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Abstract—Hyperspectral target detection plays a pivotal role in
various civil and military applications. Although recent advance-
ments in deep learning have largely embraced supervised learning
approaches, they often hindered by the limited availability of la-
beled data. Unsupervised learning, therefore, emerges as a promis-
ing alternative, yet its potential has not been fully realized in current
methodologies. This article proposes an innovative unsupervised
learning framework employing a momentum contrastive learning-
based transformer network specifically tailored for hyperspectral
target detection. The proposed approach innovatively combines
transformer-based encoder and momentum encoder networks to
enhance feature extraction capabilities, adeptly capturing both
local spectral details and long-range spectral dependencies through
the novel overlapping spectral patch embedding and a cross-token
feedforward layer. This dual-encoder design significantly improves
the model’s ability to discern relevant spectral features amidst com-
plex backgrounds. Through unsupervised momentum contrastive
learning, a dynamically updated queue of negative sample features
is utilized so that the model can demonstrate superior spectral
discriminability. This is further bolstered by a unique background
suppression mechanism leveraging nonlinear transformations of
cosine similarity detection results, with two nonlinearly pull-up op-
erations, significantly enhancing target detection sensitivity, where
the nonlinearly operations are the exponential function with its
normalization and the power function with its normalization, re-
spectively. Comparative analysis against seven state-of-the-art hy-
perspectral target detection methods across four real hyperspectral
images demonstrates the effectiveness of the proposed method
for hyperspectral target detection, with an increase in detection
accuracy and a competitive computational efficiency. An extensive
ablation study further validates the critical components of the
proposed framework, confirming its comprehensive capability and
applicability in hyperspectral target detection scenarios.
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I. INTRODUCTION

HYPERSPECTRAL imagery (HSI) is captured by hyper-
spectral sensors in the visible and short-wave infrared

(or mid-wave and long-wave infrared) regions of the spectrum
[1], [2], which not only contains the spatial information of the
scene but also collects the spectral information of the ground
objects to form the image cube data of three dimensions, with
two spatial dimensions of the scene, and one spectral dimension
consisting of the characteristics of the electromagnetic wave
reflection signal at a specific wavelength [3]. The spectrum of
each pixel in the HSI can reflect the reflection characteristics
of different ground objects in the scene [4]. Benefiting from
the high spectral resolution of HSIs [5], hyperspectral target
detection (HTD) can detect targets based on the spectral differ-
ences of different ground objects and has essential applications
in the fields of military camouflage target identification [6], [7],
pollution detection [8], [9], mineral exploration [10], food safety
[11], and medical diagnosis [12].

HTD has been developed over a long period of time with
a large number of classical HTD methods. Spectral matched
filtering (SMF) [13] and adaptive coherence estimation (ACE)
[14] are classical HTD methods based on probabilistic statistics
assuming that the background conforms to a multivariate Gaus-
sian distribution. The constrained energy minimization (CEM)
[15] method highlights the target and suppresses the background
by designing a finite pulse filter that minimizes the overall energy
output under the constraints of the target signal. The orthogonal
subspace projection (OSP) [16] method achieves HTD by pro-
jecting the target onto the orthogonal subspace of the background
subspace and then maximizing the signal-to-noise ratio on the
projection subspace. However, these HTD methods based on
linear spectral information do not explore the nonlinear relation-
ship between spectral bands. Therefore, kernel-based learning
theory is used for HTD to exploit the nonlinear correlations of
the HSI data. Some classical HTD methods have been extended
to the corresponding kernel-based nonlinear versions, such as
kernel SMF [17], kernel ACE [18], kernel CEM [19], kernel
OSP [20], etc. In most cases, the kernel-based HTD methods
assume that linearly inseparable data in low-dimensional space
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will likely become linearly separable in high-dimensional space.
Recently, HTD methods based on sparse representation have
been proposed successively. Chen et al. [21] first proposed a
sparsity-based target detection method (STD), which represents
the pixels to be detected by a linear approximation of the
atomic vectors in the complete dictionary, then calculates the
reconstruction error with the pixels to be detected, and finally
determines whether the pixels to be detected are targeted by
a set threshold. Li et al. [22] proposed a combined sparse
and collaborative representation (CSCR) of the HTD method,
which implements target detection by representing the pixels
to be detected with a target library and a background library.
However, the representation-based HTD methods require prior
information to construct the dictionary, which is difficult to
obtain in practical applications.

Due to the strong generalization and deep extraction of ad-
vanced semantic features, deep learning has been gradually
applied in HSI processing [23], [24]. In recent years, deep
learning based HTD algorithms have gradually been proposed.
For HTD tasks, normally the prior information is only a spectrum
of the target of interest, and it is not possible to train the deep
neural network in a supervised manner directly based on the
prior target spectrum. From the perspective of transfer learning,
some methods transfer the model knowledge trained on the
dataset with known labels to the target detection task, such
as the convolutional neural network-based detection (CNND)
[25] method, the spectral-spatial joint target detection method of
hyperspectral image based on transfer learning [26], the sensor-
independent HTD (SIHTD) method [27], and the meta-learning
and Siamese network-based HTD (MLSN) [28] method. CNND
pairs and assigns label 0 between similar pixels spectra and label
1 between different classes of pixels spectra based on the known
labeled information from a hyperspectral dataset with known
labels in the source domain and then trains a binary-classified
multilayer CNN for HTD using the samples generated by the
pixel pairing. However, the unmatched hyperspectral sensors
in the source and target domains [29] can seriously affect the
performance of transfer learning on HTD. To solve this problem,
SIHTD adaptively transfers the similarity and dissimilarity mea-
surement from the source domain to the target domain for HTD
in an adversarial manner. Some methods start from the perspec-
tive of expanding the training samples. A deep CNN for HTD
(denoted as HTD-Net) [30] uses a modified autoencoder with
a contracting path and a symmetric expanding path to generate
target signatures, where the background samples significantly
different from the target samples are found based on the linear
prediction strategy, and then the obtained target and background
samples are paired to train the deep CNN to learn the spectral
differences between the paired samples. An HTD method with
an auxiliary generative adversarial network [31] expands the
training set by generating simulated target and background
spectra using a generative adversarial network. A two-stream
convolutional network-based target detector [32] finds enough
typical background pixels by a hybrid sparse representation
and classification-based pixel selection strategy, and then pairs
the prior target with the synthesized target and background
samples, respectively, to form positive and negative sample pairs

to train a binary classification network. Rao et al. [33] proposed
a Siamese transformer network for HTD, which extracts the
high-purity background pixels in the HSI to be detected by
endmember extraction and unmixing algorithms. There are also
deep learning-based HTD methods that rely on prior information
obtained from traditional HTD methods to help model learning.
Shi et al. [34] proposed a method for HTD using region of interest
(ROI) feature transformation and multiscale spectral attention,
where the ROI map is obtained by a CEM detector and an
edge-preserving filter, and the HSI to be detected is fed with the
ROI map into a constructed deep spatial-spectral network for
extracting spatial and spectral features of interest, and then the
HTD detection results are obtained using the nearest neighbors.
The background learning based target suppression constraint
(BLTSC) [35] detector finds reliable background samples for
training adversarial autoencoder (AAE) by performing coarse
detection by CEM detector, and then reconstructs the original
HSI using the well-trained AAE, and finally, the discrepancy
between the reconstructed and original HSIs are examined to
spot the targets.

In summary, the performance of transfer learning-based HTD
methods is primarily limited by the adaptability of the trans-
ferred knowledge. The performance of HTD methods that help
model training with the help of the prior information obtained
from traditional HTD methods can be limited by the performance
of traditional HTD methods. The HTD methods that expand
the training samples by pairing or mixing some target and
background samples found from the HSI to be detected will
be affected by the quality of the target and background samples
found. The HTD methods using CNNs obtain the approximate
global information of the spectrum by building a deep CNN.

In recent years, contrastive learning has been widely applied
as an unsupervised representation learning method in various
fields, including computer vision. Such as a simple framework
for contrastive learning of visual representations (SimCLR) [36],
unsupervised learning of visual features by contrasting cluster
assignments (SwAV) [37], momentum contrast for unsupervised
visual representation learning (MoCo) [38], and a new method
BYOL for self-supervised image representation learning without
negative sample pairs proposed in [39]. SimCLR directly uses
negative samples coexisting in the current batch, and it requires
a large batch size to work well, and MoCo maintains a queue of
negative samples and turns one branch into a momentum encoder
to improve consistency of the queue [40]. Their competitive
performance in downstream tasks brings a strong theoretical
support for HTD methods oriented to contrastive learning.

To overcome the reliance on explicit target and background
samples, this article proposes a novel unsupervised learning
framework based on unsupervised momentum contrast learn-
ing and transformer (MCLT). Unlike existing approaches, the
proposed method innovatively combines transformer-based and
momentum encoder networks for enhanced spectral feature ex-
traction, capitalizing on both the detailed local and the global
spectral information. Furthermore, the application of the unsu-
pervised momentum contrastive learning, complemented by a
strategic queuing mechanism for negative sample management,
sets a new standard for feature discriminability in the absence
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Fig. 1. Overall flowchart of the proposed HTD method based on unsupervised MCLT.

of labeled data. In addition, the proposed background suppres-
sion technique, utilizing nonlinear transformations, significantly
improves detection sensitivity and accuracy. The main contribu-
tions of this article can be summarized as follows, where these
contributions not only fill a critical gap in the literature but also
surpass existing methods, as evidenced by the comprehensive
comparative analysis and ablation study.

1) For spectral target detection, a novel encoder design that
integrates transformer-based and momentum encoding to
capture both local and global spectral features, addressing
the oversight of local spectral detail in existing models.

2) Unsupervised momentum contrastive learning equips the
model with the ability to discriminate differences between
spectra, freeing it from dependence on labeled target and
background samples.

3) An innovative background suppression technique that
leverages nonlinear transformations is proposed for a bet-
ter separation of background and target pixels, where ex-
ponential and normalization operations, and power func-
tion and normalization operations are used.

The rest of this article is organized as follows. Section II
gives a detailed description of the proposed MCLT method. The
experimental studies and analysis to verify the proposed method
are presented in Section III. Finally, the conclusions are drawn
in Section IV.

II. PROPOSED METHOD

This section delineates the proposed MCLT method in a com-
prehensive manner. Fig. 1 presents the methodological flowchart

of the MCLT approach, encapsulating its systematic workflow.
The methodology primarily unfolds in three sequential steps: the
construction of a transformer-based encoder tailored for HTD,
the implementation of spectral discriminability learning with
momentum encoder, and the execution of background suppres-
sion. Notably, the initial two steps are encompassed within the
training phase, aimed at preparing the model by enhancing its
ability to distinguish between spectral signatures. The final step
is situated within the detection phase, strategically designed
to optimize target-background separation. This structured ap-
proach underscores the MCLT method’s capability to effectively
identify and isolate targets from complex hyperspectral back-
grounds.

A. Transformer-Based Encoder for HTD

The encoder module in Fig. 1 depicts the architecture of the
transformer-based encoder designed specifically for HTD. This
encoder structure is pivotal in extracting and processing the
rich spectral and spatial information inherent in hyperspectral
images for effective target detection. The architecture comprises
three main components: overlapping spectral patch embedding,
position embedding, and the transformer block, each of which
plays a critical role in the encoder’s functionality, with detailed
processing given in the following.

1) Overlapping Spectral Patch Embedding and Position Em-
bedding: Transformer was first designed for machine translation
tasks [41], using self-attention mechanisms to process sequence
data. Since then it has been widely used in natural language
processing (NLP), such as BERT [42]. Due to the success of
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using transformer in the field of NLP, transformer has been
concerned to be applied in the field of computer vision in recent
years, such as Vision Transformer (ViT) [43], Swin Transformer
[44], et al. ViT divides the input image into nonoverlapping
image blocks and linearly projects each image block into a
d-dimensional feature vector using the learnable weight matrix
[45]. Inspired by ViT, the spectrum is divided into several patches
of the same sequence length as the input of transformer to reduce
the length of the input sequence, facilitating straightforward
processing and analysis with lower computational complexity.
However, such nonoverlapping spectral patches would overlook
local information between adjacent spectral patches when per-
forming self-attention operations, potentially leading to infor-
mation loss or suboptimal performance. Therefore, overlapping
spectral patch embedding is designed to provide higher quality
token sequences to improve the performance of transformer.

The overlapping spectral patch embedding divides the spec-
trum into a number of spectral patches of fixed sequence length
with overlapping regions, capturing spectral relationships be-
tween neighboring patches, enabling the transformer to extract
the global information of the spectrum while focusing on the
local detail information of the spectrum. It is implemented using
a one-dimensional (1-D) convolutional layer with the number
of convolutional kernels d, a convolutional kernel size k, a
step size s, and no zero padding for overlapping spectral patch
segmentation and feature mapping. The number of convolution
kernels d controls the dimensionality of each spectral patch after
feature mapping, the size of the convolution kernel k controls the
length of each spectral patch, and the step size s controls the size
of the nonoverlapping part between adjacent spectral patches.

For a pixel spectrum x with band B, the embedded spectral
token sequence xe ∈ R

N×d is obtained by overlapping spectral
patch embedding, where N = ((B-k)/s+1) is the effective input
sequence length of the transformer and d is the dimension of each
embedded spectral token sequence. Then, a learnable embedding
xlearn is added before the embedded spectral token sequence xe,
and the output of xlearn obtained by the transformer block is used
as the representation of the spectrum of this pixel. Finally, the
learnable 1-D position embeddings are added to the embedded
spectral token sequence to retain the position information of
the spectral patch in the original pixel spectrum. The final
embedded spectral token sequence as the transformer block
input can be expressed as follows:

z0 =
[
xlearn;x

1
e;x

2
e; · · · ;xN

e

]
+Epos (1)

where Epos ∈ R
(N+1)×d is the learnable 1-D position embed-

ding.
2) Transformer Block: The transformer block, depicted in

the transformer block segment of Fig. 1, embodies a structured
framework comprising essential components including layer
normalization (LN) [46], multihead self-attention (MSA) [41],
residual connection [47], and cross-token feedforward layer
(CTFFL).

For a given input sequence, denoted as z ∈ R
N×d, the query

Q, key K, and value V are derived through the projection
of a learnable feature matrix. This process can be succinctly

Fig. 2. Cross-token feedforward layer.

delineated as follows:

[Q,K,V] = zEQKV (2)

where EQKV ∈ R
d×3dk signifies the learnable feature matrix.

The dot product between Q and K is computed and subse-
quently scaled through divided by

√
dk to mitigate potential

gradient issues arising from large dot product values. The weight
of V is determined via the softmax function, which is multiplied
by value V, yielding the self-attention mechanism for the em-
bedded spectral token sequence, formulated as follows:

SA (Q,K,V) = softmax

(
QKT

√
dk

)
V (3)

where dk represents the dimension of Q, K, and V.
The MSA mechanism operates by conducting h self-attention

operations, called “heads,” in parallel, followed by projecting
their concatenated outputs. The MSA can be formalized as
follows:

[Qi,Ki,Vi] = zEQiKiVi
, i = 1 . . . h (4)

MSA (z) = [SA1 (Q1,K1,V1) ; SA2 (Q2,K2,V2) ; · · ·
; SAh (Qh,Kh,Vh)]EMSA (5)

where EQiKiVi
∈ R

d×3dk denotes the learnable projection ma-
trix employed to project the input sequence into queries Qi,
keys Ki, and values Vi, EMSA ∈ R

h·dk×d represents the feature
matrix of the projection concatenated output, and h is the number
of self-attention operations used in parallel. To make the total
computational cost of MSA similar to that of full-dimensional
single-head self-attention, dk is generally set to d/h. The trans-
former block is repeated L times to build an encoder with L
layers. The output of MSA in each transformer block layer can
be formalized as follows:

z′l = MSA (LN (zl−1)) + zl−1, l = 1 . . . L. (6)

The feedforward layer within the original transformer encoder
is a fully connected feedforward network consisting of two
linear transforms with a ReLU activation function in [48]. Its
fully connected layer is point-wise and cannot learn cross-token
information [49]. The CTFFL is designed to complement the
local detail information in the feedforward layer, as shown in
Fig. 2.

CTFFL enhances the capture of local details within the feed-
forward layer by incorporating depth-wise convolution between
the two fully connected layers of the feedforward layer. The
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process can be described as follows:

Z′ = FC (Z;ω1) (7)

Z
′′
= FC (σ (Z′ + DWConv (Z′;ω)) ;ω2) (8)

where Z is the input of the CTFFL,ω1 andω2 are the parameters
of the two fully connected layers, ω is the parameter of the 1-D
depth-wise convolutional layer, andσ is the Gaussian error linear
unit [50] activation function. The output of the CTFFL in each
transformer block layer can be formalized as follows:

zl = CTFFL (LN (z′l)) + z′l, l = 1 . . . L. (9)

This work uses h = 8 parallel self-attention operations and L
= 2 layers of transformer block. The output of the encoder can
be expressed as follows:

y = LN
(
z0L

)
(10)

where z0L is the output of the corresponding position obtained
after the learnable embedding xlearn passes through the trans-
former block, and the output y after z0L passes through the LN
is used as the representation of the spectrum.

B. Spectral Discriminability Learning

Spectral discriminability learning constructs pretext tasks for
spectral instance discrimination by data augmentation and trains
the model with unsupervised momentum contrastive learning
[51] to obtain a discriminative encoder with spectral difference
discrimination for HTD.

Data augmentation is achieved by applying Gaussian blur
[52] to the original HSI X ∈ R

H×W×B . Gaussian blurring is
achieved by convolving each band in the original HSI with a
Gaussian kernel. We randomly sampled the standard deviation
δ = [0.1, 2.0], with the kernel size set to 1 × 1. The spectral
instance discrimination pretext task is achieved by pairing the
original HSI with the spectra of pixels at the same location in the
HSI after performing Gaussian blurring. The spectra of pixels
at the same position in the original HSI and the HSI after per-
forming data augmentation can be considered as positive pairs.
The spectral instance discrimination pretext task is constructed
to generate a self-supervised signal to help train a discriminative
encoder.

The flow of spectral discriminability learning is shown in the
training part of Fig. 1. A mini-batch of pixel spectra Xq is ran-
domly sampled from the original HSI, and the augmented sam-
ples Xk are obtained after data augmentation, expressed asXq =
[x1

q;x
2
q; · · · ;xN

q ] ∈ R
N×B ,Xk = [x1

k;x
2
k; · · · ;xN

k ] ∈ R
N×B .

The representation of Xq is extracted using the encoder
fencoder(·), and the feature matrix Uq = [uq

1,uq
2, . . . ,uq

N ] ∈
R

N×dMLP is obtained after mapping through the projection head.
It can be formalized as follows:

Uq = MLPencoder (fencoder (Xq; θencoder) ; θMLPencoder) . (11)

The representation of Xk is extracted using the momen-
tum encoder fm_encoder(·), and the feature matrix is obtained
after mapping through the projection head, marked as Vk =
[vk

1,vk
2, . . . ,vk

N ] ∈ R
N×dMLP . The process can be expressed

as follows:

Vk = MLPm_encoder
(
fm_encoder (Xk; θm_encoder) ; θMLPm_encoder

)
(12)

where θencoder and θm_encoder are the parameters of the encoder
fencoder(·) and the momentum encoder fm_encoder(·), respec-
tively. The projection head MLPencoder of the encoder and the
projection head MLPm_encoder of the momentum encoder are
MLP containing a hidden layer with parameters θMLPencoder and
θMLPm_encoder , respectively. MLPencoder and MLPm_encoder use the
ReLU activation function.

Then the feature Vk = [vk
1,vk

2, . . . ,vk
N ] ∈ R

N×dMLP out-
putted by the momentum encoder through the projection head
is fed into the queue. The queue has the property of first-in-
first-out. The feature samples in the queue are considered as
negative samples. The feature samples in the queue are gradually
replaced, with the current mini-batch of feature samples entering
the queue and the oldest mini-batch of feature samples leaving
the queue. The negative sample size used for contrastive learning
can be separated from the mini-batch input sample size by
the queue. Therefore, the negative samples could be stored by
setting a large queue. A large queue can help the model to learn
more discriminative features since it contains abundant negative
samples. The queue size can be flexibly and independently set
to the hyperparameter K.

Finally, the output features of the encoder fencoder(·) through
the projection head MLPencoder are fed into the contrastive loss
with the features in the queue. The contrastive loss maximizes
the similarity of positive pairs and minimizes the similarity of
negative pairs, enabling the encoder to have spectral difference
discrimination capability by optimizing the contrastive loss. In
this article, the similarity between positive and negative pairs is
measured by the dot product, and the contrastive loss uses the
InfoNCE loss function [53], expressed as follows:

LInfoNCE =
1

N

N∑
i=1

− log
exp

(
ui
q · vi

k/τ
)

∑K
j=0 exp

(
ui
q · vj

k/τ
) (13)

where τ is the temperature hyperparameter, vj
k includes a pos-

itive sample embedding feature (assuming v0
k = vj

k) and K
negative sample embedding features.

During training, in order to keep the features in the queue
stay in step, the features in the queue should be generated using
the same or similar momentum encoder and projection head,
thus to help the model avoid learning to shortcut solutions.
Therefore, momentum is used to update the momentum encoder
fm_encoder(·) and its projection head MLPm_encoder. The process
can be formalized as follows:

θm_encoder ← mθm_encoder + (1−m) θencoder (14)

θMLPm_encoder ← mθMLPm_encoder + (1−m) θMLPencoder (15)

where m ∈ [0, 1] is the momentum coefficient, set to 0.999 in
this article. It is important to note that the encoder fencoder(·)
is updated with its projection head MLPencoder by gradient
backpropagation.
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C. Target Detection and Background Suppression

The procedure of target detection and background suppression
is shown in the detection part of Fig. 1.

1) Target Detection: The target prior xt ∈ R
1×B is com-

pared with each pixel spectrum in the original HSI ex-
pressed as X = [x1;x2; · · · ;xH×W ] ∈ R

(H×W )×B by extract-
ing corresponding representation through a well-trained encoder
fencoder(·). The similarity of the representations between each
pixel under test in the original HSI and the target prior is then
measured by cosine similarity to obtain the target detection result
B = [b1; b2; · · · ; bH×W ], calculated as follows:

bi =
fencoder (xi) · fencoder(xt)

T

‖fencoder (xi)‖ ‖fencoder (xt)‖ . (16)

2) Background Suppression: The values of the target pixels
in the detection result B obtained by cosine similarity are rela-
tively large with significance, however, the distance difference
between the values of background and target pixels is relatively
small with less significance. The values of the background pixels
in B can be kept away from the values of the target pixels by the
exponential and normalization operations. Then the values of
the background pixels are further kept away from the values
of the target pixels by the power function and normalization
operations to achieve the purpose of background suppression.
Background suppression is achieved by exponential and nor-
malization operations, power function, and normalization oper-
ations, which can be represented as follows:

S = αB (17)

si =
si − smin

smax − smin
(18)

R = Sβ (19)

ri =
ri − rmin

rmax − rmin
(20)

where α and β are positive parameters that can adjust the
background suppression performance.

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets Description

The experiments are conducted on four real hyperspectral
images with different scenarios, where the datasets are obtained
by three different HSI sensors.

1) San Diego Dataset: The San Diego dataset was col-
lected by an Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) at San Diego airport, CA, USA. It consists of 224
bands with wavelengths ranging from 370 to 2510 nm. Due
to low signal-to-noise ratio and water absorption, bands 1–6,
33–35, 97, 107–113, 153–166, and 221–224 were removed,
leaving the rest 189 bands for HTD. The whole image has
400× 400 pixels. The spatial resolution is 3.5 m, and the spectral
resolution is 10 nm. In the experiment, two scene regions of size
120× 120 and 100× 100, named as San Diego A and San Diego
B, are intercepted from the upper left corner and the center of the
San Diego dataset, respectively. The plane pixels in San Diego

A and San Diego B scenes are considered targets for HTD and
contain 58 and 134 target pixels, respectively. The pseudo-color
images of San Diego A and San Diego B with ground truth are
shown in Figs. 3(a)-(b) and 4(a)-(b), respectively.

2) PaviaC Dataset: The PaviaC dataset was captured by the
Reflection Optical System Imaging Spectrometer (ROSIS-03) in
the central city of Pavia, Italy. It has 100× 120 pixels and con-
tains 102 bands with wavelengths ranging from 430 to 860 nm.
The spatial resolution is 1.3 m, and the spectral resolution is
4 nm. The background in this scene is mainly composed of
water and bridge, and the vehicles on the bridge are considered
as the targets for HTD with a total of 68 pixels. Fig. 5(a)
and (b) show the pseudo-color image and ground truth of the
PaviaC dataset.

3) MUUFL Gulfport Dataset: The MUUFL Gulfport dataset
[54], [55] was collected in November 2010 at the University
of Southern Mississippi Gulf Park campus in Long Beach,
Mississippi. The size of the original dataset is 325× 337 pixels
with 72 bands. The first four and last four bands were removed
due to noise, yielding a new HSI with 64 bands. The lower
right corner of the original HSI contains invalid regions, so
only the first 220 columns are used for ground truth mapping.
The cropped HSI size was 325× 220× 64, with a total of 269
clothing panel pixels in the scene considered as target for HTD.
Fig. 6(a) and (b) show the pseudo-color image and ground truth
of the MUUFL Gulfport dataset.

B. Experimental Setup

1) Comparison Methods: A total of seven state-of-the-art
HTD methods were used in the experiment to compare the
performance with the proposed MCLT. The seven compared
methods include two classical HTD methods, CEM [15] and
OSP [16], two representation-based methods, CSCR [22] and
DM-BDL [56], three deep learning-based methods, BLTSC [35],
MLSN [28], and ULMMDL [57]. The comparison methods and
the proposed MCLT use the same target prior of the same HSI
datasets for HTD.

2) Implementation Details: The proposed MCLT method
is implemented by building an encoder for HTD based on
transformer, spectral discriminability learning, and background
suppression. For the encoder used to extract the spectral repre-
sentation of each pixel in the HSI to be detected, the parameters
(d, k, s) in the overlapping spectral patch embedding are set
to (128, 9, 2), (128, 9, 2), (128, 6, 2), and (128, 4, 2) for the
San Diego A, San Diego B, PaviaC, and MUUFL Gulfport HSI
datasets, respectively. The dimensionality of the embedded spec-
tral token sequence obtained after overlapping spectral patch
embedding is d = 128. The dimensionality of both the learnable
embedding xlearn and the learnable 1-D location embedding
is set to 128. Two transformer blocks are used to construct
an encoder with depth of 2 for extracting the representation
of each pixel spectrum. MSA in each transformer block is
achieved by parallelly running h = 8 self-attention operations
(called “heads”) and projecting their concatenated outputs. The
representation obtained by the two-layer transformer block is
used as the representation of the entire pixel spectrum. Note that
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Fig. 3. Detection maps of different methods for San Diego A. (a) Pseudo-color image. (b) Ground truth. (c) CEM. (d) OSP. (e) CSCR. (f) DM-BDL. (g) BLTSC.
(h) MLSN. (i) ULMMDL. (j) MCLT.

Fig. 4. Detection maps of different methods for San Diego B. (a) Pseudo-color image. (b) Ground truth. (c) CEM. (d) OSP. (e) CSCR. (f) DM-BDL. (g) BLTSC.
(h) MLSN. (i) ULMMDL. (j) MCLT.

the input and output of the transformer block have the same
dimension. In spectral discriminability learning, the outputs
of the encoder and the momentum encoder go through the
corresponding projection heads to obtain the features of pixel
spectra and their augmented samples. The projection heads of
the encoder and the momentum encoder have the same structure,
both being a two-layer MLP. The number of neurons in the first
and second layers of MLPencoder and MLPm_encoder is 128. The
queue stores the output of the features by the momentum encoder
through the projection head. The queue sizes for San Diego
A, San Diego B, PaviaC, and MUUFL Gulfport HSI datasets
are set to 7200, 10000, 12000, and 13000, respectively. During
training, the learning rate and the temperature coefficient in the
contrastive loss are set to 0.5 and 0.07, respectively. The epoch
for training is set to 50. The mini-batch during training is set to

480, 400, 600, and 1300 for San Diego A, San Diego B, PaviaC,
and MUUFL Gulfport datasets, respectively. For the background
suppression process, the exponential operation setsα to 9× 1047

for all datasets in the experiment, and β in the power function
operation is set to 20, 60, 20, and 60 for the San Diego A, San
Diego B, PaviaC, and MUUFL Gulfport datasets, respectively.
The comparison method follows the settings recommended in
the original literature.

The experimental hardware environment consists of an AMD
Ryzen Threadripper 3990X 64-core processor with a Quadro
RTX 8000 GPU with 48 GB of RAM. Two classical HTD (CEM
and OSP) methods and two representation-based HTD (CSCR
and DM-BDL) methods are implemented in MATLAB R2017b,
and three deep learning-based comparison methods (BLTSC,
MLSN, and ULMMDL) are implemented using Python 3.6 and
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Fig. 5. Detection maps of different methods for PaviaC. (a) Pseudo-color image. (b) Ground truth. (c) CEM. (d) OSP. (e) CSCR. (f) DM-BDL. (g) BLTSC.
(h) MLSN. (i) ULMMDL. (j) MCLT.

Fig. 6. Detection maps of different methods for MUUFL Gulfport. (a) Pseudo-color image. (b) Ground truth. (c) CEM. (d) OSP. (e) CSCR. (f) DM-BDL.
(g) BLTSC. (h) MLSN. (i) ULMMDL. (j) MCLT.

TensorFlow 1.80. The proposed MCLT is implemented using
Python 3.8.3 and PyTorch 1.60.

3) Prior Target Spectrum Selection: The prior target spec-
trum in the experiment was obtained from hyperspectral images,
and the coordinates of the prior target spectrum were taken as
(11, 88), (36, 49), (57, 14), and (153, 159) for the four datasets in
the experiment, respectively. Notably, in each dataset, the prior

target spectrum was chosen at the center point of the target,
aiming to capture the original spectral properties of the target
effectively. Only one target spectrum was taken as the prior target
spectrum.

4) Evaluation Criterion: To evaluate the HTD performance
of the proposed MCLT method and other comparison methods,
3-D receiver operating characteristic (3-D ROC) curve is used
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to measure the performance of the detector. The 3-D ROC curve
can be considered as a function of detection probability PD, false
alarm probability PF, and threshold τ , and can be obtained as the
value of τ varies [58]. PD and PF can be calculated as follows:

PD (τ) =
NTP,τ

NTP,τ +NFN,τ
(21)

PF (τ) =
NFP,τ

NFP,τ +NTN,τ
(22)

where NTP,τ denotes the number of pixels that are correctly
detected as targets at a given threshold τ , NFN,τ represents the
number of pixels that incorrectly detect targets as backgrounds
at a given threshold τ , NFP,τ denotes the number of pixels that
incorrectly detect backgrounds as targets at a given threshold
τ , and NTN,τ denotes the number of pixels that are correctly
detected as backgrounds at a given threshold τ . Three 2-D ROC
curves can be obtained from the 3-D ROC curves, including
the 2-D ROC curve of (PD, PF), the 2-D ROC curve of (PD,
τ ), and the 2-D ROC curve of (PF, τ ), respectively. The 2-D
ROC curve of (PD, PF) can evaluate the effectiveness of the
detector, the 2-D ROC curve of (PD, τ ) can evaluate the target
detectability of the detector, and the 2-D ROC curve of (PF, τ )
can evaluate the background suppression ability of the detector.
The detector should have better performance with the following
three conditions of the corresponding 2-D ROC curves: the
closer the 2-D ROC curve of (PD, PF) is to the upper left corner
of the coordinate axis, the closer the 2-D ROC curve of (PD, τ )
is to the upper right corner of the coordinate axis, and the closer
the 2-D ROC curve of (PF, τ ) is to the lower left corner of the
coordinate axis.

For quantitative analysis of the detector, the areas under the
curves (AUC) of the 2-D ROC curves (PD, PF), (PD, τ ), and
(PF, τ ) were used as quantitative indicators to quantify the
performance of the detector. The detector performs better when
AUC(PD, PF) and AUC(PD, τ ) are close to 1 and when AUC(PF,
τ ) is close to 0. The detection performance improves with higher
values of AUC(PD, PF) and AUC(PD, τ ), while background
suppression improves with lower values of AUC(PF, τ ). By
considering these three AUC values, Chang [59] devised a detec-
tion measure AUCOD and a background suppression capability
measure AUCBS to evaluate the performance of the detector,
which was defined as follows:

AUCOD = AUC (PD,PF) + AUC (PD, τ)− AUC (PF, τ)
(23)

AUCBS = AUC (PD,PF)− AUC (PF, τ) (24)

where AUCOD ∈ [−1, 2] and AUCBS ∈ [−1, 1]. The larger the
calculated values of AUCOD and AUCBS, the better the detection
performance and background suppression effect of the detector.

C. Results and Discussion

Figures (c)–(j) in Figs. 3–6 show the detection maps of the
proposed MCLT and other comparison methods for San Diego
A, San Diego B, PaviaC, and MUUFL Gulfport datasets, respec-
tively. Subjectively visual assessment from the detection maps,

CEM, BLTSC, and the proposed MCLT have good background
suppression effect compared with other comparison methods.
However, many target pixels are missed in the detection maps
of CEM and BLTSC algorithms, only remaining the proposed
MCLT with good effect. OSP, CSCR, MLSN, and ULMMDL
can detect most of the targets, but the background suppression
is not good, making it very difficult to identify them visually.
The detection maps of the proposed MCLT method visually
show excellent detection performance, with targets highlighted
clearly and background suppressed well.

Figs. 7–10 show the 3-D ROC and the corresponding three
2-D ROC curves for the proposed MCLT and seven state-of-
the-art comparison methods on the San Diego A, San Diego B,
PaviaC, and MUUFL Gulfport datasets corresponding to their
detection results. For the 2-D ROC curves of (PD, PF) was used
to evaluate the detector effectiveness, as shown in Figs. 7(b)–
10(b), the 2-D ROC curves of (PD, PF) of the MCLT for all
HSIs in the experiment are closer to the upper left corner than
the comparison methods. For the 2-D ROC curves of (PD, τ )
evaluating the detectability of the detector to the target, as shown
in Figs. 7(c)–10(c), the proposed MCLT outperforms CEM and
BLTSC, but OSP, CSCR, and ULMMDL perform better than the
proposed MCLT. However, for the 2-D ROC curves of (PF, τ )
evaluating the detector background suppression ability, MCLT
is very close to the lower left corner and has significantly better
background suppression than OSP, CSCR, and ULMMDL.

Since very close ROC curves cannot visually distinguish
precisely which detector performs better, the areas under the
curves AUC(PD, PF), AUC(PD, τ ), and AUC(PF, τ ) of the
2-D ROC curves of (PD, PF), (PD, τ ) and (PF, τ ) are used
to evaluate the performance of the detectors quantitatively. In
addition, AUCBS and AUCOD are used to quantitatively evalu-
ate the background suppression ability and the comprehensive
detection performance of the detector. Table I provides specific
values of the five AUC measures for MCLT and all comparison
methods on the four HSI datasets. The best results in each
AUC measure are shown in bold, and the suboptimal results
are underlined. Table I shows that the proposed MCLT always
obtains the highest AUC(PD, PF) of all HSI datasets, verifying its
effectiveness in HTD. ULMMDL obtained the highest AUC(PD,
τ ) on the San Diego A and San Diego B datasets, demonstrating
excellent target detection capabilities. This is made possible by
the hierarchical denoising autoencoder (HDAE) designed in the
ULMMDL method. HDAE enhances the spectral coherence by
iterating over the denoising autoencoder layer by layer, which
alleviates the intraclass differences in the target spectra in the
HSIs to be detected and makes ULMMDL have a good target
preservation capability. However, the values of AUC(PD, PF),
AUC(PF, τ ), and AUCBS of ULMMDL on four HSI datasets
are lower than those of the proposed MCLT method. For the
AUC(PF, τ ), BLTSC achieved optimal results on the San Diego
A, San Diego B, and MUUFL Gulfport datasets, and MCLT
achieved suboptimal results, only slightly weaker than BLTSC.
MCLT obtained the optimal results on the PaviaC dataset, and
BLTSC got the suboptimal results. BLTSC obtains the weight
map of distinguishable targets by background learning. Then
the weight map of distinguishable targets is used to correct the
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Fig. 7. 3-D ROC and the corresponding 2-D ROC curves of different methods for the San Diego A dataset. (a) 3-D ROC curve. (b) 2-D ROC curve of (PD, PF).
(c) 2-D ROC curve of (PD, τ ). (d) 2-D ROC curve of (PF, τ ).

Fig. 8. 3-D ROC and the corresponding 2-D ROC curves of different methods for the San Diego B dataset. (a) 3-D ROC curve. (b) 2-D ROC curve of (PD, PF).
(c) 2-D ROC curve of (PD, τ ). (d) 2-D ROC curve of (PF, τ ).

Fig. 9. 3-D ROC and the corresponding 2-D ROC curves of different methods for the PaviaC dataset. (a) 3-D ROC curve. (b) 2-D ROC curve of (PD, PF).
(c) 2-D ROC curve of (PD, τ ). (d) 2-D ROC curve of (PF, τ ).

Fig. 10. 3-D ROC and the corresponding 2-D ROC curves of different methods for the MUUFL Gulfport dataset. (a) 3-D ROC curve. (b) 2-D ROC curve of
(PD, PF). (c) 2-D ROC curve of (PD, τ ). (d) 2-D ROC curve of (PF, τ ).
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TABLE I
ACCURACY COMPARISON OF DIFFERENT METHODS FOR FOUR HSI DATASETS

results of CEM coarse detection to detect targets and suppress
background. However, the performance of BLTSC relies on the
performance of the coarse detection method. MCLT does not rely
on the prior information found by traditional methods, and the
AUC(PD, PF), AUC(PD, τ ), AUCBS, and AUCOD of MCLT are
better than those of BLTSC on the four HSIs in the experiment.
For the AUCBS used to combine the effects of PD and PF on
background suppression, the proposed MCLT achieved optimal
results on four HSI datasets. The excellent background suppres-
sion shows that two nonlinear pull-ups by exponential and power
function operations can effectively suppress the background and
preserve the target. For the AUCOD used to evaluate the overall
detection performance of the detector, the MCLT achieved the
best overall performance on San Diego A, PaviaC, and MUUFL
Gulfport. This shows that MCLT achieves competitive results
with unsupervised momentum contrastive learning for spectral
discriminability learning and an encoder based on transformer
constructed for extracting spectral features of pixels.

Fig. 11 shows the target-background separability box plots of
the detection results of the MCLT and comparison methods on
the four HSI datasets. In the target-background separability box
plots, target and background pixels with statistically distributed
values are placed in the box, removing the highest and lowest
10% of data in the target and background classes [60]. The red
boxes indicate the distribution of targets, and the green boxes
indicate the distribution of backgrounds. In the boxes, the middle
horizontal line indicates the median value. The horizontal lines at
the top and bottom rows of each box indicate the maximum and
minimum values. The target-background separability box plot

not only reflects the separability of the target and background in
the detection results but also observes the distribution range of
the target and background pixels detection values in the detection
results. As can be seen in Fig. 11, for the four HSI datasets,
the MCLT suppresses the detected values of the background
pixels in the detection results to zero, demonstrating excellent
background suppression, and the MCLT also separates the target
from the background well. Competitive separability suggests
that unsupervised momentum contrastive learning enables the
model to learn spectral difference discrimination effectively
and enables the model to distinguish well between targets and
backgrounds in HSIs to be detected.

D. Ablation Studies

1) Effect of Overlapping Spectral Patch Embedding on Target
Detection Accuracy: To investigate the effect of overlapping
spectral patch embedding on the HTD accuracy, the overlap
between adjacent spectral patches is changed to observe the
impact of different sizes of overlapping patches on the HTD
accuracy. For the San Diego A and San Diego B datasets with
189 bands, each pixel spectrum is divided into spectral patches
of length 9. For the PaviaC dataset with 102 bands, each pixel
spectrum is divided into spectral patches of length 6. For the
MUUFL Gulfport dataset with 64 bands, each pixel spectrum
is divided into spectral patches of length 4. Fig. 12(a)–(d) show
the effect of different size overlaps on HTD accuracy versus
time consumption on the San Diego A, San Diego B, PaviaC,
and MUUFL Gulfport datasets, respectively. The horizontal
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Fig. 11. Target-background separability box plots on four HSIs. (a) San Diego A. (b) San Diego B. (c) PaviaC. (d) MUUFL Gulfport.

coordinates of each subfigure in Fig. 12 indicate the length of the
divided spectral patches and the length of the nonoverlapping
part between adjacent spectral patches. The overlap between
adjacent spectral patches in the horizontal coordinate decreases
from left to right until there is no overlap between adjacent
spectral patches. For the San Diego A and San Diego B datasets
with more bands, the detection accuracy of hyperspectral targets
achieved when there is no overlap between adjacent spectral
patches is much lower than the detection accuracy when there is
an overlap between adjacent spectral patches. The best detection
accuracy was obtained at a length of 2 for the nonoverlapping
parts between adjacent spectral patches. However, as the over-
lap between adjacent spectral patches gradually increases, the
length of the embedded spectral sequence would also increase
accordingly, leading to an increased time consumption. For the
PaviaC and MUUFL Gulfport datasets with fewer bands, the
detection accuracy of targets obtained with overlapping parts
between adjacent spectral patches is higher than that of nonover-
lapping parts between adjacent spectral patches. However, target
detection accuracy is decreased when there is excessive over-
lap between adjacent spectral patches. The local information
between adjacent spectral patches in the embedded sequence can

be increased with a suitable overlap, allowing the transformer to
concentrate on both the global knowledge of the spectrum and
the local details in the spectrum.

2) Impact of CTFFL on Target Detection Accuracy: To in-
vestigate the effect of CTFFLs on the accuracy of HTD, we
perform HTD on four HSI datasets using encoders composed
of the designed CTFFL and the feedforward layer in the orig-
inal transformer, respectively. All operations are point-wise in
the original transformer feedforward layer, and no cross-token
information can be learned [49]. The CTFFL complements the
local details in the feedforward layer by adding depth-wise con-
volution between the two fully connected layers of the original
feedforward layer. Figs. 13 and 14 represent the target detection
accuracy and time consumption of HTD using feedforward and
CTFFLs on four HSI datasets, respectively. It could be proved
that for all HSI datasets in the experiment, the detection accuracy
of HTD using the encoder composed of CTFFLs is greater
than that of the encoder composed of the original feedforward
layers. This demonstrates that performance improvements may
result from including local detail information in the feedforward
layer. However, adding depth-wise convolution between the two
fully connected layers of the feedforward layer would introduce
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Fig. 12. Effect of different overlap sizes of adjacent spectral patches on the four HSI datasets on the accuracy of HTD. (a) San Diego A. (b) San Diego B.
(c) PaviaC. (d) MUUFL Gulfport.

Fig. 13. Comparison of the detection performance of the CTFFL with the
conventional feedforward layer for HTD on four HSI datasets.

Fig. 14. Time consumption of the CTFFL versus the traditional feedforward
layer on four HSI datasets.
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TABLE II
TIME CONSUMPTION OF DIFFERENT METHODS FOR FOUR HYPERSPECTRAL DATASETS

TABLE III
MODEL PARAMETERS AND COMPUTATIONS FOR FOUR DEEP LEARNING-BASED DETECTORS ON FOUR HYPERSPECTRAL DATASETS (IN MILLIONS OR THOUSANDS)

additional learnable parameters, resulting in increased time con-
sumption.

E. Time Consumption

Table II shows the time consumption of the seven compared
methods and the proposed MCLT method together with Table III
with the model complexity of deep-learning-based algorithms.
Table II shows that the classical HTD methods (CEM and OSP)
and representation-based HTD methods (CSCR and DM-BDL)
consume much less time than the deep learning-based HTD
methods. This is reasonable because deep learning-based meth-
ods require training to obtain the parameters of the network. For
four deep learning-based HTD methods, the training time of the
proposed method is lower than that of BLTSC and MLSN, and
very close to that of ULMMDL. This is due to the transformer
network used in the proposed method, which has a multiheaded
self-attention mechanism that can be well parallelized on the
GPU. Moreover, the training epoch of the proposed method is
lower than that of the compared BLTSC and MLSN in obtain-
ing the optimal detection results. The smaller training epoch
further reduces the training time consumption of the proposed
method. Once the model is well-trained, the detection efficiency
depends on the detection time. The detection time of the deep
learning-based detection method starts from loading the model.
It ends with the detection result, as shown in Table II. The
detection time of the proposed MCLT is less than the other two
deep learning-based methods (BLTSC and MLSN) for the same
HSI dataset. This is because the proposed method only needs to
measure the similarity between the representation of the pixel

spectrum to be detected and the prior target spectrum by cosine
similarity at the time of detection, which can be achieved by
matrix multiplication. Although the detection time consumption
of MCLT is slightly more than that of ULMMDL, the detection
accuracy of MCLT is higher than that of ULMMDL.

IV. CONCLUSION

In this article, a new HTD method based on unsupervised
momentum contrastive learning and transformer is proposed,
which can achieve excellent detection results with only one
target prior spectrum. The traditional transformer has an ex-
cellent performance in focusing on spectral long-range de-
pendencies and self-similarity, but it needs more attention to
local details of the spectrum. In view of the above-mentioned
problem, overlapping spectral patch embedding and CTFFLs
are designed in this article to help the transformer focus on
spectral local detail information. Then, a momentum encoder
based on momentum update is used to extract the features of the
pixel spectra for spectral discriminability learning. Finally, con-
trastive loss is performed for spectral discriminability learning
by maximizing the similarity of positive pairs while minimizing
the similarity of negative pairs. In the stage of target detection,
the initial detection results are pulled up nonlinearly twice to
suppress the background by using exponential-normalization,
and power function-normalization operations, inspired by the
function curve properties of exponential and power functions
between 0 and 1. Experimental results on four real HSIs show
that the proposed MCLT achieves excellent target detection and
background suppression performance on HTD tasks.
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