to expedite the convergence speed of our network in the task

of detecting small objects in RSIs, while simultaneously meet-
ing the requirements of model iteration more quickly, without
sacrificing accuracy.

B. CSE Multimodal Fusion

The CSE fusion module can learn shared and complementary
features between different modalities by exchanging channel
and spatial information, thereby achieving better feature ex-
traction and interaction. The architecture of the CSE module is
depicted in Fig. 3. Due to the use of the auxiliary training branch,
the first step is to downsample both input modalities, IRGB, IIR ∈
RC×H×W to FRGB, FIR ∈ RC×H

n ×W
n , where n represents the

downsampling factor. The enhanced features, denoted as FeRGB

and FeIR, are obtained by applying a 1×1 convolution to FRGB

and FIR, followed by elementwise multiplication with them-
selves, which are formulated as

FeRGB = (Conv1×1(FRGB))⊗ FRGB (1)

FeIR = (Conv1×1(FIR))⊗ FIR (2)
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Fig. 2. Network architecture of the CA module. C represents the number of
channels in the feature map.H andW denote the height and width of the feature
map, respectively. r is expressed as the reduction factor.

where ⊗ represents elementwise matrix multiplication. Apply
average pooling and max pooling separately to the features
obtained after concatenating two enhanced features, and then
concatenate the results again to acquire F

Fe = Concat(FeRGB, FeIR) (3)

F = Concat (AP (Fe) ,MP (Fe)) (4)

where Concat(·) indicates the concatenation operation along the
channel axis. The average pooling and max pooling are used
to preserve more feature information. F represents the global
contextual features in the IRGB and IIR channel dimensions. After
applying the MLP, which consists of two linear layers and two
activation functions (ReLU and Sigmoid) to F , it is divided
along the channel axis to obtain the channel attention vectors
WC

RGB ∈ R3C and WC
IR ∈ RC

WC
RGB

,WC
IR = fsplit (fmlp(F )) (5)

where WC
RGB and WC

IR , respectively, represent the attention
weights on the RGB input feature and IR input feature channels.
The introduction of these weights allows the model to better
utilize the cross-channel information correlation, thereby en-
hancing the processing capability for different channel features.
Through channel exchange, the two input modal features can
suppress irrelevant backgrounds while enhancing the represen-
tation capability of object features. Channel exchange focuses on
learning global weights for global fusion, and further introduces
spatial exchange to calibrate local fusion. Fe is first fed with
two 1×1 convolution layers assembled with ReLU and Sigmoid
functions to obtain the feature map S, which is then divided into
two spatial weight maps WS

RGB
∈ R

H
n ×W

n and WS
IR ∈ R

H
n ×W

n

S = Sigmoid (Conv1×1 (ReLU (Conv1×1 (Fe)))) (6)

WS
RGB

,WS
IR = fsplit(S). (7)

The bimodal inputs integrate global feature information
through embedding into the channel and spatial vector weights
to, respectively, attain RGBout and IRout

RGBout = FeRGB ⊗WC
RGB

+ FeRGB ⊗WS
RGB (8)

IRout = FeIR ⊗WC
IR + FeIR ⊗WS

IR. (9)

This weighted fusion mechanism allows the model to fully
leverage the correlations between features from different chan-
nels and spatial positions, thereby enabling the output features
to better reflect the structural details and semantic information
of the image. RGBout and IRout need to be added to the original
modality features and fed into the 1×1 convolution separately
to obtain more comprehensive feature representations

Fout1 = Conv1×1 (FRGB + RGBout) (10)

Fout2 = Conv1×1 (FIR + IRout) . (11)

The final fused feature of the Backbone’s input, achieved
by dynamically weighting the complete features of different
modalities using an attention mechanism, is represented as

Fo = CA (Concat (Fout1, Fout2)) (12)

where CA(·) refers to the CA attention network, which facil-
itates the fusion by dynamically assigning attention to spatial
positions.

C. Feature Pyramid Network for Super Resolution

In deep neural networks, shallow features typically have
higher resolution and rich geometric information but smaller
receptive fields and lack semantic information. Conversely, deep
features have larger receptive fields and rich semantic informa-
tion but relatively lower resolution and less geometric informa-
tion. To preserve the features of small targets as much as possible
in the backbone network, we adopt a feature pyramid structure
to construct the FPNSR auxiliary branch. By introducing lateral
connections and upsampling operations, we fuse feature maps
from different scales to generate features with high-level se-
mantic information, providing clearer texture details for the SR
network. The flexible FPNSR branch is composed of a simple
encoder–decoder structure, where the encoder captures texture
details at various scales to generate a high-semantic lowest
level feature, and the decoder is responsible for upsampling the
lowest level feature. Its role during training is to facilitate the
backbone in constructing HR feature representations, enhancing
the detection model’s responsiveness to small objects.

For the FPNSR branch, we select the results from the fifth,
seventh, and 11th modules of the Backbone network as the low-
level, midlevel, and high-level features, respectively. Shallow
layers in neural networks typically excel at capturing low-level
features such as edges and textures, while as the network depth
increases, later layers gradually capture more abstract high-level
features such as object shapes and parts. These selected features
are utilized as inputs for FPNSR due to their provision of
diverse and valuable feature representations at various levels.
As depicted in Fig. 4, the high-level feature is upsampled
and concatenated with the midlevel feature processed by the
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Fig. 3. Architecture of the CSE fusion module.

Fig. 4. FPNSR structure of HyperYOLO. The FPNSR can be considered as a
simple encoder–decoder model.

convolution-GELU (CG) module (1×1 convolution) before be-
ing fed to the ELAN-CG feature enhancement module, which
is constructed with the ELAN structure consisting of seven
stacked CG modules. The CG module includes a convolution
and GELU [53] activation function. The ELAN-CG module
utilizes a two-branch structure, with the first branch employing
a CG module (1×1 convolution) for channel adjustment, and
the second branch initiating with a CG module (1×1 convo-
lution) followed by four CG modules (3×3 convolution) for
feature extraction. Ultimately, the features from both branches
are concatenated to yield the final result of feature extraction,
enhancing the expressive capacity of features without modifying
the width and height of the input features through the regulation
of the shortest and longest gradient paths. After upsampling the
output of the first ELAN-CG module and concatenating it with
the low-level feature, the concatenated result is fed to another
ELAN-CG module to generate the output LR feature of the
encoder.

In the decoder, the LR feature is upsampled into the HR
feature using the BSRN [54] network, which employs blueprint
separable convolution (BSConv) [55] to effectively reduce re-
dundant computations and uses PS upsampling method that
combines channel information to fill pixels. The use of the GELU

activation function ensures consistency with the BSRN network
in terms of representation capacity and nonlinear characteristics.
The BSRN network performs exceptionally well in SR tasks,
particularly in reconstructing high-quality and visually pleasing
HR images from LR inputs. In addition, the BSConv technique
offers advantages in situations where computational resources
or time constraints are important. In our FPNSR structure,
refraining from using batch normalization is more beneficial
for preserving the original contrast and feature information of
the image. The output size of the FPNSR module is twice that
of the downsampled input image.

D. Loss Function

The total loss function of our network, composed of detection
lossLo and FPNSR lossLs, is defined by the following formula:

Ltotal = αLo + βLs (13)

where α and β act as balance coefficients, enabling flexible
control and adjustment of the training task. Since the network’s
input is RGB and IR multimodal data, we need to split the results
of FPNSR into three channels for Srgb and one channel for Sir.
Ls is obtained by adding the L1 loss between the input images
Irgb and Iir with Srgb and Sir, respectively, which is expressed
as

Ls =‖ Irgb − Srgb‖1 + ‖ Iir − Sir‖1 (14)

The loss function Lo encompasses three distinct components:
the object detection loss Lobj (reflecting the confidence score of
object presence), the classification loss Lcls, and the bounding
box regression loss Lloc, which is expressed as follows:

Lo = λ1Lcls + λ2Lobj + λ3Lloc (15)

where λ1, λ2, and λ3 are weight coefficients used to adjust the
influence of each loss term on the overall loss function.

IV. EXPERIMENTS AND RESULTS

A. Datasets

The experiment uses two publicly available datasets: the vehi-
cle detection in aerial imagery (VEDAI) [56] and the Bayberry
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Tree (BT) [57]. The VEDAI dataset is designed for the study
of aerial visual object recognition, which includes two image
sizes, 512×512 and 1024×1024, as well as two modal types,
RGB images, and IR images. Each image in the dataset contains
an average of 5.5 targets, occupying approximately 0.7% of the
total pixel count per image. The dataset consists of a total of
1210 images, which focus on different backgrounds and include
various scenes such as grasslands, mountains, deserts, rural
areas, and urban areas. Within these images, the targets are
categorized into nine classes, including car, truck, van, camping,
pickup, boat, and more.

The BT dataset was created by aerial photography using the
DJI Phantom 4 drone. It was captured in the experimental zone
of Dayangshan Forest Park, Yongjia County, Zhejiang Province,
China, on January 23–24, 2019, and consists of 284 HR RSIs,
each with a resolution of 1024×682. Owing to the lack of IR
modality images in the dataset, an infrared generative adversar-
ial network (InfraGAN) [59] was used to generate the texture
features of IR modality. The training dataset for this InfraGAN
was derived from the VEDAI dataset. When generating images
in the IR modality for the BT dataset, we initially employed
the letterbox technique to resize the RGB images to 512×512.
Subsequently, these resized images are passed through the In-
fraGAN network to generate IR images.

B. Evaluation Metrics

We utilize two types of mean average precision (mAP) as
the primary evaluation metrics, namely, mAP50 and mAP50:95.
The calculation of mAP is based on recall and precision. Recall
represents the ratio of correctly detected targets to the actual
number of targets, while precision represents the ratio of cor-
rectly detected targets to the total number of detected targets.
Recall and precision are calculated as follows:

Recall =
TP

TP + FN
(16)

Precision =
TP

TP + FP
(17)

where TP is the number of correctly predicted positive samples,
FN is the number of false negatives (actual positives incorrectly
predicted as negatives), and FP is the number of negative samples
wrongly predicted as positive by the model. The mAP is a
comprehensive metric obtained by calculating the area under
the precision-recall curve. It measures the average precision of
the model at different levels of recall and provides an overall per-
formance evaluation. The mAP is calculated by the integration
method as

mAP =
1

N

N∑
i=1

∫ 1

0

Pi(R)dR (18)

whereP represents precision,R represents recall, andN denotes
the number of categories. In addition, we employ two commonly
used metrics, which are the model Parameters (Params) and giga
floating-point operations per second (GFLOPs) to evaluate the
performance and efficiency of the model.

TABLE I
COMPARISON RESULTS OF COMPLEXITY AND ACCURACY IN DIFFERENT

BASELINE YOLO FRAMEWORKS ON THE FIRST FOLD OF THE VEDAI
VALIDATION SET USING THE CONCAT FUSION METHOD

C. Implementation Details

All experiments were performed on a workstation equipped
with an NVIDIA 3060 GPU, using the PyTorch framework.
Images from the BT dataset were randomly divided into training
and testing sets at an 8:2 ratio. Following [19], the VEDAI
dataset is designed for tenfold cross-validation. Each fold has
1089 training images and 121 validation images. Ablation exper-
iments are conducted on the first fold of data. When comparing
with state-of-the-art (SOTA) methods, we employ the average
of the results from tenfolds. The network is trained using the
standard stochastic gradient descent (SGD), with a momentum
of 0.937 and weight decay of 0.0005 employed for the Nesterov
accelerated gradients and a batch size of 4. The initial learning
rate is set to 0.01, and cosine annealing is used for learning
rate decay. To achieve the assisted FPNSR branch, the input
images of the network are downsampled from 1024×1024 to
512×512 during the training process, while the image size is set
to 512×512 during the testing process.

D. Ablation Studies

Our ablation study aims to validate the effectiveness of the
proposed module, and for this purpose, we conducted a series of
experiments in the first fold of the VEDAI dataset. In addition,
we will validate the effectiveness of our model on both the
VEDAI and BT datasets by comparing it with SOTA methods. In
our experiment, we compared the performance across different
metrics for various models and highlighted the best performance
of the model metrics by using bold font to emphasize it.

1) Validation of the Baseline Framework: We evaluated the
performance of different base frameworks in terms of accu-
racy and inference capability by considering the model’s layer
count, parameter size, GFLOPs, and mAP50. All networks were
trained and tested using an image resolution of 512×512, and
a multimodal fusion method along channels was employed for
all. As shown in Table I, although YOLOv7 achieves the best
detection performance, it has 106 more layers than YOLOv7tiny
(315 versus 209), its parameter size is approximately six times
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TABLE II
COMPARISON RESULTS OF DIFFERENT FUSION METHODS ON THE FIRST FOLD

OF THE VEDAI DATASET

larger than that of YOLOv7tiny (36.5 versus 6.03 M), and
its GFLOPs is approximately 7.9 times higher than that of
YOLOv7tiny (33.1 versus 4.21). Considering the practical de-
ployment and real-time performance of the model, we have cho-
sen YOLOv7tiny as our most suitable baseline network. Despite
its slightly lower mAP50 compared to YOLOv5l and YOLOv3,
YOLOv7tiny has significantly fewer layers, smaller parameter
sizes, and lower GFLOPs than other models. This makes it more
efficient and well-suited for deployment in resource-constrained
environments. The aforementioned experimental results validate
the rationale behind choosing YOLOv7tiny as the baseline de-
tection framework.

2) Comparisons of Different Fusion Methods: To evaluate
the proposed fusion method, we also employed two other meth-
ods: feature concatenation (CONCAT) along the channel axis
and multimodal fusion (MF) [19]. The results in Table II indicate
that while there is not a significant difference in the Params
and GFLOPs among the three methods, the utilization of the
CSE module resulted in the best performance, achieving 80.12%
mAP50 and 51.08% mAP50:95, surpassing the CONCAT method
by 1.87% and 2.92%, respectively. It shows that the CSE mod-
ule provides effective feature representation for detection. The
CSE module significantly improves accuracy through multiple
mechanisms. First, it leverages the channel relationships within
feature maps to capture fine-grained details that are crucial for
object detection. Second, by recalibrating the spatial relation-
ships in feature responses, it allows the fusion branches to focus
on complementary information. In addition, the CSE module
emphasizes important features in multimodal data while sup-
pressing irrelevant ones, thereby enhancing the discriminative
ability of the fused features and ultimately improving object
detection performance.

3) Effectiveness Analysis of FPNSR Auxiliary Branch: To
analyze the effectiveness of the FPNSR auxiliary branch,
we selected four additional baseline networks: YOLOv3SPP,
YOLOR, YOLOv7, and YOLOv7x, which differ in terms of
network structure and training strategies. Due to the use of
the FPNSR auxiliary branch, it is necessary to downsample
the input image size from 1024×1024 to 512×512. To elim-
inate the impact of this downsampling on experimental accu-
racy, we ensured that all models performed this operation. As
shown in Table IV, compared to the bare baseline, the baseline
with the addition of the FPNSR auxiliary branch demonstrates
favorable performance: YOLOv3SPP+FPNSR showcases a
2.5% improvement in mAP50 over YOLOv3, YOLOR+FPNSR
exhibits a 1.8% increase in mAP50 compared to YOLOR,
YOLOv7+FPNSR demonstrates a 1.2% improvement in mAP50

relative to YOLOv7, and YOLOv7x+FPNSR registers a 0.9%

TABLE III
ABLATION EXPERIMENT RESULTS ABOUT CA AND FPNSR ON THE FIRST

FOLD OF THE VEDAI VALIDATION SET

TABLE IV
VALIDATION RESULTS OF FPNSR BRANCH FOR DIFFERENT BASELINES ON THE

FIRST FOLD OF THE VEDAI VALIDATION SET

uptick in mAP50 when compared to YOLOv7x. The experi-
mental results indicate that the FPNSR auxiliary branch has
a positive impact on object detection tasks across different
baseline models, without introducing additional parameters or
computational costs.

4) Impacts of FPNSR Auxiliary Branch and CA: To ex-
plore the relationship between the CA attention module and
the FPNSR auxiliary branch, a series of ablation experiments
were conducted on our selected baseline network. As shown in
Table III, compared to the baseline network, training solely with
FPNSR resulted in small margin improvements of 0.87% and
0.76% in mAP50 and mAP50:95, respectively. This suggests that
the FPNSR module contributes to enhancing the performance
of the baseline network. However, adding CA in the layer
preceding the SPPCSPC modules, mAP50 and mAP50:95 re-
markably increased by 2.46% and 1.34%, respectively. The CA
attention incorporates positional information into the attention
mechanism to provide the texture structure of the region of in-
terest for the FPNSR auxiliary module. These findings highlight
the significance of incorporating both the CA module and the
FPNSR auxiliary branch in the network architecture, as they
synergistically contribute to achieving better object detection
performance.

5) Comparisons with Single Modality Model: Table V sum-
marizes the performance of different modalities on the first fold
of the VEDAI validation set for models YOLOv7tiny, YOLOv7,
YOLOv7x, SuperYOLO, and our proposed HyperYOLO, where
the first three models employ the CONCAT method for multi-
modal fusion. It is clear that the mAP score in multimodal (multi)
mode is higher than in unimodal (IR or RGB) model. Despite a
slight increase in the Params and GFLOPs of the multimodal
model, it is highly worthwhile considering the improvement
it brings to mAP. In a single modality, HyperYOLO achieves
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TABLE V
PERFORMANCE COMPARISON OF DIFFERENT MODALITIES FOR VARIOUS

MODELS ON THE FIRST FOLD OF THE VEDAI DATASET

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT MODALITIES FOR VARIOUS

MODELS ON THE FIRST FOLD OF THE BT DATASET

significantly higher mAP scores than other frameworks, espe-
cially in the case of the IR modality, with mAP50 and mAP50:95

surpassing the YOLOv7 by 11.04% and 6.41%, respectively.
The Params and GFLOPs of HyperYOLO are about 10× and
2.6× less than YOLOv7. We not only validated the effectiveness
of HyperYOLO on the VEDAI dataset with smaller targets but
also extended our validation to the BT dataset with larger targets.
We solely consider these models’ fusion detection capability
for the BT dataset, thus, both HyperYOLO and SuperYOLO
cancel auxiliary training branches and use the complete PANet
structure with three detectors. Similarly, in Table VI, we present
experimental results for three modalities of different models on
the first fold of the BT validation set. We enhance the detection
accuracy of the model by leveraging IR images generated using
the InfraGAN network through multimodal fusion. This indi-
cates that the IR images generated by this network have a positive

impact on our object detection framework. We observed that the
multimodal mode in the HyperYOLO framework demonstrated
excellent performance in terms of the mAP50:95 metric, achiev-
ing a score of 64.32%. Compared to other models, it exhibited
remarkable advantages in precise target localization [high inter-
section over union (IOU)] and tolerance to variations in object
positions (low IOU). Our HyperYOLO single-modal models
(IR and RGB) achieved mAP50 scores of 93.14% and 95.61%
respectively, surpassing other models. This demonstrates the
effectiveness of the CA mechanism we introduced in our model,
which enhances the weights of crucial feature channels and
improves the model’s perception and discrimination of objects.
Meanwhile, Fig. 5 presents the confusion matrix of the predic-
tion results obtained by using the YOLOv7 and the proposed
HyperYOLO multimodal models on the VEDAI dataset. It’s
evident that the confusion matrix plot for the predictions of our
HyperYOLO model has larger values on the diagonal, indicating
a higher number of correctly detected samples. Furthermore, our
model’s confusion matrix exhibits fewer nondiagonal elements
compared to YOLOv7’s, indicating a reduced occurrence of
misclassifications or missed detections. Fig. 6 shows the ef-
fect of visualizing the prediction results for the two datasets
using HyperYOLO’s models with different modalities. It can be
observed that the CSE fusion method utilizes complementary
information to accurately detect objects that might be undetected
or incorrectly predicted when using a single modality model.

6) Comparisons with State-of-the-Art Methods: To bolster
the credibility of our results and ensure the resilience and rele-
vance of our model, we implemented a tenfold cross-validation
on both the VEDAI and BT datasets. This strategic approach
not only minimized experimental errors but also enabled a
thorough evaluation of the model’s stability and its capacity to
generalize effectively across diverse data samples. SuperYOLO
has achieved excellent tradeoffs between speed and accuracy
on the VEDAI dataset, so it is necessary for us to compare our
method with SuperYOLO to assess our performance in this as-
pect. Moreover, it is worth noting that SuperYOLO outperforms
numerous models within the YOLOv3, YOLOv4, and YOLOv5
series in terms of overall performance. Table VII presents
a comparative analysis of model performance, encompassing
YOLOv7tiny, YOLOv7, YOLOv7x, YOLOR, YOLORx, R50-
CSP, X50-CSP, L-FFCA-YOLO, TP-YOLO, SuperYOLO, and
HyperYOLO, evaluated on the VEDAI and BT datasets. The
backbone networks of the R50-CSP and X50-CSP detection
models, respectively, adopt improved ResNet and ResNeXt
structures [60], both of which incorporate the cross stage partial
(CSP) [61] mechanism to reduce information loss and enhance
network performance. L-FFCA-YOLO is a streamlined version
of FFCA-YOLO, which reconstructs the backbone and neck
using partial convolution (PConv) [62]. Table VII clearly demon-
strates that our HyperYOLO model excels on the VEDAI dataset,
achieving a remarkable 76.72% mAP50 and 47.98% mAP50:95.
This performance surpasses SuperYOLO by 1.63% and 1.89%,
respectively, and outperforms YOLOv7x by an impressive mar-
gin of 5.01% and 3.48%. Moreover, HyperYOLO achieves these
results with significantly fewer parameters and GFLOPs com-
pared to both SuperYOLO and YOLOv7x, with approximately
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Fig. 5. Confusion matrix plot of the predictions for both HyperYOLO and YOLOv7 illustrates the correspondence between predicted results and true labels in
matrix form.

Fig. 6. Visual results for different modalities of the VEDAI and BT datasets using the HyperYOLO. The yellow arrow indicates the false positive, and the purple
indicates the false negative. The model of the IR modal found targets that the RGB modal model failed to detect, while the RGB modal model corrected erroneous
targets in the IR modal detection. The multimodal model compensates for the limitations of the unimodal model.

1.34 million fewer parameters and 3.97 less GFLOPs than
SuperYOLO, and 20× fewer parameters and 4.3× less GFLOPs
than YOLOv7x. Compared to the lightweight models TP-YOLO
(4.29 M Params and 2.93 GFLOPs) and L-FFCA-YOLO (5.06 M
Params and 11.89 GFLOPs), our HyperYOLO (3.50 M Params
and 14.01 GFLOPs) still exhibits significant advantages in terms
of performance. Although TP-YOLO has the lowest GFLOPs,
its performance in terms of Params and mAP is far inferior to

that of HyperYOLO. Our HyperYOLO model not only has the
lowest parameter count but also outperforms other models in
terms of mAP. This fact further validates the effectiveness of
our proposed CSE and FPNSR modules. On the BT dataset,
HyperYOLO still achieved the best results with 95.59% mAP50

and 64.62% mAP50:95, surpassing other models while main-
taining lower Params and GFLOPs. Although the parameter
count of HyperYOLO is slightly higher than YOLOv7tiny, its
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Fig. 7. Heat map comes from the head layers of our proposed HyperYOLO and YOLOv7 and YOLOV7x, respectively. The heat map is typically used to visualize
the activation values or attention distribution of a neural network, helping to understand the network’s response to input data.

TABLE VII
PERFORMANCE COMPARISON OF VARIOUS MULTIMODAL MODELS ON BOTH

THE VEDAI AND BT DATASETS

performance exceeds that of YOLOv7tiny by 0.99% in mAP50

and 3.13% in mAP50:95. Furthermore, in Fig. 7, we visualized
the heatmaps of the Head layers in HyperYOLO, YOLOv7,

and YOLOv7x multimodal models using the XGrad-CAM [63]
technique, showcasing the attention distribution of CNNs. The
visualization results of the HyperYOLO model for the VEDAI
dataset clearly show a more distinct representation of the target
structure, entirely focusing on the target without additional atten-
tion to other areas. Regarding the BT dataset, the visualization
results of the HyperYOLO model indicate that its attention cov-
erage on targets is significantly superior to the results obtained
with YOLOv7 and YOLOv7x. This phenomenon suggests that
when dealing with certain RSIs containing larger objects, Hy-
perYOLO can still identify points of interest more accurately
and effectively. The presented data underscores our model’s
ability to strike an advantageous equilibrium between speed and
accuracy, showcasing its robust and reliable performance across
a spectrum of remote sensing datasets. This proficient balance
not only ensures efficient processing but also highlights the
model’s resilience in handling diverse and complex information
inherent in remote sensing scenarios.

V. CONCLUSION

In this article, we have proposed a real-time lightweight object
detection framework tailored for multimodal RSIs, featuring
faster inference speed and lower computational resource con-
sumption. This provides an innovative and feasible solution
for deploying real-time object detection in resource-limited
environments. To address the high computational complexity
of multimodal fusion methods, we have proposed an innovative
CSE fusion module that effectively captures information from
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different modalities. Furthermore, we have introduced an aux-
iliary FPNSR branch to enhance the framework’s capability in
recognizing small objects, and this is removed in the inference
and deployment stages to avoid additional computational over-
head. The experiments demonstrate that both the CSE fusion
module and FPNSR module have significantly positive effects
on our baseline network.

The performance and inference capabilities of the framework
proposed in this article underscore the value of the CSE fusion
module and FPNSR auxiliary training branch in RSIs object
detection tasks, offering a feasible solution for future research
in multimodal object detection. In the future, we will explore
advanced techniques such as knowledge distillation, pruning,
and quantization to enhance the performance of our model and
adapt it to a broader range of resource-constrained devices, such
as vehicle-mounted cameras and handheld medical scanners.
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