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Segmentation and Visualization of Flooded Areas
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Abstract—Floods are the most common phenomenon and cause
the most significant economic and social damage to the population.
They are becoming more frequent and dangerous. Consequently,
it is necessary to create strategies to intervene effectively in the
mitigation and resilience of the affected areas. Different methods
and techniques have been developed to mitigate the damage caused
by this phenomenon. Satellite programs provide a large amount of
data on the earth’s surface, and geospatial information process-
ing tools help manage different natural disasters. Likewise, deep
learning is an approach capable of forecasting time series that can
be applied to satellite images for flood prediction and mapping.
This article presents an approach for flood segmentation and vi-
sualization using the U-Net architecture and Sentinel-1 synthetic
aperture radar (SAR) satellite imagery. The U-Net architecture can
capture relevant features in SAR images. The approach comprises
various phases, from data loading and preprocessing to flood infer-
ence and visualization. For the study, the georeferenced dataset
Sen1Floods11 is used to train and validate the model through
different epochs and training. A study area in southeastern Mexico
that presents frequent floods was chosen. The results demonstrate
that the segmentation model achieves high accuracy in detecting
flooded areas, with promising metrics regarding loss, precision, and
F1-score.

Index Terms—Deep learning (DL) and Sentinel-1, flood
mapping, flood segmentation, flood with deep learning, Sentinel-1,
U-Net and natural disasters.

I. INTRODUCTION

R ECENT studies from the Centre for Research on the
Epidemiological Disaster indicate that natural disasters

have increased [1], [2]. The ravages of this phenomenon cause
human losses, considerable economic damage to infrastructure,
and different collateral damages to entire population, both rural
and urban, which puts approximately 26 million people into
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poverty annually [3]. Nevertheless, what is the reason for the
increase in these disasters? There are many factors, but without
a doubt, climate change and human activities are triggering
factors. In 2021, 432 disasters occurred, causing almost 11 000
deaths; 223 were floods (see Fig. 1). In 2022, there were 387
disasters and nearly 31 000 deaths; 176 were floods. Floods have
the most significant impact of these catastrophes, affecting more
than 45% of the world’s population (see Fig. 2) [4].

The countries that suffer the most from floods are India,
China, Afghanistan, Germany, and Western Europe [1]. It also
significantly impacts food production since it causes losses
in crops and livestock, affecting food sovereignty in different
countries [5], [6]. Mexico is no stranger to these catastrophes.
The climate impact, whether of natural origin or due to human
activities, has increased susceptibility in various regions of the
country. Hydrometeorological phenomena have increased in the
southeastern areas and the coast of the Gulf of Mexico. There-
fore, floods have triggered catastrophes, causing severe damage
to economic and industrial infrastructure and the well-being of
the region’s inhabitants [7]. The most severe cases occurred
in October 2007 and November 2020. According to official
data from the Economic Commission for Latin America and
the Caribbean [8], the damage caused in 2007 was US$3B:
31.77% in the productive sector, 26.9% in agriculture, and 0.5%
in the environment. In 2020 [9], more than 800 000 people were
affected, 200 400 homes were damaged, and more than US$1M
in emergency response.

The factors that cause flooding can be diverse [10]: 1) pluvial,
the result of excess precipitation; 2) fluvial, increase in water
levels in rivers, seas, or water bodies; 3) failures of hydraulic
works, breaking of dams, dikes, or banks; and 4) failure of natural
drainage when the soil can no longer absorb more water.

Given the devastation caused by floods, timely information
on the occurrence of floods and their impact on the population
is needed. In this sense, flood prediction, identification, and
mapping are fundamental. This will allow the authorities to
act promptly to implement rescue services, damage assessment,
and identification of affected areas for the prompt relief of the
population and, in general, the resilience of populations affected
by floods.

In recent years, remote sensing has shown notable growth
due to its ability to obtain terrestrial data through sensors and
cameras implemented on satellites or satellite programs [11],
[12], [13], [14]. Satellite programs generally have two types
of sensors: passive, which captures optical images, and active,
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Fig. 1. Occurrence of the five most common natural disasters in the world from 2005 to 2022: Floods, storms, earthquakes, droughts, and wildfires.

Fig. 2. Floods in the world: 2000–2022. The years 2006, 2007, and 2021 have been the years with the highest flooding in different regions of the world.

which captures radar images. The optical images are high-
resolution multispectral and are correlated with the open water
surface. However, they can be affected by the presence of clouds
during precipitation, making it impossible to acquire clean and
reliable images. In contrast, radar images can penetrate clouds
and operate day and night and in any weather conditions. This
is because the sensors operate at longer wavelengths and are
independent of solar radiation. This makes it ideal for moni-
toring and mapping floods and estimating the damage caused.
Satellite programs include Copernicus [14], Landsat [12], and
Terra/Aqua (MODIS) [13].

Copernicus stands out for its remarkable capacity to acquire
remote data with high temporal and spatial resolution. It is
made up of satellites for different purposes: Sentinel-1 provides
synthetic aperture radar (SAR) images helpful in observing
the earth and oceans; Sentinel-2 provides multispectral optical
terrestrial images; Sentinel-3 for marine and land observation;
Sentinel-4 and 5 for air quality monitoring; and Sentinel-6 for
marine observation [15], [16], [17].

These satellite data have different properties such as: 1) spatial
resolution, which determines the area of the earth’s surface
covered by each pixel of the image; 2) spectral resolution, which
represents the electromagnetic spectrum captured by the remote
sensor and the number and width of regions; and 3) temporal
resolution, which determines how long satellite information can
be obtained from the exact location with the same satellite and
radiometric resolution [18].

In addition, artificial intelligence algorithms are being used
to analyze these data. Both technologies are being used to study
climate change, precipitation, carbon flow prediction, drought
forecasting, detection of soil changes, earthquakes, bodies of
water, floods, crops, etc.

Specifically, deep learning (DL) algorithms have taken on
a highly relevant role due to their ability to discriminate data
and automate and improve the precision of tasks such as im-
age classification, element detection, and generating thematic
cartographic representations [19]. Furthermore, they can learn
from feature representations appropriate for classification tasks
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of spatial learning using convolutional neural networks (CNNs)
and sequential learning using recurrent neural networks (RNNs).
These approaches have presented better results compared to
other techniques. However, they suffer from some problems.
CNNs suffer from inductive biases, while RNNs suffer from
gradient disappearance [20]. Furthermore, satisfactory results
of DL algorithms require an extensive dataset for training [21],
[22]. Due to this need, labeled image datasets have been
used.

Some datasets used in different proposals for flood analysis
and mapping are Sen1Floods11 [23], which has Sentinel-1
and Sentinel-2 images of 11 manually labeled flood events;
UNOSAT [24], with Sentinel-1-SAR labeled images over 15
flood events; OMBRIA [25], with images labeled Sentinel-1
and Sentinel-2 over 23 floods; SEN12-FLOOD [26] with images
labeled Sentinel-1 and Sentinel-2; and World Floods that con-
tains information on 119 floods that occurred from 2015 to 2019.
These datasets are used in different flood analysis proposals [21],
[25], [27], [28], [29].

Free access to these data has allowed various institutions to
expand their research using large volumes of data. Satellite data
are an effective tool for estimating damage caused by natural
disasters and improving risk management. This is due to the
sensors’ different resolutions and capture methods on space
platforms. This data availability has led to developing services
that enable the rapid creation of flood maps using automated
or semiautomated processes. However, these methods present
some uncertainties due to the need for more verification and the
rapidity with which they occur.

This article explores a strategy for flood segmentation based
on the U-Net architecture and the Sen1Floods11 georeferenced
dataset. This is done to segment and visualize flooded areas
through satellite images. The study area belongs to southeastern
Mexico, which has experienced severe flooding.

II. RELATED WORKS

As a strategy for flood mapping, remote sensing has shown
promising results [27], [29], [30], [31]. Many works propose
analyses, classifying, detecting, and mapping floods and water
bodies using optical (multispectral) or SAR images. Others com-
bine SAR and optical data. Despite promising results, there are
still difficulties in satellite images, such as their spatial [32] and
temporal resolution [33]. Artificial intelligence also provides
different supervised, unsupervised, and contrastive algorithms
for flood analysis using satellite images [33], [34]. Deep neural
networks, specifically CNNs, are the most widely used [35].
In this sense, the more training data the CNNs have, the better
results they will obtain [36].

Regardless of the strategy of the proposed approaches, they
have a fundamental premise: the analysis of floods in different
locations. Some map floods to coordinate rescue efforts, others
analyze flood extents to mitigate and predict their effects, etc.

Generally, traditional machine learning approaches use op-
tical images [5], [37], [38], [39]. Spectral indices are ap-
plied to images based on the interactions between vegetation
and the electromagnetic energy of the shortwave infrared and

near-infrared spectrum bands [40], [41]. These indices apply
to images with different resolutions, such as Landsat, Spot,
or Sentinel [42]. However, to map bodies of water and soil
vegetation, the following are mainly used: the normalized dif-
ference vegetation index [43] and the normalized difference
water index [44]. Although optical sensors are highly correlated
with open water surfaces, they cannot penetrate clouds, which
limits them in rainy or cloudy weather. Consequently, it is
impossible to acquire high-resolution, multispectral, cloud-free
images. Deroliya et al. [45] present an approach for flood risk
mapping considering geomorphic descriptors. They used three
algorithms: decision tree, random forest (RF), and gradient-
boosted decision trees. Zhou et al. [46] use a support vector
machine (SVM); Tulbure et al. [47] and Schumann et al. [48]
RF for the analysis of water bodies. Pech-May et al. [5] analyze
the behavior of land cover and water bodies of floods in the rainy
season using multispectral images and RF, SVM, and classifica-
tion and regression trees algorithms. Anusha and Bharathi [49]
use multispectral imaging with the algorithms mentioned earlier.
Konapala et al. [50] presented a strategy for flood identification
from SAR satellite images. Rudner et al. [51] used Sentinel-1
and Sentinel-2 to identify flooded areas. Li et al. [52] conducted
a study analyzing the damage caused by hurricanes.

Most current approaches use CNNs. They rely on dimension-
ality reduction to reduce the number of parameters and preserve
the relative locations of pixels. Increasing the depth of CNNs can
improve their performance because deep networks incorporate
multidimensional features and classifiers in multiple end-to-end
layers. Consequently, the deeper the network structure, the richer
the feature level. However, the network can cause problems
such as: 1) gradient disappearance; 2) gradient explosion; and
3) network degradation. To solve these problems, ResNet [53]
was proposed, effectively mitigating network degradation and
allowing more profound training of DLs through residual blocks.
Zhao et al. [54] used SAR images to classify buildings, vege-
tation, roads, and water bodies using TerraSAR images [55].
Other approaches, such as those of Xing et al. [56] and Tavus
et al. [57], use the U-Net architecture [58]. Katyar et al. [59]
use the Sen1Floods11 dataset with SegNet [60]. Notably, U-Net
uses skip connections between different blocks of each stage to
preserve the acquired feature maps. At the same time, SegNet
reuses the encoder’s pooling indices for nonlinear upsampling,
thus improving the results in flood detection. Bai et al. [61]
improved on the work using BASNet [62], an image segmenta-
tion network identical to U-Net; they combined it with a hybrid
loss function (structural similarity loss), intersection over union
(IoU) loss, and focal loss.

On the other hand, Scepanovic et al. [63] created a land
cover mapping system with five classes. They applied several
semantic segmentation models such as U-Net, DeepLabV3+
[64], PSPNet [65], BiSeNet [66], SegNet, FCDenseNet [67], and
FRRN-B [68]. Other approaches explore using self-supervised
and semisupervised learning based on SimCLR [69] and
FixMatch [70] to segment land use and flood mapping via
Sen1Floods11.

Some RNN approaches have also been proposed for analyzing
water bodies and land cover using Sentinel images [71], [72].
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Fig. 3. Proposed architecture for flood segmentation.

In [73], [74], and [75], they proposed approaches incorporating
recurrent and convolutional operations for treating spatiotempo-
ral data. Contrastive learning [76] has recently emerged to avoid
reliance on labeled data for flood mapping [22], [76], [77], [78].

III. METHODOLOGY FOR FLOOD SEGMENTATION IN SAR
IMAGES

Satellite images have become a fundamental tool for under-
standing and mitigating the impact of natural disasters. The pro-
posed methodology uses SAR images captured by the Sentinel-1
satellite to detect and segment floods. The U-Net neural network
architecture identifies patterns and characteristics that differenti-
ate flooded and nonflooded areas. The methodology can be seen
in Fig. 3 and consists of a series of steps, which are explained
as follows.

A. Study Area

The southeast of Mexico, Tabasco, was selected as the study
area. Tabasco is located on the coast of the Gulf of Mexico.
Its territorial extension is 24 661 km2, representing 1.3% of the
country. Two regions are recognized in the entity: Grijalva and
Usumacinta, which contain two subregions (swamps and rivers).
Together, they form one of the largest river systems in the world
in terms of volume. In addition, the state’s average precipitation
is three times higher than the average in Mexico, representing

Fig. 4. Geographic location of the study area—Rios subregion, Tabasco,
Mexico.

almost 40% of the country’s fresh water. The abundance of
water and the impact of dams on the hydrology of the region,
by altering the natural flow of rivers, cause flash floods and
floods, which affect drinking water, health, and the livelihoods
of thousands of Tabasco residents [79]. Therefore, flooding is
expected in the region. However, in the fall of 2020, several
river fronts and hurricanes caused the worst flooding in decades,
causing human and economic losses. The study area focuses on
the Ríos subregion (see Fig. 4). It is in the easternmost part
of the state, on the borders of Campeche and the Republic of
Guatemala. This is because of the many rivers that cross it,
including the Usumacinta River, the largest in the country, and
the San Pedro Mártir River. The municipalities that make up
this subregion are Tenosique, Emiliano Zapata, and Balancán.
Its surface is approximately 6000 km2, representing 24.67% of
the state’s total.

SAR images with identical polarization in the return wave,
horizontal–horizontal (HH) obtained from the Sentinel-1 satel-
lite, were obtained using the Copernicus Open Access Hub1

platform. The images are found within a tile that covered the
states of Campeche, Chiapas, and Tabasco (see Fig. 5). Given
that the study area has a large amount of vegetation, it was
decided to use HH polarization since it has greater penetration
through the canopy.

B. Load Data

This stage focuses on data acquisition and organization. Im-
ages of the study area and labels corresponding to the floods
are collected for subsequent processing and model training. The
Sen1Flood11 dataset is used to learn the neural network.

Sen1Flood11 [23] was created to train DL algorithms for
flood detection; the type of calibration used is Beta nought. It
covers 11 flood events (see Fig. 6) distributed in 14 biomes, 357
ecoregions, and six continents worldwide. It comprises 4831

1https://scihub.copernicus.eu/

https://scihub.copernicus.eu/
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Fig. 5. Tile location containing the SAR images of the study.

Fig. 6. Geographic points where flood data were collected for Sen1Floods11.

Fig. 7. Schematic of a U-Net architecture that receives as input a
512 × 512 pixel image with three channels.

image chips with a size of 512 × 512 pixels, covering a total
area of 120 406 km2. Sentinel-1 images consist of two bands,
vertical–vertical (VV) and vertical-horizontal (VH), represent-
ing backscatter values. Sentinel-2 images include 13 bands, all
of which are TOA (below atmosphere atmospherically corrected
images) reflectance values.

1) Parameter Definition: Some parameters were considered
for our model.

Fig. 8. General graphical scheme of the U-Net architecture used for the
detection and segmentation of flooded areas in SAR images.

a) Size of input images: This parameter sets the size of the
images in the dataset that would feed the neural model.
This is important to ensure optimal performance in flood
detection and segmentation. The declared size for the
input images is 512 × 512 pixels to identify specific
characteristics associated with flooding. The image size
seeks to balance the need to capture relevant details in SAR
images with the computational efficiency of the model.

b) Bands to use from the input images: In SAR imaging, chan-
nels relate to the different polarization bands in the images.
The images generated by Sentinel-1 have two polarization
bands: VV and VH. Each band represents unique infor-
mation and characteristics inherent to the acquisition pro-
cess and the interactions between electromagnetic waves
and the observed terrain. The two bands were selected
for primary model training because they capture distinct
terrain properties: VV is sensitive to surface structure and
roughness, including features such as vegetation, and VH
is sensitive to the humidity and volume of objects, such
as water on the ground. Combining both bands provides
a complete and more detailed picture of the observed
surface.

c) Input layers: The input layer is adjusted to the size of
the established images of 512 × 512. This layer provides
a structure for entering data into the model and ensures
that images are transformed and processed consistently
according to the settings in each subsequent layer.
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Fig. 9. Performance of the model with 50 epochs. (a) Loss in training.
(b) Precision and validation. (c) Confusion matrix.

C. Preprocessing

In this phase, the images and masks of the Sen1Floods11
dataset are preprocessed to be entered into the neural model later.
Among the challenges of SAR images is processing. This is due
to the geometry of its acquisition, which generates geometric and
radiometric deformation effects such as slant range distortion,
layover, and foreshortening [80]. Warping effects can affect the

Fig. 10. Performance of the model with 100 epochs. (a) Loss in training.
(b) Precision and validation. (c) Confusion matrix.

backscatter values of images. Loading images in TIF format
begins with preprocessing to adapt them to the format required
by the model. A transformation ensures that the images have
the dimensions defined in the previous step. In addition, a
transposition of the images is performed to adjust their chan-
nels to match the dimensions of the channels required by the
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Fig. 11. Performance of the model with 150 epochs. (a) Loss in training.
(b) Precision and validation. (c) Confusion matrix.

model. Radiometric calibration, terrain correction, and thermal
noise elimination are performed in preprocessing. Backscatter
coefficients are converted to decibels. VV + VH dual-band
scenes acquired by Interferometric Wide swath are recovered.
The scenes are then filtered according to the ascending and
descending passes due to the influence of the angle of incidence
on the backscatter coefficient. Channels VV and VH are clipped
within the range of (−23, 0) dB for VV and (−28, −5) dB for
VH. Subsequently, the pixel intensity values are normalized.

Fig. 12. Performance of the model with 200 epochs. (a) Loss in training.
(b) Precision and validation. (c) Confusion matrix.

Normalization is a fundamental step in standardizing the scale
of the data and ensuring that the values are within a range that
facilitates the training of the neural model. Normalization is
performed by dividing the pixel intensity values by 255, which
will scale the values to 0 and 1: 1 for pixels corresponding to
floods and 0 in nonflooded areas.

They are creating matrices for training houses the prepro-
cessed images and their respective flood reference masks. The
matricesX andY are created. The masks are represented in binary
format: 1 for flooded and 0 for nonflooded areas.
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Fig. 13. Results of the visualization of the segmentation. Right, ground truth. Left, model predictions. (a) 50 epochs. (b) 100 epochs. (c) 150 epochs. (d) 200
epochs.

D. U-Net Architecture

The U-Net architecture is a CNN designed for image seg-
mentation. It can learn specific features in images by combining
low-level and high-level features. Despite being one of the
simplest models, it offers more precise or adjusted results than
other models (see Fig. 7). The accuracy is due to its handling of
small datasets [58].

The creation of the U-Net architecture for the detection and
segmentation of flooded areas consists of two main parts (see
Fig. 8): the contraction path (encoder) and the expansion path
(decoder). Jump connections interconnect both. Furthermore, it
ends in an output layer, which generates the segmented mask of
the areas of interest.

E. Training

Essential aspects for training were configured to compile
the model. The Adam optimization algorithm was used. Adam
combines the advantages of RMSprop and Momentum to im-
prove the model learning process [81]. Both use the history of
previous gradients to update the model parameters. However,
instead of a constant learning rate, it adjusts the rate of each
parameter individually based on its estimate of the Momentum
and magnitude of the gradient. This allows for more efficient and
accurate fitting to the training data, resulting in more excellent
prediction accuracy than other optimization methods. Binary
cross-entropy [82] was used as the loss function, which is gen-
erally used in binary classification problems but also in problems
where the variables to be predicted take values between 0 and 1.

1) Subdataset for training and validation: Manually labeled
Sen1Floods11 data are divided into subsets to train, val-
idate, and test the model. These manually labeled data
are Sentinel-1 SAR images that expert remote sensing
analysts have labeled to indicate the presence or absence

of flooding in each pixel. Three subsets were made: a)
model training set (70% of the dataset); b) validation set
(15% of the dataset) to tune the model hyperparameters
and prevent overfitting; and c) test set (15% of the dataset),
data to evaluate the model and provide a realistic estimate
of its performance.

2) Definition of callbacks: Callbacks were implemented to
control the training process and make decisions based
on the model’s performance. One of the most critical
Callbacks is Model Checkpoint, which saves the model
with the lowest loss to the validation set during training.
In addition, the Early Stopping parameter was used to stop
model training if no improvement in validation loss was
observed for a specific number of epochs (in this case, 70
epochs).

The model was trained and validated using the subsets for
these purposes. A batch size of 32 images per iteration was
used during training. Different training tests were performed
with different numbers of epochs (50, 100, 150, and 200)
to evaluate performance over time. This allowed us to de-
termine with how many epochs the best results are obtained
regarding loss and precision in the validation set. Training
was performed by iterating through the training batches at
each iteration. Model weights are updated to minimize the
loss function. Training progress is monitored, and loss and
accuracy are recorded at each training and validation set
epoch.

F. Output

1) Viewing Results: In this phase, metrics and visualizations
that allow us to understand the performance and effectiveness
of the model in detecting and segmenting floods in SAR images
are obtained. It ranges from the evaluation of the quality of the



9004 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

training to the application of the model. The main components
are detailed as follows.

1) Loss and precision to understand how the model adapts
to the data and training over time: These metrics pro-
vide information about model convergence and whether
overfitting or underfitting occurs. A gradual decrease
in loss and an increase in accuracy indicate successful
training.

2) Model evaluation: The test subset is used to evaluate the
model’s actual performance. The model predictions are
applied to these images and compared to the flood masks.
This allows various evaluation metrics to be calculated,
such as precision, recall, and IoU score.

3) IoU score calculation to evaluate the quality of the seg-
mentation: This is calculated by dividing the intersection
area between the predicted mask and the actual mask by
the area of their union. Higher IoU indicates higher overlap
and accuracy in predicting flooded areas.

4) Prediction on test images, applied to a test image to
generate a prediction of the flooded areas: This predic-
tion is visually compared to the actual flood mask in the
same image to evaluate the accuracy and quality of the
segmentation. Detected and actual areas can be overlaid
to analyze coincidences and deviations.

G. Validation

An inference test is performed to predict new flood images
obtained from SAR images. In this phase, the knowledge ac-
quired during model training is applied to detect flooded areas
in real-world scenarios. The key components are described as
follows.

1) Loading of the trained neural model: It contains the
weights and architecture learned during the training pro-
cess for classifying flooded areas.

2) Preprocess and postprocess: Preprocessing functions are
used to prepare the images properly, including normal-
izing pixel values and adjusting the size to match the
model input format. After obtaining model predictions,
postprocessing functions are used to improve and refine
the outputs. This could involve removing small groups
of unwanted pixels and improving the consistency of
segmented areas.

3) New image classification: Classification proceeds once
the image has been preprocessed and the model loaded.
The image is input into the model, and predictions are
generated about the areas that could be flooded. The model
uses its prior understanding of patterns learned during
training to make these predictions.

4) Visualization of results: The model predictions can be
visualized by overlaying them on the original image. This
allows a visual assessment of how the model has identified
flooded areas compared to reality. The overlay can also
indicate the quality of the segmentation and whether there
are areas for improvement.

IV. RESULTS OBTAINED

A. Model Evaluation Metrics

The following metrics were selected to evaluate the devel-
oped neural model: loss, recall, precision, F1-score, accuracy,
confusion matrix, and IoU [83], [84].

1) Loss: It is a metric that quantifies the difference between
model predictions and actual labels. A more minor loss
indicates better agreement between model predictions and
labels. The loss was evaluated at different training epochs
(50, 100, 150, and 200) to understand the evolution and
convergence to a minimum value for better fitting the
data.

2) Recall: It measures the proportion of positive instances
(flooded areas) the model correctly identified compared
to the total number of positive instances. A high recall
indicates the model’s ability to detect most flooded areas
in the SAR image.

3) Precision: It measures the fraction correctly detected by
the model.

4) F1-score: It is a metric that combines the precision and
recall of the model. It measures the ratio between true and
false positive predictions compared to the actual labels.
It is advantageous when there is an imbalance between
classes, such as in segmenting flooded areas where non-
flooded areas are predominant.

5) Accuracy: It evaluates the overall accuracy of a classifier.
It indicates the overall performance of the model.

6) Confusion matrix: This shows the number of valid, false
positives, true negatives, and false negatives in the model
classification.

7) IoU: It measures the overlap between the segmentation
masks generated by the model and the ground truth masks.

These metrics were evaluated in different training epochs: 50,
100, 150, and 200. The model’s improvement can be observed
throughout each epoch and the equilibrium points where perfor-
mance stabilizes. In addition, it allows for identifying the stage
where the model achieves an optimal balance between precision
and recall.

Training the neural network with 50 epochs reached a loss
level of 0.3666 and 0.4462 on the validation set [see Fig. 9(a)].
The loss in training indicates the magnitude of the difference
between the model predictions and the actual labels. The in-
crease in loss on the validation set is because the model was
overfitting. The accuracy achieved in the training set was 0.8756,
and on the validation set, it was 0.8244 [see Fig. 9(b)]. This
indicates that 87.56% of the model predictions match the actual
labels in the training set. Although the model shows excellent
predictive ability in the training set, its performance in valida-
tion is slightly lower. The F1-score was 0.0230 in the test set,
indicating that the model balances accuracy and can detect true
positives. However, it is essential to note that the low F1-value is
due to the imbalance in the flooded and nonflooded classes in the
test set. It is worth mentioning that the terrain characteristics and
the angle of incidence of the image produce areas with excessive
shadowing; this causes the model to detect false positives from
areas with flooding present.
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TABLE I
RESULTS OF THE METRICS USED TO EVALUATE THE PERFORMANCE OF THE

U-NET MODEL TRAINED AT 50 EPOCHS

TABLE II
RESULTS OF THE METRICS USED TO EVALUATE THE PERFORMANCE OF THE

U-NET MODEL TRAINED AT 100 EPOCHS

The recall had a value of 0.0117, indicating that the model has
difficulty detecting most of the flooded areas in the image. This
is due to the limitation of the model with 50-epoch training.
The precision, which measures the model’s ability to identify
flooded areas correctly, was 0.9193. This means that the model
positively predicts 91.93% of the flooded areas. The confusion
matrix shows that the model classified 1.16% as true positives
(167 919 instances), 0.01% as false positives (14 731 instances),
and 99.99% as true negatives (102 503 103 instances); however,
it classified 98.84% (14 230 471 instances) false negatives [see
Fig. 9(c)]. The IoU score was 0.0117. This value reflects the
model’s ability to perform accurate segmentation and coincides
with the low recall value observed.

The above results suggest that the model trained with 50
epochs has limitations in detecting and segmenting flooded areas
in SAR images. Although it shows acceptable precision, its
recall and IoU are low. Table I presents a summary of the results
obtained.

Training the model with 100 epochs reached a loss value on
the training set of 0.2017, thus reducing the discrepancy between
predictions and labels; the loss on the validation set was 0.2267
[see Fig. 10(a)]. The accuracy in the training set was 0.9211,
which means that the model correctly classified 92.11% of the
instances; on the validation set, the precision was 0.9137, slightly
lower but significant [see Fig. 10(b)]. The F1-score value was
0.4956, which shows the ability of the model to find a balance
in identifying flooded and nonflooded areas. The recall reached
a value of 0.3379, detecting a third of the flooded areas. The
precision was 0.9287, indicating that 92.87% of the predicted
instances correspond to the flooded areas. The confusion matrix
correctly identified 91.46% of nonflooded areas (102 144 006
instances) and 92.87% of flooded areas (4 865 920 instances).
However, it misclassified 8.52% as flooded areas (9 532 470
instances) and 7.12% (373 828 instances) as nonflooded areas
[see Fig. 10(c)]. The IoU score was 0.3294, indicating a signif-
icant correlation between the areas identified by the model and

TABLE III
RESULTS OF THE METRICS USED TO EVALUATE THE PERFORMANCE OF THE

U-NET MODEL TRAINED AT 150 EPOCHS

the actual flooding areas. Table II presents a summary of the
obtained results.

They are training with 150 epochs to achieve promising and
robust performance in flooded area segmentation. Its loss was
0.1467, which suggests that the model has managed to minimize
the discrepancy between its predictions and the actual labels
[see Fig. 11(a)]. The overall accuracy reaches a solid 0.9420 on
the training set, showing that the model can perform accurate
classification in most instances. The validation set’s accuracy
remains at a satisfactory level of 0.9363 [see Fig. 11(b)]. F1-
score had a value of 0.7874, demonstrating that the model bal-
ances precision and recall when considering both true positives
and false positives and false negatives. Recall performed well,
with a solid value of 0.7718. The precision was 0.8037, which
avoids false positives and performs adequate segmentations.
The matrix shows that the model improved its performance; it
classified 97.34% of instances as non-flooded areas (99 802 794
instances) and 77.17% as flooded areas (11 112 871 instances).
However, 2.64% of misclassified cases were identified as false
positives (2 715 040 instances), and 22.83% (3 285 519) were
misclassified as false negatives [see Fig. 11(c)]. The model
obtains an IoU score of 0.6494, meaning that there is a significant
overlap between the areas segmented by the model and the actual
flooded areas. In Table III, the summary of the results obtained
is presented.

Training with 200 epochs achieved a loss of 0.0697 and,
during validation, a loss of 0.1396, indicating that the model
has achieved excellent agreement between predictions and ac-
curate labels during training [see Fig. 12(a)]. The accuracy was
0.9519 [see Fig. 12(b)], demonstrating that the model effectively
generalized the relationships learned during training to new
data. F1-score obtained 0.8441 and recall 0.7639. The precision
was 0.9431, underlining the model’s reliability in classifying
flooded areas. The matrix shows high model performance, with
99.35% (101 854 538 instances) as nonflooded areas correctly
identified and 76.39% as flooded areas (10 998 738 instances),
0.65% incorrectly classified as flooded areas (663 296 instances)
and 23.60% (3 399 652 instances) of areas wrongly flooded [see
Fig. 12(c)]. Finally, the IoU score was 0.7302. Table IV presents
a summary of the results obtained.

B. Visualization of Segmentations

Fig. 13 shows the results of the segmentation tests. On the
left side, you can see the prediction made by the model. Areas
that the model identifies as flooded are highlighted in white.
Overlaying the blank segmented areas with the actual flooded
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TABLE IV
RESULTS OF THE METRICS USED TO EVALUATE THE PERFORMANCE OF THE

U-NET MODEL TRAINED AT 200 EPOCHS

areas provides a visual assessment of the accuracy of the model
predictions. On the right side is the ground truth mask used for
the model input, where flooded areas are marked in blue.

As shown in Fig. 13(a), segmentation with 50 epochs needs to
be revised. The IoU score was 1.17% and accuracy was 91.93%
(see Table I). The model achieves significant segmentation skills
with 100 epochs [see Fig. 13(b)]. As evidence, its IoU score is
32.94% and accuracy is 92.87% (see Table II). Tests conducted
with 150 epochs [see Fig. 13(c)] highlight the model’s ability
to identify flooded areas and achieve segmentation that overlaps
significantly with the actual flooded areas. The IoU score was
64.94% and accuracy was 80.73% (see Table III). The training
with 200 epochs obtained the best results, with an IoU score of
73.02% and accuracy of 94.31% (see Table IV). These visual-
izations provide a concrete graphical representation of how the
model identifies and segments flooded areas in SAR imagery.

V. CONCLUSION

The segmentation model based on the U-Net architecture
effectively identifies flooded areas. The ability of U-Net to
capture relevant features in SAR images and its training and
validation are reflected in the obtained results. The tests with 200
epochs obtained the best results with an IoU score of 73.02%
and accuracy of 94.31%.

Despite the achievements made, several paths could be ex-
plored in future works further to improve flood detection and
segmentation in SAR images.

1) Architecture improvement: Use other architectures such as
DeepLab and PSPNet that could be considered to explore
new feature extraction capabilities.

2) Parameter optimization: Although tests have been per-
formed to determine the optimal number of training
epochs, more profound optimization can be performed
to fine-tune the hyperparameters and achieve a balance
between accuracy and training time.

3) Use of multitemporal data: Integrating multitemporal data
from different satellites could allow better flood detection
by considering the temporal evolution of the affected
areas.

As challenges are addressed and new opportunities are ex-
plored, this methodology will likely continue to improve and
significantly impact disaster management and data-driven deci-
sion making.
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