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Abstract—Building extraction from remote sensing images
(RSIs) requires exploring multiscale boundary detailed informa-
tion and extracting it completely, which is challenging but in-
dispensable. However, existing solutions tend to augment feature
information solely through multiscale fusion and apply attention
mechanisms to focus on feature relationships within a single layer
while ignoring the multiscale information, which affects segmenta-
tion results. Therefore, enhancing the capability of the network to
adaptively capture multiscale information and capture the global
relationship of features remains a pivotal challenge in overcoming
the aforementioned hurdles. To address the preceding challenge, we
propose a Multiscale Direction Context-aware network with Global
Attention (MDCGA-Net), employing a classic encoder–decoder
architecture enhanced with direction information and global at-
tention flow. Specifically, in the encoder part, the multiscale layer
is used to extract contextual information from the interlayer. In
addition, the multiscale direction context-aware module is adopted
to adaptively acquire multiscale information. In the decoder part,
we propose a global attention gate module to capture discriminative
features. Furthermore, we construct an operation of attention fea-
ture flow to obtain the global relationship among the different fea-
tures with long-range dependencies, which guarantees the integrity
of results. Finally, we have performed comprehensive experiments
on three public datasets to showcase the efficacy and efficiency of
MDCGA-Net in building extraction.

Index Terms—Building extraction, deep learning (DL), global
attention, multiscale direction context-aware.
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I. INTRODUCTION

BUILDING extraction from remote sensing images (RSIs)
is a crucial research direction, which aims to assign corre-

sponding labels to each pixel of buildings [1]. As one of the core
elements in a basic geographic information database, accurate
and immediate acquisition of building information is of great
significance in remote sensing mapping applications, such as
urban planning [2], land use [3], and disaster risk assessment
[4]. Many works [1], [5], [6] have achieved great success in im-
proving the accuracy of building extraction. However, due to the
particular imaging conditions, RSIs have some problems, such
as scale diversity and environmental interference. Therefore,
accurate building extraction encounters two primary challenges:
1) the absence of detailed information across multiple scales at
boundaries and 2) the inadequacy of long-range extraction.

Existing algorithms for building extraction in RSIs can be di-
vided into two categories: 1) traditional image processing meth-
ods and 2) deep learning (DL)-based methods. Traditional image
processing methods usually use manually designed feature op-
erators (e.g., corner detection operators [7] and histograms [8])
and auxiliary features (e.g., digital surface models [9], GIS data
[10], and light detection and ranging [11]) to capture building
features. However, such methods are often characterized by
being time-consuming and label-intensive. [12].

In contrast, the integration of DL into the RSI analysis has
gained significant attention due to its end-to-end trainable prop-
erty. Numerous studies have highlighted the effectiveness of
fully convolutional networks (FCNs) [13], a classic semantic
segmentation DL algorithm, in extracting buildings from RSIs.
Following this, several methods such as SegNet [14], DeepLab
[15], and U-Net [16] have been developed, leveraging the ca-
pabilities of FCNs to improve coarse-resolution segmentation
results and extract multiscale feature information for building
extraction. U-Net has gained popularity in recent research be-
cause of its capacity to deliver more accurate boundary details.
This is achieved by preserving spatial information, a feature
that has been extensively researched and documented [17],
[18]. Another noteworthy development in this domain is the
introduction of transformer-based networks, such as the vi-
sion transformer (ViT) [19], which have been employed for
building extraction tasks. Among these, the Swin transformer
stands out for its hierarchical structure with shifted windows
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that facilitate cross-window connections, effectively addressing
the challenges posed by multiscale and high-resolution images
[20]. However, it is important to note that transformer-based
algorithms tend to be computationally intensive.

To address the challenge of the absence of detailed infor-
mation across multiple scales at boundaries, some researchers
introduce auxiliary modules to refine the boundary information
[21]. Alternatively, some other studies introduce multiscale en-
coder architecture [22] and the atrous spatial pyramid pooling
(ASPP) [23] to obtain the multiscale contextual information.
In tackling the challenge of incomplete long-range extraction, a
common approach involves obtaining fused features of different
resolutions. This is typically achieved by capturing relationships
among long-range features through the application of attention
mechanisms [24], [25], [26], [27].

While the existing works demonstrate commendable perfor-
mance, they encounter three notable limitations. First, they only
enhance the multiscale information by combining and expanding
contextual information, ignoring the ability to adaptively extract
boundary detail information by adaptive-weighting the impor-
tance of the features. In addition, there is a risk of losing location
information for buildings during feature fusion and receptive
field expansion. Furthermore, these methods only obtain the
channel or spatial correlation of a single-feature layer through at-
tention mechanisms, neglecting the global feature relationships
of different levels with long-range dependencies.

In this article, we address existing challenges by introduc-
ing directional information and a global attention flow. The
proposed model, named Multiscale Direction Context-aware
network with Global Attention (MDCGA-Net), adopts a classic
encoder–decoder architecture. Specifically, in the encoder part,
the multiscale layer (MSL), which is a basic module of the
Res2Net [28], is employed to explore the feature representation
ability of the interlayer at various scales. Subsequently, to alle-
viate the problem of the loss of detailed information, an MDCM
embedded with direction-aware and position-sensitive informa-
tion is designed to adaptively obtain contextual information at
multiple scales. This way enhances the ability to explore the
ability to explore the boundary detailed information. Moving to
the decoder, a global attention gate (GAG) module is designed to
enhance feature distinctiveness across all channels using GAGs,
ensuring complete building extraction. In addition, an operation
of attention feature flow is constructed to guide the attention
fluid from the high level of the network to the low level, which
captures the global relationships among the different features
with long-range dependencies. We evaluate MDCGA-Net’s per-
formance on three public datasets, demonstrating its superiority
over state-of-the-art (SOTA) baselines in terms of accuracy and
efficiency. The main contributions of this article are summarized
as follows.

1) We propose a novel building extraction network structure,
MDCGA-Net, which focuses on multiscale contextual in-
formation and global attention feature extraction to elevate
segmentation results.

2) We propose the MDCM to dynamically assign weights
to building boundary detail information by introducing
an attention operation with directional information into
multiscale contextual features.

3) We propose the GAGM with global attention flow, com-
bining attention weights across different feature layers.
This facilitates the extraction of correlations among global
features.

The rest of this article is organized as follows. In Section II, we
introduce several studies related to multiscale contextual infor-
mation and the attention mechanism of building extraction from
RSIs. In Section III, we introduce the detailed structure of the
proposed method. In Section IV, we evaluate the performance of
our proposed methods. Finally, Section V concludes this article.

II. RELATED WORK

A. Multiscale Contextual Information

The ability to extract contextual information about the build-
ing of various scales, which effectively improves the bound-
ary accuracy of segmentation results, remains challenging for
building extraction. The feature map effectively enhances the
representation ability of multiscale boundary information by
fusing the features of different resolutions. Thus, some studies
explore the description capability of multiscale contextual in-
formation of models. MAP-Net [22] proposes a multiparallel
path with different resolutions to extract multiscale features,
which contain multilevel spatial and semantic information.
BDA-Net [29] introduces a multiscale feature fusion module,
which contains three streams with different resolutions as input,
to enhance the feature representation ability of buildings under
various scales. Inspired by MAP-Net, Chen et al. [30] propose
a transformer-based network to extract building footprints of
different resolutions by the Swin transformer. Wang et al. [31]
propose a novel transformer block that is composed of a series
of BuildFormer Blocks to capture features of different scales.

The feature fusion of different levels with fixed receptive fields
lacks essential contextual information. The atrous convolution
has been demonstrated to be an effective strategy to expand
the receptive field of networks, which prompts the model to
extract more global information. The authors in [21] and [33] use
atrous convolution with different dilation rates embedded into
the model to capture contextual information about buildings of
various scales. Chan et al. [34] propose a multibranch pyramid
pooling to capture multiscale features to compensate for the lost
information in the encoder.

However, the aforementioned methods solely capture the
multiscale contextual information by fusing features of different
resolutions, which results in inaccuracy boundary segmentation
of buildings due to a lack of the ability to capture directional
and positional information adaptively. To go one step further,
we propose a multiscale direction context-aware module to
adaptively obtain more spatial detailed contextual information
through reweighting the importance of the multiple scales.

B. Attention Mechanism

The attention mechanism is a method to capture the discrim-
inative features and the relationships among the global depen-
dencies, which efficaciously solves the problem of incomplete
extraction of buildings in RSIs. For example, the authors in [22]
and [35] introduce channel attention to redistribute the weight
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Fig. 1. Structure of the proposed MDCGA-Net, which is composed of two parts. Multiscale aware encoding and global attention decoding. The right-hand side
of the figure shows the notes of some modules.

of each channel by learning feature maps and then adaptively
reconstructing more detailed information about buildings. Zhou
et al. [33] use channel attention as a gate for building extraction
that automatically learns more local information of varying
scales of buildings and suppresses irrelevant areas. However,
those methods ignore the attention mechanism of spatial dimen-
sions, which results in the spatial details loss of the feature maps.
To rationally utilize low-level features, DANet [36] proposes a
spatial attention fusion module embedded with the dense net-
work, which uses the semantic information from the high level
to suppress the redundant information and noises by reweighting
low-level features. Some studies [29], [37] propose the new
attention modules, which compose both the channel and spatial
attention to explore the correlations between different feature
maps of buildings. To better obtain long-range contextual feature
representations, MTPA-Net [38] introduces the dual-attention
mechanism, which composes a positional attention module and
a channel attention module. Wang et al. [31] propose a global
context path, which is composed of a window-based linear
multihead self-attention to capture global dependencies.

Unfortunately, the attention mechanism in all of these meth-
ods focuses on the information of a single-feature layer, which
lacks global feature relationships of different levels with long-
range dependencies. For this specific constraint, we propose a
GAG module that is built by a special structure of attention flow
to capture the discriminative features with global correlations.

III. PROPOSED METHOD

The proposed MDCGA-Net, as shown in Fig. 1, is a universal
encoder–decoder structure. In the encoder part, we use an MSL

that is a basic module of the Res2Net [28] to extract essential
contextual information of the interlayer. Moreover, we pro-
pose a multiscale direction context-aware module to adaptively
obtain contextual information at multiple scales. A direction
context-aware attention module that introduces the direction
and position-sensitive module integrates coordinate information
during the encoding processes of two factorized parallel 1-D
features, which is introduced into the MDCM to achieve adaptive
obtain the unequal-weight of the multiscale features. In the
decoder part, to capture the discriminative features and the
relationships among the features of long-range dependencies,
a GAG module is used to guide the attention fluid from the high
level to the low level. In the GAGM, the features extracted from
the low level could be guided by the attention from high-level
layers. In this way, we can obtain global attention and the
relationships among the features of different levels. Thus, we can
obtain the complete building segmentation results because the
final feature map has the global relationship of features between
different layers. The details of our method are as follows.

A. Multiscale Aware Encoding

As shown in Fig. 1, we abstract the overall structure of
our proposed encoder as five consecutive convolutional layers,
where the last four layers consist of several MSLs. Notice that
we employ the same strategy to set the scale as 4 of MSL
in each block as same as the literature [28] to ensure the
reasoning ability and sufficient parallel computations within a
single GPU of the network. The encoder takes the input image
I ∈ R3×H×W to obtain the features of different levels by passing
through the five convolutional layers. More semantic feature
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Fig. 2. Structure of the proposed MSL.

information can be obtained with each downsampling operation.
We denote feature maps of each layer as fi(i ∈ [1, 2, 3, 4, 5])
with different channels and resolution sizes. The size of fi is
2i−1 × 64× (H/2i)× (W/2i)(i ∈ [1, 2, 3, 4, 5]). To alleviate
the problem of the loss of the multiscale boundary detailed
information, we propose an MDCM employed behind the fifth
MSL. The DCAM is introduced into the MDCM to enhance the
ability to adaptively capture the detailed boundary features of
the multiscale contextual information. After the encoder part,
we can obtain a feature map that captures multiscale contextual
features with detailed boundary information for the decoder part
to get the refinement results of building segmentation from RSIs.

1) Multiscale Layer: Obtaining essential multiscale context-
aware information on various scales is essential to solve the
problem of losing the detailed boundary information of building
extraction from RSIs. Inspired by recent work [28], in this
research, we use an MSL that further explores the feature repre-
sentation ability of the interlayer at various scales for building
extraction. We can enlarge the receptive field by employing
the MSL to solve the problem of the omission of detailed
information. The MSL structure is shown in Fig. 2. In the MSL,
the output feature contains a larger receptive field and both global
and local information due to the subfeature by splitting the input
feature map.

2) Multiscale Direction Context-Aware Module: Learning
more contextual information from the scale diversity of the
different buildings in RSIs plays a prominent role in building
extraction. The multiple parallel atrous filters with different
atrous rates are introduced into the ASPP module to capture the
multiscale contextual features. As mentioned in Section II, the
ASPP module has been employed in building extraction from

RSIs to enhance the feature representation ability at multiple
scales.

However, most existing building extraction methods that
apply the ASPP module lack the proper direction-aware and
position-sensitive information due to the multiscale contextual
information only obtained from the fused different features. The
ASPP module pays the same attention to multiscale information
and the features captured from ASPP are of equal weight. The
detailed information may also be lost by the repeated down-
sampling operations at consecutive layers of the encoder, which
results in inaccuracy boundary segmentation.

To this end, we design a multiscale direction context-aware
module to improve the ability to explore multiscale detailed
information adaptively. This alleviates the problem of positional
information loss and effectively captures the proper boundary
information of buildings with scale diversity. Differing from the
convolutional ASPP module, a direction context-aware attention
module (DCAM) is proposed to adaptively capture the boundary
detail information by adaptive-weighting the importance of the
different scale features. The DCAM pays different attention to
different-scale features, which alleviates the problem of the loss
of spatial information (e.g., boundary information).

The overall structure of the MDCM is illustrated on the
left-hand side of Fig. 3. First, the MDCM applies five paths to
extract the building information at multiple scales. Specifically,
the first path has no operation to preserve the original input
feature. In the middle three branches, we apply three 3× 3 atrous
convolutions with rates = (3, 6, 12), respectively, and feed the
feature maps to BN and ReLU to effectively capture multiscale
information. Note that the strategy to set the rates is to ensure
that the receptive fields corresponding to the atrous rates can
cover buildings of all sizes in the datasets [40]. To extract global
context information, we apply adaptive global average pooling
on the last path. Then, the resulting feature map passes through
a convolutional operation with 1 × 1 convolution, BN, and
ReLU. After that, a bilinearly interpolate operation is applied to
obtain the feature map at the original input dimension. Second,
the feature maps from all the paths are then fed into DCAMs
to adaptively capture the more precise direction and position
information of buildings. Finally, those feature maps from all the
branches are concatenated and then obtain the final feature map
with rich multiscale feature information through a convolutional
operation with another 1 × 1 convolution, BN, and ReLU.

To improve the ability to adaptively capture the multiscale
contextual information, we use an attention mechanism to
weight the different-scale features. The attention mechanism has
been proven to be an effective method to enhance the ability of
feature extraction to improve the building segmentation accu-
racy. Motivated by the coordinate attention (CA) blocks [41],
the DCAM is introduced to guide the encoder to focus on the
direction information of the feature map, which enhances the
ability to adaptively obtain the detailed boundary information
of the proposed method. Moreover, differing from the channel
attention that only focuses on the weight distribution of different
channels, the proposed DCAM also focuses on recalibrating
features from the spatial dimension, which can effectively al-
leviate the positional information loss due to the numerous



NIU et al.: MDCGA-NET: MULTISCALE DIRECTION CONTEXT-AWARE NETWORK WITH GLOBAL ATTENTION 8465

Fig. 3. Structure of the proposed MDCM. The right-hand side of the figure shows the structure of the DCAM in detail.

downsampling. The structure of the DCAM is illustrated on
the right-hand side of Fig. 3, and the detailed description is as
follows.

First, we apply global average pooling to the input feature map
X ∈ RC×H×W along the horizontal direction and the vertical
direction, respectively, and the output feature maps are concate-
nated to generate a descriptor X̃ ∈ RC×1×(H+W ). This process
can be formulated as

X̃ =
[
X̃w, X̃h

]
= [Fgw(X), Fgh(X)] (1)

where [·, ·] denotes the concatenation of the feature maps,Fgw(·)
andFgh(·) represent the global average pooling along the height
dimension and width dimension, respectively. Subsequently, we
apply a convolution operation to transform the descriptor X̃ to
X̄ , for which the formula is as follows:

X̄ = Φ
(

conv
(
X̃
))

(2)

where conv(·) denotes a 1× 1 convolution operation, and Φ(·)
denotes the BN and ReLU, and we can obtain the feature map
X̄ ∈ R

C
r ×1×(H+W ) that capture the information both in the

horizontal coordinate and the vertical coordinate. Note that r
is the reduction rate as in the SE block to deduct dimension.
After that, we split the X̄ along the width dimension and height
dimension to obtain the features with the horizontal direction
and the vertical direction, respectively. Then, the features pass
through two convolution operations, and we obtain the attention
weights. These attention weights are guided to capture detailed
boundary features by introducing directional information. The
adaptive weights are obtained by focusing on the importance of
different channel features. The specific formula for this process
is as follows:

C̄w = σ
(
conv

(
X̄w

))
(3)

C̄h = σ
(
conv

(
X̄h

))
(4)

where X̄w ∈ RC×H×1 and X̄h ∈ RC×1×W are the two separate
features along width dimension and height dimension, respec-
tively, conv(·) denotes a 1× 1 convolution operation, and σ(·)
is the sigmoid function. Finally, the feature map S ∈ RC×H×W

with direction information can be formulated as

S = X ∗ C̄w ∗ C̄h (5)

where ∗ denotes the element multiplication. Through this pro-
cess, the output feature map S adaptively captures the informa-
tion both in the horizontal direction and vertical direction.

As described earlier, the attention feature map S not only has
multiscale information on the important features in the channels
but also captures spatial information in both the horizontal
direction and the vertical direction. However, the feature maps
may lack spatial position information due to the consecutive
downsampling in the encoder.

To this end, the DCAM is proposed to capture precise spatial
position information through a spatial selective mechanism,
which adaptively focuses on the most relevant spatial position re-
gions by a spatial feature descriptor. Specifically, given the input
feature mapS passing through the global max pooling and global
average pooling, respectively, we obtain two feature maps that
capture rich detail information. Subsequently, we concatenate
two feature maps along the channel dimension to enhance the
global information, and then, a convolution operation is used to
reduce the dimension. Moreover, a sigmoid function is applied
to generate the spatial attention descriptor S̃ ∈ RC×H×W , for
which the formula is as follows:

S̃ = σ (conv ([FGMP(S), FGAP(S)])) (6)

where FGMP(·) and FGAP(·) are the global max pooling and
global average pooling, respectively, [·, ·] denotes the concate-
nation of the channel, conv denotes a 3× 3 convolution, and
σ(·) is the sigmoid function. Finally, the output feature map X̂
of MDCAM is obtained as shown in the following formula:

X̂ = S ∗ S̃ (7)

where ∗ denotes the element multiplication.

B. GAG Decoding

The decoder of most existing methods is designed to fuse the
same scale feature maps of different levels through upsampling
operations and skip connections. However, there still have some
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challenges with the traditional decoders. 1) The fused feature
map with the only same scale levels lacks the discriminative
features due to the simple skip connection. 2) The upsampling
operations ignore the relationships among the global feature
relationships of different levels with long-range dependencies,
resulting in the discontinuity of information and incomplete
extraction. In fact, the attention mechanism of different feature
layers can capture the discriminative features of the current layer,
which also implies the selection strategy for the importance of
different features.

To this end, we propose a decoder with a GAG module to
enhance the proposed the ability of the method to capture the
discriminative features. Moreover, we build a special structure
of attention flow by using high-level attention as guidance to
improve the generation of low-level attention, which obtain the
global correlations of the different level features with long-range
dependencies.

Our proposed decoder, as shown in Fig. 1, consists of four
layers. The feature map of the last layer f5 will restore the feature
scale as the fourth layer by passing through an upsampling
operation, and then, the f5 is concatenated with the feature map
f4 from the encoder to get the feature map u4. The similar
processing of the next layer in the decoder will be repeated
and we can obtain the fused features ui(i ∈ [1, 2, 3, 4]). Note
that the upsampling operation is composed of two convolutional
operations (the kernel size is 3) and bilinear interpolation with
the scale factor is set to 2. Different from the decoders of
the traditional methods, we apply a GAGM to increase the
feature distinction across all channels by GAGs. Specifically, an
operation of attention feature flow is also constructed to guide
the attention fluid from the high level to the low level, which
captures the global relationships among the different features
with long-range dependencies. Then, we can obtain feature map
ai from each layer.

First, the feature map f5 that is passing through an upsampling
operation is concatenated with feature map f4 to obtain the
feature map u4, for which the formula is as follows:

u4 = conv ([Fup (f5) , f4]) (8)

where [·, ·] denotes the concatenation of the feature maps and
Fup(·) denotes the upsampling operation. Subsequently, we ap-
ply a GAG module, which consists of an efficient channel atten-
tion mechanism [42] to capture the discriminative information
of the feature map by redistributing the weights of f4 among
the channels. Then, the attention feature map a4 is obtained as
shown in the following formula:

a4 = f4 ∗ g4 = f4 ∗ σ (conv1Dk (FGAP (u4))) (9)

whereFGAP(·) denotes the global average pooling, conv1D1k(·)
denotes the 1-D convolution (the kernel size is 5), σ denotes
the sigmoid function, and ∗ is the element multiplication. Note
that g4 ∈ RC×1×1 is the channel weight descriptor. The GAG
module is used to appropriately capture cross-channel interac-
tion, and then, we obtain the attention feature map with more
discriminative information.

Second, as depicted in Fig. 1, to ensure the feature map of
each subsequent layer captures the discriminative features of

Fig. 4. Structure of the proposed GAGM. The figure shows the structure of
the attention in detail.

the previous layer, we take the attention feature map ai+1(i ∈
[1, 2, 3]) as the input of the next layer and fuse it with the
feature map fi from the corresponding layer of the encoder.
Then, the attention feature map ai(i ∈ [1, 2, 3]) of the current
layer with discriminative information through the GAG module
is obtained. In particular, inspired by the work in [43], we apply
an attention fluid operation to aggregate global relationships
among the different features with long-range dependencies. To
update the attention descriptor gi(i ∈ [1, 2, 3]), the descriptor
gi+1(i ∈ [1, 2, 3]) of the previous layer is used as an attention
flow to enhance the descriptors. Specifically, as shown in Fig. 4,
we not only take the output attention map ai+1 of the previous
layer fused with fi as the input feature map but also flow the
attention descriptor gi+1 into the next layer. After the same
attention operation as in the process of obtaining g4 above, an
attention descriptor ĝi of the current layer is generated. Then, the
descriptor gi+1 is concatenated with ĝi and a sigmoid function
is used to produce the final attention descriptor gi. The specific
formula for this process is as follows:

ul = conv ([Fup (al+1) , fl]) (10)

gl = σ (conv1Dk (FGAP (ul))) (11)

al = fl ∗ σ ({gl, gl+1}) (12)

where {·, ·} denotes the element addition. The attention fluid
operation is designed to produce a GAG of each layer in the
decoder, which can obtain the relationships among the features
of long-range dependencies.

Finally, the final feature map a1 of the last layer undergoes
an upsampling operation and two convolutional operations (the
kernel size is 3) to restore to the same size as the original input
images. Then, a 1 × 1 convolution is used to adjust the number
of the channel to make the final prediction.

C. Loss Function

Data imbalance is a basic problem in the task of building
extraction due to the difference in the pixels between the build-
ings and the background, which affects the accuracy of the
building extraction in RSIs. Therefore, in this study, a joint loss
is used to accelerate the network convergence and optimize our
proposed network during the training. The joint loss L can be
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formulated as

L = Lf + Ld (13)

where Lf denotes the focal loss and Ld denotes the dice loss.
Focal loss, proposed in [44], can balance the weights of

positive and negative samples by applying a modulating term
to the cross entropy loss to solve the problem of imbalanced
foreground and background. We use the focal loss as one com-
ponent of the loss function to optimize the gradient descent and
yield more detailed feature representations of buildings.

Dice loss was proposed to deal with situations where there is
an imbalance between the foreground and background pixels by
optimizing the Dice coefficient between the prediction results
and the ground truth and was indicated for binary segmentation
tasks [45]. We use dice loss, as a part of the joint loss, to balance
the distribution of buildings and background by mining more
foreground regions. The specific formulations of the joint loss
are as follows:

Lf = − 1

N

N∑
i

(α(1− Pi)
γ × P̂ilog(Pi)

+ (1− α)P γ
i × (1− P̂i)log(1− Pi)) (14)

Ld = 1− 2×∑N
i PiP̂i + ε∑i

N (P 2
i + P̂ 2

i ) + ε
(15)

where Pi and P̂i denote the predicted probability value of the
pixel of sample i and the ground truth of the pixel of sample
i, respectively. N denotes the total number of pixels of the
input image. α and γ are hyperparameters, which can adjust the
weights of the positive and negative samples. Their values are
set to 0.25 and 2, respectively, similar to that in [44]. ε denotes
the smoothing coefficient, which can prevent the denominator
from being zero. It is set to 10−5.

IV. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section, we introduce the experimental setup and mea-
sure the performance of our proposed MDCGA-Net compared
with SOTA baselines.

A. Dataset

To evaluate the effectiveness of our proposed method, three
publicly building datasets are adopted comprehensively for the
experiments, including the Massachusetts building dataset [46],
the WHU building dataset [47], and the Inria aerial image
labeling dataset [48].

The Massachusetts building dataset comprises 151 aerial im-
ages of the Boston area. The size of each image in the dataset is
1500 × 1500 pixels, and the spatial resolution of the image
is 1 m. The dataset mainly covers 2.25 km2 of urban and
suburban areas, including residential areas, commercial areas,
and industrial areas. In this dataset, 137 images are used for
training, another 10 images are used for testing, and 4 images
are used for validation. We followed the suggested partition of
the original dataset released.

The WHU building dataset is widely used in building ex-
traction tasks, and it is composed of 8188 aerial images with
a resolution of 0.3 m. The dataset contains 220 000 buildings
covering 450 km2 in Christchurch, New Zealand. The size of
each image in the dataset is 512 × 512 pixels, and the spatial
resolution of the image is 0.3 m. Following the original partition
of the dataset, 4736 images are used for training, 1036 images
are used for validation, and 2416 images are used for testing.
The dataset is labeled accurately, and all images come from a
single region, which can better examine the building extraction
ability of our proposed method.

The Inria aerial image labeling dataset is composed of 360
aerial images from five cities: Austin, Chicago, Kitsap, Tyrol,
and Vienna. The size of each image of the dataset is 5000× 5000
pixels, and the spatial resolution of the image is 0.3 m. In the
official dataset, 180 images are labeled for the experiment. We
followed the original partition, the first five images of every city
for testing, and the remaining images for training and validation.
Compared with the earlier two datasets, the background of the
images in the Inria dataset is more complex, and the buildings in
the images have greater scale diversity. Thus, it can better verify
the effectiveness of the proposed modules.

B. Evaluation Metrics

To quantitatively evaluate the performance of our method,
several common pixel-level metrics, which are widely used in
building extraction tasks, are employed. These metrics include
precision (P), recall (R), intersection over union (IoU), and F1-
score (F1). The IoU indicates the intersection between building
prediction results and the ground truth, which is an important
metric to determine the segmentation results. The F1 is a metric
that integrates P and R and maximizes their relationship to
balance them. The specific formulations are as follows:

P =
TP

TP+FP
(16)

R =
TP

TP+FN
(17)

IoU =
Pp ∩ Pg

Pp ∪ Pg
(18)

F1 =
2× P ×R

P +R
(19)

where TP, TN, FP, and FN denote the true positive, the true
negative, the false positive, and the false negative, respectively.
Pp andPg denote the pixels of the predicted result and the ground
truth, respectively.

C. Implementation Details

The code of our method is built on the PyTorch frame-
work based on Python 3.9 programming language. We train
the proposed method on a computer with Ubuntu 18.04, Intel
i7-7800X CPU, and two NVIDIA GeForce RTX 2080Ti GPUs
with graphic memory of 11 GB. During the training, we used
the Adam optimizer with an initial learning rate of 10−4, 0.9
momenta, 10−5 weight decay, and bath size 8. We set the learning
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TABLE I
QUANTITATIVE COMPARISON WITH DIFFERENT METHODS ON THE

MASSACHUSETTS BUILDING DATASET

rate to decay every 10 epochs during the training phase, and
the minimum learning rate is 10−6. Due to the limitation of
computing resources, all images in the experiments are cropped
to 512 × 512 pixels as the input. In addition, we implement
several data augmentation strategies such as random horizontal
and vertical flipping to increase the diversity of input images.
The input images are randomly rotated with angles of 0◦, 90◦,
180◦, and 270◦ and flipped horizontally and vertically for 0.3
probability. The MDCGA-Net is trained from scratch for 100
epochs on three datasets, and the training time was 2.3 h, 9.9 h,
and 33.6 h, respectively.

D. Results and Discussions

To evaluate the performance of the proposed method, several
SOTA methods are employed for comparison on MDCGA-Net.
Those methods include the classic semantic segmentation net-
works (i.e., U-Net [16], SegNet [14], DeeplabV3+ [40], and
BiSeNetV2 [49]) and the recent building extraction methods
(i.e., RDMSC-Net [17], MAP-Net [22], BOMSC-Net [33],
CGSANet [21], ED-DDL [18], C3Net [23], LRAD-Net [50], and
BuildFormer [31]). All the experimental results are generated
by open-source codes or provided by the authors. Note that the
implementation settings of our method are consistent with the
experimental details of all reproduced networks, including data
augmentation strategies.

1) Quantitative Comparison: Similar to the work in [22],
we use the common pixel-level metrics, such as P, R, IOU,
and F1, as the evaluation of the proposed methods. The results
of the quantitative evaluation of our proposed MDCGA-Net
and the comparison methods on the Massachusetts building
dataset, the WHU building dataset, and the Inria aerial image
labeling dataset are shown in Tables I– III, respectively. Each
row in these tables is the evaluation results of each method, and
each column is the evaluation metrics. The highest records are
marked in bold.

The performance of our proposed model MDCGA-Net is
better than all the comparative methods on the three datasets.
Specifically, compared with the recent SOTA method Build-
Former, the IoU of MDCGA-Net shows improvements of
0.57%, 0.29%, and 0.29% on the Massachusetts building dataset,
the WHU building dataset, and the Inria aerial image labeling

TABLE II
QUANTITATIVE COMPARISON WITH DIFFERENT METHODS ON THE WHU

BUILDING DATASET

TABLE III
QUANTITATIVE COMPARISON WITH DIFFERENT METHODS ON THE INRIA

AERIAL IMAGE LABELING DATASET

dataset, respectively. The F1 of our method is improved by
0.53%, 0.19%, and 0.18% on the three datasets, respectively,
over BuildFormer. Compared with the classic segmentation
networks, the recent building extraction methods show a great
improvement in the quantitative evaluation of the three datasets.
Among these methods, CGSANet, BOMSC-Net, and C3Net
outperform the classic networks because these methods employ
auxiliary modules (e.g., the boundary refinement module) to im-
prove the ability to capture detailed features of building bound-
aries. The MAP-Net and BuildFormer methods use a multiple-
path framework to extract multiscale features of diverse-scale
buildings. The IoU and F1 of BiSeNetV2 and LRAD-Net are
lower than other comparison methods since these two models
are lightweight networks. The superior performance of ED-DDL
since that ED-DDL captures rich multiscale contextual informa-
tion by using dense blocks and restores the information through
deconvolution layers. However, these methods solely capture the
multiscale contextual information by busing features of different
resolutions and lack global feature relationships of different
levels with long-range dependencies. The MDCGA-Net exhibits
a superior performance owning to the proposed MDCM can
improve the ability to adaptively obtain more spatial detailed
features and the GAGM can enhance the ability to capture the
discriminative features with global correlations.
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Fig. 5. Segmentation results on the Massachusetts building dataset. (a) Original images. (b) Ground truth. (c) U-Net. (d) SegNet. (e) Deeplabv3+. (f) MAP-Net.
(g) BuildFormer. (h) MDCGA-Net. Among these methods, panels (c)–(e) show the classic semantic segmentation algorithms, and panels (f)–(g) show the recent
similar enhancement algorithms of building extraction. (h) Our method. The key comparison areas are marked with red dashed circles.

Fig. 6. Segmentation results on the WHU building dataset. (a) Original images. (b) Ground truth. (c) U-Net. (d) SegNet. (e) Deeplabv3+. (f) MAP-Net.
(g) BuildFormer. (h) MDCGA-Net. Among these methods, panels (c)–(e) show the classic semantic segmentation algorithms, and panels (f)–(g) show the recent
similar enhancement algorithms of building extraction. (h) Our method. The key comparison areas are marked with red dashed circles.

2) Qualitative Comparison: To further demonstrate the ef-
fectiveness of our method, we analyze the results of the compar-
ison methods including classic semantic segmentation networks
and recent building extraction methods from a qualitative per-
spective. The building extraction examples from each dataset
are shown in Figs. 5– 7. We select some representative samples
including buildings with complex shapes, shadow occlusions,
and long-range coverage in every row in figures. Note that there
are five rows (I–V) in Fig. 7 because the Inria aerial image label-
ing dataset contains the aerial images from five cities, including
Austin (USA), Chicago (USA), Kitsap (USA), Tyrol (Austria),
and Vienna (Austria). The first column (a) and the second column

(b) of every figure are the original images and the corresponding
ground truth, and columns (c)–(i) are the segmentation results
from U-Net, SegNet, Deeplabv3+, MAP-Net, BuildFormer, and
our proposed method, respectively.

Compared with other methods, the proposed MDCGA-Net
exhibits a more advanced extraction performance for different
scale buildings. As shown in the second row of Fig. 5 and the first
row of Figs. 6 and 7, the segmentation results of U-Net, SegNet,
and Deeplabv3+ omit more building boundaries. The MAP-Net
and BuildFormer introduce the multiparallel path with different
resolutions to extract multiscale features. These methods greatly
alleviate the omissions of the boundary in the extraction results.
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Fig. 7. Segmentation results on the Inria aerial image labeling dataset. (a) Original images. (b) Ground truth. (c) U-Net. (d) SegNet. (e) Deeplabv3+. (f) MAP-Net.
(g) BuildFormer. (h) MDCGA-Net. (I) Austin. (II) Chicago. (III) Kitsap. (IV) Tyrol. (V) Vienna. Among these methods, panels (c)–(e) show the classic semantic
segmentation algorithms, and panels (f)–(h) show the recent similar enhancement algorithms of building extraction. (i) Our method. The key comparison areas are
marked with red dashed circles.

However, the ability to distinguish detailed information is still
insufficient, resulting in a few missing parts of the building in the
results. In contrast, the MDCGA-Net achieves the best extraction
performance owing to its ability to adaptively capture multiscale
contextual features by introducing the MDCM with directional
information. In addition, the first row of Fig. 5 and the third row
of Fig. 7 show that some small buildings or parts of buildings
were not detected by the comparison methods due to spatial
information loss. However, MDCGA-Net can detect more small
buildings in the visual results because the proposed modules
in this study can enhance the ability to capture discriminative
spatial features. Moreover, from the third row of Figs. 5 and
6, especially in Fig. 7, we can see that the traditional semantic
segmentation algorithms cannot completely extract large-scale
buildings. The recent building extraction methods improve the
segmentation integrity because those methods introduce mul-
tiscale information and attention mechanism. In contrast, the
extract results of our method can guarantee structural integrity,
which benefits from the proposed GAGM that enhances the
ability to obtain the global relationship between different level
features. In summary, our method MDCGA-Net outperforms
the other compared methods to solve the problems of the loss
of multiscale boundary detailed information and incomplete
extraction.

TABLE IV
COMPLEXITY OF DIFFERENT COMPARATIVE METHODS ON THE WHU

BUILDING DATASET

3) Complexity Comparison: To evaluate the computation
complexity of our method, we compare the parameter, frame
per second (FPS), and IoU of related methods on the WHU
Building dataset. As shown in Table IV, DeeplabV3+ has the
highest performance but with the highest complexity among the
three classic semantic segmentation networks. Compared with
Deeplabv3+, the complexity of our method has reduced with
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Fig. 8. Segmentation results on ablation experiments. The results are shown in (a) original images, (b) ground truth, (c) baseline, (d) baseline with DCAM,
(e) baseline with GAGM, and (f) MDCGA-Net, respectively.

higher IoU since the MDCM reduces the scale of convolutional
kernels and introduces the DCAM with low computational
complexity. The BOMSC-Net has the most parameters among
other SOTA methods due to the introduction of graph reasoning
blocks. The IoU and FPS of our MDCGA-Net outperform other
methods since our method lacks the reasoning time of the auxil-
iary modules. It is worth noting that although the outperform
of the lightweight networks BiSeNetV2 and LRAD-Net are
better than other algorithms in model size and FPS, IoU shows
that the effectiveness of our proposed method establishes better
speed-accuracy tradeoff.

E. Ablation Study

To further verify the influence of the different modules of
our proposed MDCGA-Net, we also conduct an ablation study
on the WHU building dataset. To be mentioned, compared to
U-Net, we employ MSL, ASPP, DCAM, and GAGM within
the MDCGA-Net. Note that the MDCM and the GAGM are
designed in this article to overcome the existing problems. Our
proposed MDCM aims to mitigate the limitations of the ASPP
by introducing the DCAM for adaptive feature aggregation. In
addition, the GAGM is crafted to discern correlations among
global features. Therefore, we conduct different experiments to
verify every proposed module and focus on the effectiveness of
the two designed modules. First, we selected U-Net with the
MSL and the ASPP for the baseline, to verify the effectiveness
of the MSL and the ASPP by comparing it with U-Net under
the ResNet-50 backbone. Second, we add the DCAM and the
GAGM to the baseline separately to verify the validity of each

module. Finally, the experiment to verify the effectiveness of
our proposed method MDCGA-Net.

To prove the proposed modules of the MDCGA-Net that can
solve the problem of the loss of boundary detailed information
and the incompleteness of long-range extraction, we select some
representative segmentation results, as shown in Fig. 8. The
buildings in these selected images include complex shapes,
shadow occlusions, and long-range coverage as shown in the
first row to the third row (I–III) of Fig. 8. The first column (a) and
the second column (b) of Fig. 8 are the original images and the
corresponding ground truth, respectively. The third column to
the sixth column of Fig. 8(c)–(f) shows the experimental results
of the baseline, baseline with DCAM, baseline with GAGM, and
our proposed MDCGA-Net, respectively.

The third column of Fig. 8 shows that the results of the
baseline present boundary loss and incomplete detection. The
comparison between columns (c) and (d) shows the effect of the
proposed DCAM on boundary detection. As shown in the first
row, the missing part of the boundary in the detection result of the
baseline network is improved in Fig. 8(d). From the second row,
we can see that our proposed model can improve the extraction
effect of the buildings with shadow occlusions. In addition, as
shown in the fifth column and the third row, the baseline with
GAGM improves the extraction integrity of large-scale buildings
because the GAGM can obtain the global relationships between
the features of different levels. From Fig. 8, we can see that the
results of our proposed method are the closest to the ground truth
by comparing the segmentation results of the sixth column and
the third to fifth columns, which demonstrates our MDCGA-Net
can effectively improve the boundary extraction and extract
completely in the building segmentation task.
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Fig. 9. Segmentation results on ablation experiments on the Massachusetts building dataset and the Inria aerial image labeling dataset. The results are shown in
(a) original images, (b) ground truth, (c) baseline, (d) baseline with DCAM, (e) baseline with GAGM, and (f) MDCGA-Net, respectively. (I) and (II) Massachusetts.
(III) and (IV) Inria.

We also select some results of the Massachusetts building
dataset and the Inria aerial image labeling dataset, as shown
in Fig. 9. We select some buildings with complicated boundary
shapes to demonstrate our proposed modules can solve the prob-
lems of detailed boundary loss and incompleteness of long-rang
extraction. The samples of the Massachusetts building dataset
are on the first row and the second row of Fig. 9. The results of
the Inria aerial image labeling dataset are shown in the last two
rows. From Fig. 9, we can see that the results of the third column
present boundary loss and incomplete detection. The results of
column (d) and column (f) show that the proposed DCAM can
effectively solve the problem of boundary information loss. For
example, the red circles in column (c) of the first row in Fig. 9
show that the results of the baseline have the misclassification of
boundary information. In contrast, the fourth column and sixth
column show that our method can effectively solve this problem.
In addition, the third column of the fourth row shows that the
baseline method has the omissions of the boundary information
of the buildings. The column (f) shows that our method can
also solve the problem of boundary information loss. From the
second and third rows, we can see that the baseline with GAGM
improves the extraction integrity of the complicated building.
For example, the red circles above column (c) of the second
and the third rows show the incomplete segmentation result of
the baseline. The fifth and the sixth columns show our method
can effectively alleviate this problem. The ablation study on

TABLE V
ABLATION EXPERIMENTAL RESULTS ON THE WHU BUILDING DATASET

these three datasets demonstrates our MDCGA-Net alleviates
the problems of boundary information loss and incomplete
segmentation in building extraction from RSIs.

We present a quantitative evaluation as shown in Table V.
We can see that the IoU and the F1-score obtained with each
module used in MDCGA-Net demonstrate the effectiveness
of our method in the WHU building dataset. The integration
of MSL into U-Net brought about a 0.52% uplift in IoU and
a 0.30% increase in F1-score. ASPP augmented the IoU by
0.21% and F1-score by 0.11%. Table VII shows that the baseline
method obtains a 90.54% in the IoU and 95.11% in the F1-score,
which improves the performance of U-Net under the ResNet-50
backbone by 0.73% and 0.49%, respectively. This is because the
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TABLE VI
ABLATION EXPERIMENTAL RESULTS ON THE THREE DATASETS

TABLE VII
ABLATION EXPERIMENTAL RESULTS WITH DIFFERENT NUMBERS OF THE

DOWNSAMPLING LAYER

feature representation ability of building extraction at various
scales can be improved by the MSL and the ASPP. By adding
the DCAM to the baseline, the method performance achieves
a 0.44% improvement in the IoU and 0.18% improvement in
the F1-score, which demonstrates that the MDCM effectively
alleviates the positional information loss and integrates direction
information of building boundaries. However, theP -value of the
baseline with the DCAM method is not as high as the method
of baseline with GAGM. This indicates that the baseline with
the MDCM only improves the ability to adaptively capture
the multiscale contextual information but ignores the global
relationship between features of different levels, which leads to
failure to guarantee the building extraction completely. More-
over, the proposed GAGM improves the IoU by 0.37% and the
F1-score by 0.21% from the ablation results. This indicates that
GAGM can enhance the ability to capture the global information
of the discriminative features with long-range dependencies. As
a result, our method achieves the best results of 91.73% IoU
and 95.72% F1-score on the WHU building dataset owing to the
proposed modules.

In addition, we conduct the ablation experiments on the Mas-
sachusetts building dataset and the Inria aerial image labeling
dataset, as shown in Table VI. We can see that the IoU and
the F1-score have improved with the proposed modules on the
Massachusetts building dataset, the WHU building dataset, and
the Inria aerial image labeling dataset. Specifically, adding the
MSL brought 1.24%, 0.52%, and 0.65% improvement in the IoU
and 0.38%, 0.30%, and 0.51% improvement in the F1-score on
the three datasets, respectively. The ASPP improves the IoU by
1.09%, 0.21%, and 0.85% compared to the U-Net. The baseline
methods improve the performance of U-Net under the ResNet-50
backbone by 2.33%, 0.73%, and 1.50% in the three datasets,
respectively. Adding the DCAM brought 1.75%, 0.44%, and
1.72% improvement in the IoU and 2.00%, 0.28%, and 0.95%
improvement in the F1-score on the three datasets, respectively.
This indicates that the DCAM can improve the ability to extract

the multiscale boundary information of the buildings. Moreover,
the GAGM improves the IoU by 1.54%, 0.37%, and 1.38%
compared to the baseline method. In particular, the F1-scores
of the baseline with the GAGM are higher than the method of
baseline, which increases the F1 by 2.05%, 0.31%, and 1.10%,
respectively. This demonstrates that GAGM can enhance the
ability to capture the global relationship between features of
different levels.

To further verify the effectiveness of our proposed modules
in building extraction, we present the visualization results. We
extract the visualization results of the output feature map fi(i ∈
[1, 2, 3, 4, 5]) of each layer in the encoder and the feature map f̂5
of the fifth layer without the MDCM, as shown in Fig. 10. From
the results of f1 to f4, we can see that the location information in
f1 is more prominent, but the semantic and context information
may be insufficient. This shows that the features learned by
the model are more sufficient with the network layer deeper.
In particular, from f̂5 and f5, we can see that f5 pays more
attention to building boundary details, which indicates that the
proposed MDCM effectively improves the ability to explore
the boundary detailed information. To verify the influence of the
GAGM, we extract the visualization results of the fused feature
maps u1 and the feature map a1 of the decoder. In addition, we
remove the GAGM to obtain the final feature map â1. Those
visualization results are shown in Fig. 11. It can be seen that
the feature map a1 captures more discriminative features than
u1. Moreover, the comparison results between a1 and â1 show
that the GAGM can effectively obtain the global relationship
of different features, which improves the integrity of building
extraction.

Moreover, to evaluate the performance with different numbers
of the downsampling layer (N ), we also conduct the ablation
study on the depth of the U-Net-like structure in MDCGA-Net,
and the results as shown in Table VII. We set N = 3, 4, 5,
and 6, where N = 5 is our method. Table VII shows that the
IoU and the F1 are increasing with the N increases, and the
IoU and the F1 of our method are highest. However, when
N= 6, the IoU and F1 both have decreased since the boundary
detailed information is lost more during too many downsampling
layers. The experimental results show that we selected the proper
number of downsampling layers to achieve the best building
segmentation effect.

F. Limitations

Despite our method having achieved excellent results in the
task of building extraction from RSIs, our method still has some
limitations worthy of further improvement. The first disadvan-
tage is that the experiments lack the verification of more real
RSI data. Since our method only achieves superior performance
on public datasets, it limits the generalization of our algorithm.
Another disadvantage of our method is restricted to mobile
hardware. Since our method adopts the deep network, the size
of the network is still higher than the lightweight network in the
area of mobile. Therefore, in the future, we will focus on the
generalization and lightweight of the model.



8474 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 10. Visualization results of feature map fi(i ∈ [1, 2, 3, 4, 5]) and feature map f̂5 for the proposed MDCM.

Fig. 11. Visualization results of feature map u1, a1, and â1 for the proposed GAGM.

V. CONCLUSION

In this article, we propose MDCGA-Net for building extrac-
tion from RSIs requiring boundary detailed information and
complete extraction. We improve the segmentation results by
introducing the direction information and global attention flow.
We propose a multiscale aware encoding and GAG decoding
to adaptively obtain multiscale contextual feature information
and capture the relationship of global features, respectively. The
quantitative and qualitative experimental analyses on the three
benchmark datasets demonstrate that our model obtains signif-
icant performance and outperforms the classic semantic seg-
mentation algorithms and the recent SOTA building extraction
approaches. Moreover, the visualization results of the ablation
study demonstrate the effectiveness of the MDCM and GAGM

modules of the proposed MDCGA-Net. In future work, we will
extend our proposed MDCGA-Net method to more classification
tasks (e.g., road extraction) other than the building extraction
task, to achieve automatic interpretation of RSIs.
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