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PolSAR-MPIformer: A Vision Transformer Based on
Mixed Patch Interaction for Dual-Frequency PolSAR
Image Adaptive Fusion Classification

Xinyue Xin"’, Ming Li

Peng Zhang

Abstract—Vision transformer (ViT) provides new ideas for po-
larization synthetic aperture radar (PolSAR) image classification
due to its advantages in learning global-spatial information. How-
ever, the lack of local-spatial information within samples and cor-
relation information among samples, as well as the complexity
of network structure, limit the application of ViT in practice. In
addition, dual-frequency PolSAR data provide rich information,
but there are fewer related studies compared to single-frequency
classification algorithms. In this article, we adopt ViT as the basic
framework, and propose a novel model based on mixed patch inter-
action for dual-frequency PolSAR image adaptive fusion classifica-
tion (PolSAR-MPIformer). First, a mixed patch interaction (MPI)
module is designed for the feature extraction, which replaces the
high-complexity self-attention in ViT with patch interaction intra-
and intersample. Besides the global-spatial information learning
within samples by ViT, the MPI module adds the learning of local-
spatial information within samples and correlation information
among samples, thereby obtaining more discriminative features
through alow-complexity network. Subsequently, a dual-frequency
adaptive fusion (DAF) module is constructed as the classifier of
PolSAR-MPIformer. On the one hand, the attention mechanism is
utilized in DAF to reduce the impact of speckle noise while preserv-
ing details. On the other hand, the DAF evaluates the classification
confidence of each band and assigns different weights accordingly,
which achieves reasonable utilization of the complementarity be-
tween dual-frequency data and improves classification accuracy.
Experiments on four real dual-frequency PolSAR datasets substan-
tiate the superiority of the proposed PolSAR-MPIformer over other
state-of-the-art algorithms.

Index Terms—Dual-frequency adaptive fusion, mixed patch
interaction, PoISAR image classification, vision transformer.
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1. INTRODUCTION

OLARIMETRIC synthetic aperture radar (PolSAR) is a

microwave remote sensing (RS) technology, which ob-
tains information by transmitting and receiving electromagnetic
waves under various polarization modes [1], [2], [3]. With
the imaging capability in all-time and all-weather conditions,
PoISAR has attracted a lot of attention in the field of RS
recently. POISAR image classification is an important research
direction in the application of PolSAR images [4], [5], [6], [7],
[8]. It assigns different category labels to pixels based on the
PolSAR backscattering information, and plays an important role
in various fields [9].

To achieve accurate terrain classification, researchers have
made many attempts. Among them, traditional classification
algorithms can be roughly categorized into two groups: ap-
proaches based on statistical models [10], [11], [12] and ap-
proaches based on scattering mechanisms [13], [14], [15]. Re-
cently, deep learning (DL) algorithms represented by convolu-
tional neural network (CNN) have made significant progress in
PolSAR image classification tasks. For example, Zhou et al. [16]
successfully applied CNN to PoISAR image classification task
by using a 6-D real vector as input and learning advanced feature
representations through two cascaded convolutional layers. The
result verified the superiority of CNN in PolSAR image classifi-
cation. In order to fully utilize the characteristics of PoISAR
data, some studies have proposed to combine expert knowl-
edge and target scattering mechanisms to design a polarimetric-
feature-driven CNN model [17] and complex-valued neural
network [18], [19]. However, due to the limited receptive field of
convolution kernel, information interaction can only be carried
out in short-range space, which limits the feature extraction
ability of CNN.

Vision transformer (ViT) [20] is an emerging network archi-
tecture that can effectively process global-spatial information
within samples through self-attention mechanisms. Therefore,
ViT can be used to simulate long-range spatial relationships in
PolSAR image samples. In order to apply ViT to synthetic aper-
ture radar (SAR) and PolSAR image classification tasks, Dong
et al. [21] proposed using multiheaded self-attention blocks in-
stead of convolutional blocks for feature exaction, which made it
possible for long-range information interaction. The experimen-
tal results have demonstrated the robustness of ViT in PolSAR
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image classification tasks. On this basis, Liu et al. [22] proposed
a global-local network structure (GLNS) for high-resolution
SAR image classification, which learns local and global features
through lightweight CNN and compact ViT, respectively, and
fuses these two types of features through a fusion net. Fan
et al. [23] designed a network based on swin transformer [24],
and realized joint feature learning of local-spatial information
and global-spatial information through shift window and local
window self-attention. Furthermore, Wang et al. [25] proposed
a semisupervised PoOISAR image classification method based on
ViT. It designs an autoencoder for pretrain process, and then
finetunes the network with labeled samples.

Although ViT has powerful long-range feature processing
capabilities and has been successfully applied in PoISAR im-
age classification tasks, it still has some limitations. On the
one hand, ViT only focuses on the global-spatial information
within samples, neglecting the local-spatial information within
samples and correlation information among samples. In PoOISAR
images, the pixel correlation in the local space within samples
is strong, and pixels from the same category may be distributed
in different samples. Therefore, the study of local-spatial in-
formation within samples and correlation information among
samples is necessary for PoISAR image classification. On the
other hand, the self-attention network in ViT structure has high
complexity, which increases the difficulty of network training.
For small-scale samples in PoOISAR image classification, a highly
complex self-attention network is not very necessary [26], [27],
[28], [29].

The above algorithms are presented for single-frequency Pol-
SAR image classification. With the development of multisensor
technology, dual-frequency PolSAR data are gradually being
applied for PolSAR image classification. Due to the fact that
electromagnetic waves in different frequencies have different
penetrability, PoISAR data in different frequency bands can
obtain different feature representations for the same ground
object [30], [31], [32]. For example, PolSAR data in C-band
have a better performance in observing sea ice and land erosion
due to its short wavelength and weak penetrability. POISAR data
in L-band, on the other hand, have an advantage in agricultural
cover classification due to its long wavelength and strong pen-
etrability. Therefore, it is a promising research topic to make
reasonable use of the complementarity between dual-frequency
PolSAR data to improve the classification performance.

In the research of dual-frequency PolSAR image classifi-
cation, the traditional methods are mainly based on statisti-
cal models and feature analysis. On the one hand, statistical
distribution-based methods provide a good statistical founda-
tion for classification tasks. For example, Dupuis et al. [33]
proposed to independently estimate the covariance matrix of
each frequency band, and then determine the results based
on the sum of Wishart distances of all frequency bands. The
essence of this method is to integrate the classification results of
each frequency band after processing single-frequency data. In
order to integrate dual-frequency data before the Wishart metric
processing, Ferro et al. [34] constructed a 6 x 6 polarization
coherence matrix from the scattering matrix of dual-frequency
data, and then combined the Wishart metric and maximum
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likelihood to achieve dual-frequency PolSAR image classifica-
tion. Gao et al. [35] designed a Wishart mixture model (WMM),
which is the weighted sum of multiple distributions. The mix-
ture model realizes interband feature fusion and has stronger
descriptive ability than single-frequency data. On the other
hand, feature analysis-based methods achieve dual-frequency
data fusion by reducing feature redundancy. For example, Liu
et al. [36] analyzed the principal components of dual-frequency
data by multilinear subspace learning and tensor representation.
Yang et al. [37] combined Stein kernel and sparse representation
to assume the relationship of dual-frequency data. In addition,
De et al. [38] innovatively utilized the Kronecker product to
fuse different frequency data, avoiding prior bias caused by the
dominant frequency band. Although these traditional algorithms
have achieved better results than single-frequency classification
algorithms, their classification results are limited because of the
weak discriminability of artificial features.

Due to the ability to automatically extract abstract advanced
feature representations, DL-based algorithms have achieved
better performance than traditional algorithms. Among the DL-
based multimodal RS fusion algorithms, Hong et al. [39] created
a universal RS basic model based on generative pretrained
transformer, which utilizes 3-D token generation to achieve
spatial-spectral coupling and adopts a progressive training strat-
egy to adapt to multimodal RS data of different sizes, resolutions,
time series, and regions. In [40], a high-resolution domain
adaptive network is proposed to solve the domain adaptation
problem in multimodal RS data. It preserving the image spatial
topology through a parallelled high-to-low resolution fusion
model, and reducing the gap caused by the huge differences
between different terrain scenes through adversarial learning.
Besides, He et al. [41] proposed an adaptive fusion framework,
which extracts unimodal features along the spatial and channel
dimensions through cross-spatial and cross-channel interaction
modules, and establishes a coupled scoring function to describe
the dependence relationships to address the differences between
modalities. As for POISAR images, Chen et al. [42] established
a dual-frequency PolSAR image classification method based on
dynamic neural networks, which has the advantages of fast learn-
ing and built-in optimization compared to traditional algorithms.
Gadhiya et al. [43] designed an extended optimized Wishart
network (e-OWN) based on the mathematical model of Wishart
metric, which can accelerate the calculation of Wishart distance
and effectively combine dual-frequency PolSAR information.
Ahishali et al. [44] adopted 1D-CNN to extract advanced fea-
ture representations from single-frequency PolSAR data, and
performed dual-frequency feature stacking before the classi-
fier. The experimental results demonstrate that this algorithm
improves computational efficiency, and the joint learning of
the dual-frequency data significantly upgrades the classification
accuracy.

Nevertheless, compared to the mature developed single-
frequency PoISAR image classification algorithms, there is still
less research on dual-frequency PolSAR image classification.
Besides, the current DL-based algorithms usually stack the
dual-frequency data and process all features equally, ignoring the
complementarity between dual-frequency data. In this case, the
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relevant features are not taken seriously while irrelevant features
are overly focused, which increases the network training burden
and even affects the classification accuracy.

With the aforementioned consideration, a ViT-based model
using mixed patch interaction for dual-frequency PolISAR image
adaptive fusion classification (PolSAR-MPIformer) is proposed
in this article. It mainly includes two parts: the mixed patch in-
teraction (MPI) module and the dual-frequency adaptive fusion
(DAF) module. First, the MPI module is used to extract discrim-
inative feature representations by jointly learning global-local
spatial information within samples and correlation information
among samples. Then, the learned feature representations are
fed into the DAF module, which not only makes reasonable
use of the complementarity between dual-frequency data by
cross-frequency confidence fusion (CFCF) block, but also re-
duces the speckle noise of PoOISAR images through cross-layer
attention fusion (CLAF) block. Through the cooperation of the
MPI module and the DAF module mentioned above, the goal
of improving classification accuracy is achieved. Compared
with current state-of-the-art (SOTA) methods, the main incre-
ments of the proposed PolSAR-MPIformer are the addition of
learning correlation information among samples in the feature
extraction process and the use of adaptive fusion strategy to
learn dual-frequency data, thereby obtaining more discrimina-
tive features and concentrating network computation on favor-
able frequency band features, achieving reasonable utilization
of dual-frequency data. The crucial contributions and novelties
of this article are summarized as follows:

1) A novel PolSAR-MPIformer is proposed to improve dual-
frequency PolSAR image classification performance. It
follows the general framework of ViT and generates an
MPI module to extract more discriminative feature repre-
sentations. In addition, a DAF module is designed as the
classifier of Pol[SAR-MPIformer to fuse dual-frequency
data and reduce the influence of speckle noise.

2) An MPI module is designed for feature exaction, which
uses patch interaction (PI) intrasample and PI intersample
to replace the high-complexity self-attention block in ViT.
On the basis of ViT in learning global-spatial information
within samples, MPI adds the learning of local-spatial
information within samples and correlation information
among samples in low network complexity, thus obtaining
more discriminative feature representations.

3) A DAF module containing CLAF block and CFCF block
is constructed as the classifier of POISAR-MPIformer. The
CLAF block fuses shallow fine-grained features with deep
coarse-grained features through the attention mechanism,
which reduces the impact of speckle noise while pre-
serving details. Moreover, the CFCF block helps under-
stand the importance of different frequency data for clas-
sification tasks through confidence scoring, and applies
different weights to different bands accordingly, thereby
achieving reasonable utilization of the complementary
between dual-frequency PolSAR data.

The article is organized as follows. A brief introduction to

PoISAR data is reviewed in Section II. The proposed PolSAR-
MPIformer is introduced in Section III. Experimental results
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and analyses on four real PolSAR datasets are presented in
Section I'V. Finally, Section V concludes the article.

II. PRELIMINARIES

The PolSAR system obtains descriptions of ground objects by
transmitting and receiving electromagnetic waves under various
polarization mechanisms. The scattering matrix S is often used
to describe the linear transformation between the transmitted
and received electromagnetic waves, and it can be presented as

g_ lSHH Suv 0

Sve Svv

where H and V' denote the horizontal and vertical polarization
basis, respectively. Based on the principle of reciprocity (i.e.,
SHv = Sy ), we can obtain the Pauli basis k as follows, and
the superscript 7" indicates transpose operation

T
k= [SHH V2Suv va} - @)
Then, the covariance matrix of k can be formulated as
Cn Ci2 Ci3
C=k-k"=1|Cf, Cun Cyl. 3)
Cis O35 Css

The superscript H here represents conjugate transpose opera-
tion, and * represents complex conjugate operation. Generally,
the internal elements of the covariance matrix C are selected to
form a vector x as the initial features of each pixel, and x can be
described as x = [C11, Re(C12), Im(C12), Re(C13), Im(Cq3),
Ca, Re(Cya3), Im(Ca3), C33], where Re(-) and Im(-) represent
the real and imaginary part, respectively.

For PolSAR image classification tasks, we usually take a
window of s X s centered on pixel to form an image block
(s X s x 9) as the input sample for deep learning network.

III. PROPOSED METHOD

ViT has three core components: the self-attention network,
residual connection, and feed forward network (FFN). Accord-
ing to the relevant research of ViT, the key of ViT to achieve
excellent performance is not self-attention, but its overall archi-
tecture [28]. For this reason, we propose a PolISAR-MPIformer
for dual-frequency PolSAR image classification. The structure
of the proposed PolSAR-MPIformer is shown in Fig. 1.

Given an input PoISAR image sample x € R****9, We first
feed x to several combinations of patch operation and MPI mod-
ule called stage 0, stage 1, . . . , and stage N for learning layerwise
feature representations. Then, these feature representations are
fed into the DAF module to achieve dual-frequency data fusion
and noise reduction. In the following, we will introduce the
designed MPI module and DAF module in detail.

A. Mixed Patch Interaction (MPI) Module

As shown in Fig. 2, the MPI module retains the residual
connection and FFN structure in ViT framework, and replaces
the high-complexity self-attention network with a combination
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Fig. 1. Overall structure of the proposed PolSAR-MPIformer.
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Fig. 2.  Architecture of the MPI module.

of PI intrasample and PI intersample. Among them, PI in-
trasample can be used to learn global-local spatial information
within samples, while PI intersample is used to learn correlation
information among samples. Below, the PI intrasample and PI
intersample are described in detail, respectively.

1) PI Intrasample for Learning Global-Local Spatial Infor-
mation Within Samples: Due to the powerful global modeling
ability, ViT can effectively construct long-range dependence
within samples, and has advantages in learning global-spatial
information within samples. However, the lack of local-spatial
information and the complexity of its structure limits the appli-
cation of ViT in practice. Hence, by virtue of the advantages
of ViT in global-spatial information learning, a PI intrasample
method is proposed to jointly extract global and local spatial
information.

As a developed image processing network, the convolutional
blocks can learn local-spatial information through the local
receptive field, shared weights, and spatial subsampling, so
it has shift, scale, and distortion invariance. Furthermore, the
hierarchical structure of convolutional kernels considers the
feature representations with varying degrees of complexity,
from simple low-level edges and textures to complex high-level
semantic information. Besides, the pooling operation could also

complete the learning of local-spatial information to a certain
extent, but only using pooling will lose a large amount of image
information. Therefore, we adopt a stacked convolution and
pooling (SCP) network to learn local-spatial information within
samples. This method not only takes the advantage of pooling
layer in reducing network parameters, but also combines the
advantages of convolutional blocks in preserving local-spatial
information.

Apart from local-spatial information over short-range within
samples, global-spatial information over long range is also cru-
cial. In ViT, self-attention networks are commonly used to model
long-range dependencies. Although this method is effective, the
large number of network parameters result in long training time
and high training difficulty. Therefore, we propose adding a
spatial shuffle (SS) operation between two SCPs to place distant
patches in adjacent locations, so that the later SCP can achieve
information interaction over long range and learn global-spatial
information. Specifically, as shown in the pink area of Fig. 2,
the first step of SS is to divide the original sample space A into
several nonoverlapping windows. The second step is to move
pixels with the same relative position within each window to
adjacent positions, ultimately forming a new sample space A’'.
Both in training and testing follow the same spatial partitioning
mode and pixel shuffling mode. In the new sample space A’,
adjacent patches come from different windows in A. Therefore,
when using SCP later, realizing short-range information inter-
action on A’ is equivalent to realizing long-range information
interaction on A. Due to the fact that the residual connection is
pixelwise addition, we add an inverse SS (i-SS) after the second
SCP to ensure pixel alignment between the processed sample
and the original sample.

Compared with self-attention in ViT, the PI intrasample
method based on SCP and SS can learn global-local spatial
information and has lower network complexity. Therefore, as
shown in the pink area in Fig. 2, for POISAR image classification
tasks, we adopt the PI intrasample method to learn global-local
spatial information within samples.
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Fig. 3. Architecture of the DAF module.

2) PI Intersample for Learning Correlation Information
Among Samples: For the whole PoISAR image, the same kind of
pixels may appear at a far distance. When samples are generated
by window segmentation, similar pixels may appear in different
samples. Therefore, it is necessary to consider the correlation
information among samples. Below, we will introduce a PI
intersample method to achieve feature learning among samples.

Self-attention mechanism is a common algorithm for infor-
mation interaction, and is often used for feature learning among
patches within the sample. When extending the self-attention
mechanism to information interaction among samples, it is
necessary to first measure the correlation between the input
sample and all other samples, and then use the obtained cor-
relation matrix to apply different weights to all samples. The
mathematical formulation of this operation is

Xout = SoftMax(Xin X W:ﬂl) X Wan 4)

where x;, and Xyt represent the sample information of input
and output, respectively, W ,y; represents the sample informa-
tion of the entire PoISAR image. This concise formula inspires
a network architecture to realize automatic information interac-
tion among samples. As shown in the green area in Fig. 2, instead
of stacking all samples to obtain correlation matrix and update
sample information, we abstract the matrix W) as a network
parameter that can gradually fit the sample information of whole
PoISAR image through the training process, thus solving the
problem of huge calculation caused by measuring the correlation
among samples one by one.

After combining the correlation information intersample with
the spatial information intrasample, a more complete feature
representation can be obtained, which provides a more favorable
feature basis for subsequent classifier.

B. Dual-Frequency Adaptive Fusion (DAF) Module

Through the MPI module, the shallow feature representa-
tions and deep feature representations of dual-frequency Pol-
SAR image can be obtained. Because the shallow fine-grained
feature representations contain detailed information and the

deep coarse-grained feature representations contain semantic
information, we propose a CLAF block to make full use of
these two kinds of features. In view of the different sensitivities
of dual-frequency data to ground objects, we propose a dual-
frequency data fusion block named CFCE, so as to reasonably
utilize the complementarity of dual-frequency data and produce
more accurate classification results. The specific descriptions
are as follows.

1) Cross Layer Attention Fusion (CLAF): The normal DL-
based methods only input the feature representations from the
last layer into the classifier, but ignore the spatial details con-
tained in the shallow feature representations and the correlation
information across different layers. In order to make the best of
shallow feature representations and deep feature representations
obtained by MPI modules, the CLAF block is proposed.

Specifically, as shown in the yellow area of Fig. 3, the
CLAF enables shallow feature representations and deep feature
representations to learn from each other through self-attention
network. Due to the same processing method for all the fre-
quency bands, we will take Band-1 as an example for a detailed
introduction.

First, the multilayer feature representations are stacked as

X} = [elst, x], .., x4

SXE X2 5)
where N denotes the number of network layers, xﬂl indicates
the nth layer feature representations of Band-1 data. Inspired
by transformer, a feature vector cls! is embedded in the first
place of X . Next, the self-attention mechanism is used to
construct a query vector q, a key vector k, and a value vector
v. The relationship across layers can be found through q and k.
Then, the value vector v is weighted by the obtained coefficient
matrix to generate the fusion features. The specific mathematical

expression is

X? . = softmax(qk”)v. (6)

The dimensions of X2, are the same as X{, , and we choose
the first vector of X2, as the cross layer feature representations
for output.
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After the above operations, the CLAF block could transfer the
semantic information of deep feature representations to shallow
layers, thus reducing speckle noise in shallow fine-grained fea-
ture representations. In addition, it also transfers the detailed
information of shallow feature representations to deep layers,
so that the detailed information can be retained in deep coarse-
grained feature representations. Although the CLAF block uses
the self-attention mechanism, it does not bring in a large number
of network parameters and excessive computational complexity.
There are two main reasons, on the one hand, the computation
complexity of self-attention is O(n?), where n is the number
of image patches in ViT and the number of MPI modules in the
proposed algorithm. The number of MPI modules is much less
than the number of normal image patches, so the computation
complexity of self-attention in CLAF is lower than that in
ViT. On the other hand, the CLAF block only appear once
after the feature extraction process and do not add too much
computational complexity to the entire network. To summarize,
through the CLAF block mentioned above, the impact of speckle
noise on classification results can be reduced, and the detailed
information can be kept as much as possible.

2) Cross Frequency Confidence Fusion (CFCF): Due to the
different sensitivities of dual-frequency PolSAR data to ground
objects, their classification performance are different. In order
to fully utilize the differences in dual-frequency data and im-
prove the classification performance, we propose a CFCF block
that utilizes the complementary of dual-frequency data through
confidence scoring.

By setting different classifiers for different frequency data,
two different classification results can be obtained. Specifically,
we use the combination of fully connected (FC) layer and soft-
max operation as classifiers, and the number of output neurons
is K, which is the number of categories of ground objects.
The output of Band-1 classifier and Band-2 classifier can be
expressed as outl and out2, respectively:

out! = SoftMax(FC (feature'))

:[y%,...,y,i,...,y}{} (7)
out? = SoftMax(FC (feature?))
=3,y K- ®

In the above equations, feature! and feature? represent the
feature representations of Band-1 and Band-2 obtained by CLAF
block, respectively, y; and y,z represent the output of the kth
neuron in Band-1 classifier and Band-2 classifier.

The negative logarithmic likelihood (NLL) loss caused by the
outputs and the one-hot coded labels y is propagated back, and
the classifiers of two frequency bands can be trained, respec-
tively. The loss function of this part is presented as follows:

loss; = —y log out® — y log out?. )

In the prediction process, the index of the maximum value in
output vector is generally selected as the classification result,
but the numerical characteristics of out! and out? are ignored.
Taking out?! as an example, the physical meaning of each item
y} is the probability that the sample is classified into the kth
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class on Band-1 data. Similarly, the physical meaning of y7 is
the probability that the sample is classified into kth class on
Band-2 data. Therefore, although the index of the largest item
in out! and out? should be the same, the numerical results of
out! and out? are different.

The purpose of network training is to make the predicted label
as close as possible to the real label, that is, the target items of
out! and out? should be close to 1, and other items should
be close to 0. Therefore, the greater the gap between the largest
term and the second largest term, the closer the output is to the
ideal state, indicating that this group of feature representations
has stronger classification ability. Based on this, we convert
the difference value between the largest term and the second
largest term as the classification confidence of each band. By
applying different weights to different frequency bands based on
the classification confidence, the fused feature representations
feature can be obtained as

O = Yp1 ~ Yia (10)
B =y — viix (1)
feature = [ * feature®, 3  feature?] (12)

where y},, and y}., represent the largest term and second largest
term of out, y7, and y7, represent the largest term and second
largest term of out.?

Then the fused feature representation feature is fed into a
classifier to get out, the generated NLL loss of this partis defined
as

loss; = —y log out. (13)

To sum up, the final overall loss function can be written as

loss = lossy + A X lossy (14)

where A is the weight coefficient. By combining loss; and losss
for backpropagation, the best fusion result can be obtained while
ensuring the appropriate confidence score for each frequency
band as accurate as possible.

The above confidence-based dual-frequency feature fusion
algorithm can fully learn the rich information contained in
dual-frequency data, and make reasonable use of their comple-
mentarity to improve the classification accuracy.

IV. EXPERIMENTAL RESULT AND ANALYSIS

In this section, we perform experiments on four measured
dual-frequency PolSAR datasets to evaluate the performance
of the proposed PolSAR-MPIformer. The experimental setup,
ablation studies, and performance comparison are introduced
below.

A. Experimental Setup

1) Dataset: Three sets of real multifrequency PolSAR im-
ages are used for the following experiments. The ground truth
maps of each dataset are manually annotated based on the
corresponding optical images on Google Earth.

The first dataset has C-, L-, and P-band PolSAR data obtained
by the NASA/JPL AIRSAR system in the Flevoland region, with
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Fig. 6. SanFrancisco dataset. (a) C-band. (b) L-band. (c) Ground Truth.

a size of 1079x 1024 and containing 15 types of ground objects.
Fig. 4(a) to (c) shows the Pauli decomposition images of each
band and Fig. 4(d) shows the ground truth map.

The second dataset contains S- and L-band PolSAR data
obtained by the airborne system over the scene of Hebei in 2021.
It has 1005 x 962 pixels and five types of ground objects. The
Pauli decomposition images of S- and L-band data are shown in
Fig. 5(a) and (b). The referenced ground truth image is shown
in Fig. 5(c).

The third dataset has C-band PolSAR data collected by the
GF-3 system and L-band PolSAR data collected by the ALOS
system. It displays the terrain situation of San Francisco Bay,
and mainly includes five kinds of ground objects. The image
size is 1161 x 1161 and the Pauli decomposition images of C-
and L-band data are presented in Fig. 6(a) and (b), respectively.
The ground truth image is presented in Fig. 6(c).

In order to apply the above measured PolSAR data to this
study, we constructed four sets of dual-frequency PolSAR

Flevoland dataset. (a) C-band. (b) L-band. (c¢) P-band. (d) Ground Truth.

datasets: the Flevoland_CL contains C- and L-band PolSAR
data from Flevoland dataset, the Flevoland_CP contains C-
and P-band PolSAR data from Flevoland dataset, the Hebei_SL
contains S- and L-band PolSAR data from Hebei dataset, and
the SanFrancisco_CL contains C- and L-band PolSAR data from
SanFrancisco dataset. In addition, the RS images collected from
airborne or satellite equipment suffered from various variabil-
ities [45], [46], PoISAR data always take surface scattering,
double-bounce scattering, volume scattering, helix scattering as
the endmember matrix (or dictionary) of multiple-component
scattering model. In this study, we only focus on observing
interclass discrimination and intraclass similarity, without con-
sidering the detailed scattering characteristics in each type of
terrain.

2) Implementation Details: Inthe following experiments, we
select 13 x 13 as the window size to construct samples. Due
to the large number of categories in the Flevoland dataset, we
randomly select 200 samples from each class as the training sam-
ple set for Flevoland_CL and Flevoland_CP. The Hebei dataset
and SanFrancisco dataset contain five types of ground objects,
which is a relatively small number of categories. Therefore, 100
samples are selected from each class as the training sample set
for Hebei_SL and SanFrancisco_CL.

In the training process, we set the epoch as 200 and the
optimizer as Adam, the basic learning rate is le—3, which
is decayed by 0.9 every 50 epochs. All the experiments are
performed on the Hewlett-Packard (HP)-Z840 Workstation with
Nvidia GeForce RTX 1080 GPU, 64-GB RAM, and Windows 10
operating system. In order to avoid the influence of randomness,
we run all the algorithms independently for 10 times in PyTorch
environment and take the average value as the final result.

As for evaluation indicators, we take the accuracies of each
category, overall accuracy (OA), average accuracy (AA), and
kappa coefficient (x) to measure the effectiveness of the algo-
rithms.

B. Ablation Studies

The proposed PolSAR-MPIformer mainly includes the MPI
module and DAF module. To verify the effectiveness of each
module, we conduct ablation experiments. Moreover, we design
experiments on single- and dual-frequency data separately to
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TABLE I

ABLATION STUDY OF THE MPI MODULE

Method Flevoland_CL Flevoland_CP Hebei_SL SanFrancisco_CL
OA(%)IAA(%)/kx 100

ViT 97.28/97.63/96.87 | 96.57/97.04/96.06 | 95.38/95.29/92.85 | 98.70/98.38/98.24

PI intra-sample 97.74/98.14/97.40 | 97.06/97.44/96.67 | 96.77/95.74/94.99 | 98.89/98.62/98.55

PI inter-sample 97.45/97.76/97.07 | 96.24/96.74/95.68 | 96.21/95.66/94.12 | 98.85/98.68/98.42

MPI 97.96/98.23/97.66 | 97.25/97.65/96.84 | 97.13/96.06/95.52 | 98.96/98.74/98.57

The bold values represent the best results.

verify the effectiveness of dual-frequency data fusion in classi-
fication tasks. Due to the fact that the loss function contains two
terms during the training process, we also conduct experiments
on the weight coefficient A.

1) Effect of MPI Module: In this section, we use four models
for feature extraction, respectively, to verify the effectiveness of
MPI module. These four models are ViT model, PI intrasam-
ple model, PI intersample model, and MPI model. To avoid
the impact of DAF module on experimental results, a simple
combination of FC layer and softmax operation is used as the
classifier.

As shown in Table I, the classification results of Pl intrasample
are superior to ViT model in all the four datasets, which is related
to the sampling method of PoISAR image classification task.
Due to the small window in the sampling process, it is very
wasteful for ViT to use a complex network to conduct long-range
information interaction within samples. The complexity of the
model leads to the increased training difficulty and network over-
fitting. Besides, ViT only focuses on extracting global-spatial
information while ignoring local-spatial information. These rea-
sons collectively result in the accuracy of ViT being lower than
the accuracy of PI intrasample.

In addition, due to the fact that the PI intrasample only
achieves information interaction within samples but ignores
the correlation information among samples, a PI intersample is
proposed to supplement the feature extraction process. It can
be seen from Table I that the accuracy of PI intersample is
lower than that of PI intrasample. This is because the corre-
lation across different samples is less strong than the correlation
within samples, and the feature representations obtained within
samples are naturally more discriminative than that obtained
across samples. Nevertheless, the correlation information among
samples still contains some important classification information.
The classification results of MPI in Table I clearly indicate that
the feature extraction algorithm combining PI intrasample and
PI intersample can obtain more discriminative feature represen-
tations.

The above experiments have demonstrated that the proposed
MPI module can fully utilize the sample information to learn
discriminative feature representations, and provide a good foun-
dation for subsequent steps.

2) Effect of DAF Module: The DAF module has two impor-
tant blocks, namely, CLAF block and CFCF block. Therefore,
we designed four models to prove the effectiveness of DAF
module. The first ablation model directly uses FC layer as the
classifier, the second ablation model uses CLAF before the FC

layer, the third ablation model uses CFCF before the FC layer,
and the fourth ablation model uses both CLAF and CFCF before
the FC layer. The above four models are all based on the MPI
module for feature extraction.

From Table II, we can observe that the classifier with CLAF
or CFCF is better than the classifier with only FC layer. The
CLAF could utilize the combination of shallow and deep feature
representations based on the self-attention mechanism, thereby
reducing the impact of speckle noise on experimental results
while preserving details. And CFCF is a fusion method for dual-
frequency PolSAR data. Based on the different sensitivities of
dual-frequency data on terrain classification, the CFCF uses the
complementarity between dual-frequency data to improve the
classification accuracy. The CLAF and CFCF have improved
the classifier from different perspectives, and both have made
significant progress.

The DAF module suggests applying CLAF and CFCF to the
classifier simultaneously. As can be seen from Table II, the
DAF module can not only utilize the advantages of CLAF to
learn hierarchical information to reduce speckle noise, but also
utilize the advantages of CFCF to learn complementary infor-
mation between dual-frequency data to improve classification
results.

3) Effect of Dual-Frequency Data Fusion: Due to the fact
that single-frequency PolSAR image classification does not
require the CFCF block, we remove it from the DAF module
in the single-frequency experiments. The color coding in tSNE
maps below is the same as the ground truth maps.

The classification results of the Flevoland dataset are shown
in Table III, and the tSNE maps are shown in Fig. 7. As can be
seen from Table III, L-band performs best in three frequency
bands, and maintains the highest classification accuracy in most
categories. This is because the wavelength and resolution of
L-band are suitable for detecting forestry and agricultural ground
objects. As can be seen from Fig. 7, C-band has more compact
features in Oats and Beans [as shown in the elliptical box and
rectangular box in Fig. 7(a)]. In addition, compared with C-band,
P-band has less overlap area in Wheat and Barley [as shown in
the elliptical box in Fig. 7(c)]. Although L-band is the best of
the three bands in terms of accuracy, there are still problems
of intermixing across categories and insufficient compactness
within categories in the tSNE map. In Fig. 7(d), it is obvious
that after the dual-frequency fusion, the Wheat and Barley in
C+L are more isolated than those in C-band [as shown in the
elliptical box in Fig. 7(d)], the Maize is more compact than those
in the single-frequency situation [as shown in the rectangular box
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MPI DAF Flevoland_CL Flevoland_CP Hebei_SL SanFrancisco_CL
CLAF | CFCF OA(%)IAA(%)/k % 100

4 b 4 X 97.96/98.23/97.66 | 97.25/97.65/96.84 | 97.13/96.06/95.52 | 98.96/98.74/98.57

4 v X 98.09/98.21/97.80 | 97.43/97.76/97.04 | 97.45/95.59/95.99 | 98.98/98.06/98.60

v X v 98.16/98.36/97.88 | 97.68/97.79/97.33 | 97.90/96.69/96.71 | 99.17/98.85/98.86

v v v 98.34/98.45/98.09 | 97.83/98.04/97.50 | 98.45/96.74/97.57 | 99.31/98.86/99.05

The bold values represent the best results.

TABLE III
CLASSIFICATION PERFORMANCE OF FLEVOLAND DATASET WITH
DIFFERENT BANDS

Band C L P C+L C+P | C+L+P
Grass 93.12 | 91.41 | 87.32 97.03 | 96.92 96.44
Flax 99.86 | 99.86 | 96.90 99.88 | 99.91 99.94
Potato 96.77 | 98.35 | 91.87 98.87 | 98.94 99.19
Wheat 93.92 | 97.27 | 97.08 98.77 | 98.86 98.92
Rapeseed | 99.54 | 99.84 | 99.19 99.80 | 99.66 99.72
Beet 86.04 | 9535 | 83.06 98.71 | 96.02 99.02
Barley 93.74 | 98.96 | 98.29 99.46 | 98.92 99.30
Peas 99.40 | 98.60 | 97.91 99.88 | 99.52 99.78
Maize 96.44 | 99.72 | 91.95 99.63 | 99.35 99.57
Beans 99.04 | 99.85 | 98.89 99.60 | 99.09 98.84
Fruit 92.03 | 96.53 | 96.17 97.89 | 96.66 96.95
Onions 99.64 | 98.23 | 97.64 99.68 | 99.91 99.86
Lucerne 97.84 | 99.65 | 95.36 99.98 | 99.77 100.00
Building | 92.72 | 93.87 | 95.26 95.33 | 96.01 97.27
Road 85.29 | 86.38 | 81.92 92.21 | 91.01 92.62
OA(%) 93.36 | 96.66 | 93.06 98.34 | 97.83 98.41
AA(%) 9491 | 97.04 | 93.92 98.45 | 98.04 98.49
Kkx100 92.38 | 96.16 | 92.03 98.09 | 97.50 98.17

The bold values represent the best results.

in Fig. 7(d)]. As for C+P, although the separability of Beat and
Maize is not yet strong, there has been a significant improvement
compared to the results of single-frequency [as shown in the
rectangular box in Fig. 7(e)].

Moreover, we extend our algorithm to the trifrequency Pol-
SAR data. The experimental result is shown in Fig. 7(f), and
it is clear that the separability across categories and the com-
pactness within categories are both strong. For example, the
confusion between Beat and Maize is significantly less than
other results [as shown in the elliptical boxes in Fig. 7(f)]. From
Table III, we can also see that the classification accuracy of
trifrequency data is higher than that of single-frequency data
and dual-frequency data. However, due to the high hardware
requirements for obtaining and processing trifrequency PoISAR
data, there are very few relevant measured datasets currently.
Moreover, the fusion of dual-frequency data has effectively im-
proved classification accuracy, the accuracy of trifrequency data
fusion is not significantly improved compared to dual-frequency
data. According to the above analysis, we mainly focus on the
dual-frequency dataset (Flevoland_ CL and Flevoland_CP) in
subsequent experiments.

04 z >
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Fig.7. Comparison tSNE Maps of Flevoland Dataset. (a) C-band. (b) L-band.
(c) P-band. (d) C+L. (e) C+P (f) C+L+P.

TABLE IV
CLASSIFICATION PERFORMANCE OF HEBEI DATASET WITH DIFFERENT BANDS

Band S L S+L
Forest 97.99 97.50 98.65
Farmland 98.12 99.83 99.05
Road 93.49 37.58 91.84
Building 86.15 87.22 94.81
Bare land 93.05 94.95 99.09
OA(%) 96.16 94.15 98.45
AA(%) 93.76 83.41 96.69
kX100 93.98 90.52 97.57

The bold values represent the best results.

The experimental results on two frequency data of the
Hebei_SL are shownin Table IV. It can be seen that the classifica-
tion accuracy of S-band in Road is higher than that of L-band, and
the classification accuracy of L-band in Farmland is higher than
that of S-band. Moreover, the tSNE maps in Fig. 8 show that the
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Comparison tSNE Maps of Hebei Dataset. (a) S-band. (b) L-band.

TABLE V
CLASSIFICATION PERFORMANCE OF SANFRANCISCO DATASET WITH
DIFFERENT BANDS

Band C L C+L
Forest 95.25 95.94 98.55
Water 97.30 99.85 99.86
High-density urban 98.50 96.83 99.73
Low-density urban 97.94 94.83 98.64
Developed 95.97 94.22 97.46
OA(%) 97.37 97.16 99.31
AA(%) 96.99 96.33 98.85
Kk x100 96.38 96.09 99.05
The bold values represent the best results.
AR
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Fig. 9. Comparison tSNE Maps of SanFrancisco Dataset. (a) C-band. (b) L-
band. (¢) C+L.

Road and Farmland are severely mixed under single-frequency
data. After the dual-frequency data fusion, although there is still
class overlap, the results have been greatly improved.

The experimental results on SanFrancisco_CL are shown in
Table V and Fig. 9. As shown in the tSNE maps of C-band
and L-band, the Water of C-band is more compact, while the
Water of L-band is more dispersed [as shown in the elliptical
box in Fig. 9(b)]. However, the misclassification of forest and
developed of C-band is more serious than that of L-band [as
shown in the rectangular box in Fig. 9(a)]. After the fusion of
dual-frequency data, it can be seen that the separability across
categories and the compactness within categories have been im-
proved. Table V also shows that the accuracy of dual-frequency
data on each class is better than that of single-frequency
data.

4) Effect of : In this section, we conduct experiments under
different tradeoff parameter A, and present the experimental re-
sults in Fig. 10. For Flevoland_CL, high classification accuracy
can be achieved when X is between 0.2 and 0.7, with the optimal
A being 0.5. For Flevoland_CP and Hebei_SL, OA, AA, and
k reach the peak when A = 0.2 and 1 = 0.9, respectively. As
the accuracy of SanFrancisco_CL is already very high, almost
reaching over 98.5%, small fluctuations in accuracy are allowed.
As shown in Fig. 10(d), the general trend of classification results
is increased earlier and decreased later, and reaching the optimal
value at A = 0.7 approximately.
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Fig. 10. Effects of the tradeoff parameter A on classification performance.
(a) Flevoland_CL. (b) Flevoland_CP. (c) Hebei_SL. (d) SanFrancisco_CL.

Based on the above experimental results, we can see that
the second term of the loss function has indeed contributed to
improving the classification accuracy.

C. Performance Comparison

In this section, we compare the proposed PolSAR-MPIformer
with several state-of-the-art dual-frequency data fusion algo-
rithms. On the one hand, WMM [35], online multiview deep
forest (OMDF) [47], and Kronecker product (KP) [38] are
compared as non-DL fusion methods to demonstrate the supe-
riority of neural networks in feature extraction. On the other
hand, five DL-based fusion methods, including two-branch
CNN (t-CNN) [48], feature intersecting learning-based CNN
(FIL-CNN) [49], cross channel reconstruction network (CCR-
Net) [50], global-local transformer (GLT) [51], and multi-
modal fusion network (MFNet) [52], are chosen for comparison.
Specifically, t-CNN, FIL-NN, CCR-Net, and MFNet are all
based on CNN for feature extraction, while GLT is based on
CNN and transformer for feature extraction. In addition, t-CNN,
CCR-Net, and GLT achieve multimodal RS image fusion by
feature concatenation, while FIL-NN and CCR-Net achieve mul-
timodal RS image fusion by attention strategy. By conducting
comparative experiments on these fusion methods, we aim to
verify the effectiveness of the proposed PolSAR-MPIformer in
feature extraction and dual-frequency data fusion. For a fair
comparison, we optimize the parameters of all models on the
same hardware equipment and the same training samples.

1) Results on Flevoland_CL: The classification accuracy of
each category, OA, AA, and x on Flevoland_CL are represented
in Table VI. It can be seen that the proposed PolSAR-MPIformer
achieves the optimal classification accuracy on OA, AA, and
K, and has the highest accuracy in most categories. The visual
classification results on Flevoland_CL are shown in Fig. 11.
Compared with the DL-based algorithms, the classification map
of WMM is severely affected by speckle noise [highlighted by
the rectangular and elliptical boxes in Fig. 11(b)]. This is because
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TABLE VI
COMPARISON CLASSIFICATION ACCURACY ON FLEVOLAND_CL

Method | WMM | OMDF | KP | tCNN | FIL-CNN | CCR-Net | GLT | MFNet | Ours
Grass 35.73 91.07 88.31 94.52 93.42 96.23 93.11 96.94 97.03
Flax 95.42 99.83 99.85 99.71 99.88 99.93 99.91 99.84 99.88
Potato 96.33 96.33 98.13 90.81 98.86 99.29 97.70 99.09 98.87
Wheat 91.40 95.88 96.75 95.16 98.46 97.53 97.11 98.17 98.77
Rapeseed 99.96 99.94 99.82 99.96 99.84 99.86 99.10 99.79 99.80
Beet 32.95 76.05 88.53 97.50 98.02 97.48 95.81 96.99 98.71
Barley 97.57 97.68 98.45 97.17 99.22 99.59 99.19 99.34 99.46
Peas 65.82 100.00 98.89 100.00 99.95 99.86 99.28 99.81 99.88
Maize 76.49 97.51 97.61 92.60 99.31 99.70 98.89 99.65 99.63
Beans 98.44 98.59 95.86 99.29 98.03 99.60 98.59 99.04 99.60
Fruit 97.89 91.72 95.46 93.08 96.69 97.34 97.26 97.32 97.89
Onions 95.47 99.00 99.14 99.23 99.68 99.64 98.23 99.55 99.68
Lucerne 24.83 99.84 99.16 99.91 99.98 99.95 99.95 99.98 99.98
Building 23.43 86.68 91.64 97.66 95.41 94.91 93.36 95.15 95.33
Road 41.89 91.63 85.40 89.79 92.12 91.42 86.31 90.34 92.21
OA(%) 7742 93.73 95.15 95.22 97.85 97.89 96.56 97.36 98.34
AA(%) 7157 94.78 95.53 96.43 97.92 98.15 96.92 98.04 98.45
=X 100 74.10 92.82 94.43 94.52 97.53 97.57 96.04 97.54 98.09

The bold values represent the best results.

Fig. 11.
(i) MENet. (j) Ours.

WMM, as a traditional pixel-level classification method, only
focuses on the target pixel in isolation and does not consider
contextual neighborhood information, resulting in many noise
points in homogeneous region. In the experiments on other
datasets, we can also see that the classification maps of WMM
do have significant noise. For t-CNN, CCR-Net, and MFNet
with high classification accuracy, there are still some obvious
misclassifications, which are highlighted by the rectangular
boxes in each figure. That is because the convolutional kernels
only focus on the local-spatial information and cannot consider
the long-range information. As for GLT, it uses transformer and
CNN for global and local spatial information learning, respec-
tively, but ignores the correlation information among samples,
which may lose some discriminative information and lead to
misclassification. The result of GLT is shown in Fig. 11(h),
there are indeed some severe misclassifications highlighted by

2. /1

Comparison classification maps on Flevoland_CL. (a) Ground Truth. (b) WMM. (c) OMDE. (d) KP. (e) t-CNN. (f) FIL-Net. (g) CCR-Net. (h) GLT.

elliptical boxes. Among all the algorithms, FIL-CNN and the
proposed PolSAR-MPIformer are the best in visual results, and
there is less noise in consistent areas. As shown in Table VI,
FIL-CNN can achieve the highest accuracy in Onions and
Lucerne. However, its accuracy in Grass is average, while the
proposed PolSAR-MPIformer can achieve 97% in Grass, which
is the highest among all algorithms. Moreover, the classification
accuracy of the proposed PolSAR-MPIformer on Onions and
Lucerne is the same as FIL-CNN, both of which are the high-
est among these algorithms. In summary, compared with sev-
eral state-of-the-art dual-frequency classification algorithms, the
proposed PolSAR-MPIformer achieves high classification accu-
racy while maintaining spatial consistency on Flevoland_CL.
2) Results on Flevoland_CP: Eight related classification
algorithms are used for comparative experiments on
Flevoland_CP, and the results are shown in Table VII and
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TABLE VII
COMPARISON CLASSIFICATION ACCURACY ON FLEVOLAND_CP

Method WMM OMDF KP t-CNN FIL-CNN CCR-Net GLT MFNet Ours
Grass 28.13 97.75 87.91 92.29 95.89 95.97 94.47 96.41 96.92
Flax 90.09 99.80 99.64 99.84 99.83 99.80 99.94 99.88 99.91
Potato 87.80 95.57 98.22 89.73 98.64 98.29 97.35 98.52 98.94
Wheat 95.39 87.35 96.36 98.53 98.87 98.28 96.32 98.56 98.86
Rapeseed 99.83 99.93 99.67 99.91 99.83 99.56 99.48 99.76 99.66
Beet 38.38 97.17 82.66 83.08 93.53 93.99 88.29 94.02 96.02
Barley 95.04 98.32 96.55 94.39 98.33 98.81 98.02 98.82 98.92
Peas 66.04 79.81 97.06 99.95 99.86 99.83 98.63 99.11 99.52
Maize 63.35 52.16 94.95 87.55 99.24 99.72 98.57 98.57 99.35
Beans 98.23 99.95 94.45 98.18 99.14 98.89 98.84 98.49 99.09
Fruit 88.34 92.35 96.00 96.48 96.09 96.15 96.80 96.53 96.66
Onions 78.06 100.00 99.05 98.69 99.55 99.27 98.55 99.55 99.91
Lucerne 20.00 98.11 99.06 99.87 99.70 99.41 99.46 99.79 99.77
Building 43.14 97.82 92.28 94.82 96.23 96.96 91.69 95.02 96.01
Road 34.59 76.93 83.94 91.22 90.60 90.68 83.15 87.59 91.01
OA(%) 75.08 92.93 93.93 93.70 97.31 97.24 95.13 97.13 97.83
AA(%) 67.09 91.53 94.52 94.97 97.69 97.71 95.97 97.37 98.04
kX100 71.58 91.90 93.03 92.78 96.90 96.83 94.41 96.70 97.50

The bold values represent the best results.

Fig. 12.
(i) MFNet. (j) Ours.

Fig. 12. In Fig. 12(b), WMM misclassifies Lucerne as Onions
(as shown in the rectangular box) and Road as Fruit (as shown
in the elliptical box). The classification result of OMDF is
shown in Fig. 12(c), there is an obvious misclassification in the
middle of the classification map (as shown in the rectangular
box). For Fig. 12(d), KP combines the dual-frequency PolSAR
data through mathematical methods. Although KP is not a
DL-based fusion algorithm, it utilizes the neural network for
subsequent feature learning, resulting in better classification
results than WMM. For Fig. 12(e), the t-CNN constructed
two branches to learn two frequency data independently, and
stacked them in the last layer for data fusion. The redundancy

Comparison classification maps on Flevoland_CP. (a) Ground Truth. (b) WMM. (c) OMDF. (d) KP. (e) t-CNN. (f) FIL-Net. (g) CCR-Net. (h) GLT.

caused by feature accumulation will increase the training
burden and affect the classification results. In Fig. 12(d) and
(e), the rectangular boxes indicate significant misclassification
at the boundary pixels. In addition, some consistent areas
with internal noise are also marked by the elliptical box
in Fig. 12(d) and (e). In Fig. 12(h), we can see that some
road areas are misclassified as other categories (highlighted
by rectangles), and some wheat areas misclassified as road
(highlighted by ovals). Relatively speaking, the classification
results of Fig. 12(f), (g), (i), and (j) are smooth, and the noise
in consistency region is low. Combined with the classification
results in Table VII, we can see that the FIL-CNN, CCR-Net,
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Fig. 13.
(i) MFNet. (j) Ours.
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Fig. 14.
(i) MFNet. (j) Ours.

and MFNet have achieved high classification accuracy,
but the proposed PolSAR-MPIformer can improve OA by
0.5%-0.7%, AA by 0.3%-0.7%, r by 0.6%-0.8% on their
basis, and achieves the highest accuracy in Wheat, Barley, and
Fruits.

3) Results on Hebei_SL: The visual results on Hebei_SL are
shown in Fig. 13. From Fig. 13, it can be seen that this dataset
is prone to misclassify the Farmland in the lower right, middle
left, and middle right regions. For example, in Fig. 13(c), (e),
(h), and (i), some Farmland areas are misclassified as Road, all
of them are highlighted with purple rectangles. It also can be
seen from Fig. 8 that the feature differentiation between Road
and Farmland is not strong enough. Besides, as can be seen from
quantitative results in Table VIII that the t-CNN and proposed
PolSAR-MPIformer have the highest classification accuracy in
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Comparison classification maps on Hebei_SL. (a) Ground Truth. (b) WMM. (c) OMDF. (d) KP. (e) t-CNN

Comparison classification maps on SanFrancisco_CL. (a) Ground Truth. (b) WMM. (c) OMDF. (d) KP. (e) t-CNN. (f) FIL-Net. (g) CCR-Net. (h) GLT.

Road and Farmland, reaching 97.59% and 91.84% in Road,
96.55% and 99.05% in Farmland, respectively. However, t-CNN
has low accuracy in Building, while PolSAR-MPIformer can
reach 94.81% in Building. In addition, the proposed PolSAR-
MPIformer achieves the highest accuracy in OA, AA, and k.
According to the above analysis, it is easy to conclude that the
proposed PolSAR-MPIformer can obtain the best classification
performance among these related algorithms on Hebei_SL.

4) Results on SanFrancisco_CL: The visual results and the
quantitative results of different classification methods are pre-
sented in Fig. 14 and Table IX, respectively. From Fig. 14, it can
be seen that the noise in classification maps of each algorithm
is not severe, except for the traditional WMM. In Table IX, the
classification accuracy of this dataset is significantly higher than
that of the previous datasets, which is consistent with the strong
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TABLE VIIT
COMPARISON CLASSIFICATION ACCURACY ON HEBEI_SL

Method WMM OMDF KP t-CNN FIL-CNN CCR-Net GLT MFNet Ours

Forest 79.65 99.32 96.38 99.73 97.39 95.10 97.18 98.65 98.65

Farmland 91.96 92.61 80.41 96.55 96.09 99.51 92.64 91.30 99.05

Road 56.19 94.75 69.07 97.59 92.72 80.70 89.23 92.33 91.84

Building 31.51 73.37 83.07 84.65 93.47 94.15 96.98 95.60 94.81

Bare land 91.65 97.23 93.48 94.24 97.14 96.39 96.13 97.70 99.09

OA (%) 86.51 94.23 85.18 94.07 96.25 96.87 94.02 94.06 98.45

AA(%) 70.19 91.45 84.48 93.57 95.36 93.17 94.43 95.12 96.69

kx 100 79.09 91.14 78.12 90.89 94.17 95.04 90.84 90.94 97.57

The bold values represent the best results.
TABLE IX
COMPARISON CLASSIFICATION ACCURACY ON SANFRANCISCO_CL

Method WMM OMDF KP t-CNN FIL-CNN CCR-Net GLT MFNet Ours
Forest 91.93 95.04 95.84 96.25 98.09 98.57 97.14 98.14 98.55
Water 99.30 99.90 99.69 99.95 98.88 99.98 99.84 99.83 99.86
High-density urban 75.94 99.85 97.06 99.57 99.22 98.74 99.26 99.28 99.73
Low-density urban 94.17 98.28 98.46 98.10 99.07 98.67 99.28 99.33 98.64
Developed 81.47 98.96 97.40 99.45 97.59 97.60 98.38 93.33 97.46
OA(%) 87.19 98.79 97.70 98.93 98.80 98.97 98.98 98.85 99.31
AA(%) 88.56 98.41 97.69 98.42 98.57 98.71 98.78 97.98 98.85
kX100 82.99 98.34 96.84 98.52 98.35 98.58 98.59 98.41 99.05

The bold values represent the best results.

compactness intraclass and strong separation interclass shown in
Fig. 9. For DL-based classification algorithms, the accuracy of
this dataset can reach over 98%. Despite the proposed PoISAR-
MPIformer cannot achieve the highest accuracy in each category,
it is only 0.02%—1.50% different from the highest accuracy. As
for OA, AA, and k, the proposed PolSAR-MPIformer achieves
the highest value compared to other algorithms.

V. CONCLUSION

In this study, based on the overall framework of ViT, we pro-
pose anovel PoOlISAR-MPIformer including the MPI module and
DAF module for dual-frequency PolSAR image classification.
Among them, the MPI module replaces the high-complexity
self-attention block in ViT with PI intra- and intersample. It
can realize the extraction of global-local spatial information
within samples and correlation information among samples, thus
obtaining more discriminative feature representations under a
low-complexity network structure. In addition, the DAF module
is established as the classifier in PoISAR-MPIformer. It reduces
the impact of speckle noise and utilizes the complementarity of
dual-frequency data through the CLAF block and CFCF block,
respectively. The ablation experiments on MPI module and DAF
module have verified the effectiveness of MPI module in extract-
ing advanced feature representations and DAF module in noise
reduction and dual-frequency fusion. Besides, the comparative
experiments with several state-of-the-art algorithms have shown

that the proposed PolSAR-MPIformer could achieve impressive
classification performance.

Considering the contradiction between the scarcity of labeled
samples and the greed of DL for labeled samples restricts
the application of DL algorithms in practical PoISAR image
classification tasks, our future work will further investigate
the use of dual-frequency PolSAR data for semisupervised or
self-supervised learning, so as to improve the PoISAR image
classification performance with few labeled samples. In addi-
tion, the unique statistical characteristic of PoOISAR data is still
not explored in DL, so we would like to investigate how to
combine the statistical characteristics with DL model to improve
the PoISAR image classification.

ACKNOWLEDGMENT

The authors would like to thank the Aerospace Information
Research Institute, Chinese Academy of Sciences, for providing
the Hebei_SL dataset. In addition, the authors would like to thank
all the anonymous reviewers for their insightful and invaluable
comments, which are helpful for our discussion.

REFERENCES

[1] A. Freeman and S. L. Durden, “A three-component scattering model for
polarimetric SAR data,” IEEE Trans. Geosci. Remote Sens., vol. 36, no. 3,
pp. 963-973, May 1998.

[2] Y. Yamaguchi, T. Moriyama, M. Ishido, and H. Yamada, ‘“Four-component
scattering model for polarimetric SAR image decomposition,” IEEE Trans.
Geosci. Remote Sens., vol. 43, no. 8, pp. 1699-1706, Aug. 2005.



XIN et al.: POLSAR-MPIFORMER: A VISION TRANSFORMER BASED ON MIXED PATCH INTERACTION

[3]

[4]

[5]

[6]

[7]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

S. R. Cloude and E. Pottier, “An entropy based classification scheme for
land applications of polarimetric SAR,” IEEE Trans. Geosci. Remote Sens.,
vol. 35, no. 1, pp. 68-78, Jan. 1997.

H. Bi, J. Sun, and Z. Xu, “A graph-based semisupervised deep learning
model for POLSAR image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 57, no. 4, pp. 2116-2132, Apr. 2019.

H. Bi, F. Xu, Z. Wei, Y. Xue, and Z. Xu, “An active deep learning approach
for minimally supervised POLSAR image classification,” IEEE Trans.
Geosci. Remote Sens., vol. 57, no. 11, pp. 9378-9395, Nov. 2019.

H. Bi, J. Yao, Z. Wei, D. Hong, and J. Chanussot, “PoLSAR image classi-
fication based on robust low-rank feature extraction and Markov random
field,” IEEE Geosci. Remote Sens. Lett., vol. 19, 2022, Art. no. 4005205.
R. Wang, Y. Nie, and J. Geng, “Multiscale superpixel-guided weighted
graph convolutional network for polarimetric SAR image classifica-
tion,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 17,
pp. 3727-3741, 2024.

Y. Jiang, M. Li, P. Zhang, X. Tan, and W. Song, “Unsupervised complex-
valued sparse feature learning for POLSAR image classification,” IEEE
Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5230516.

J. S. Lee and E. Pottier, Polarimetric Radar Imaging : From Basics to
Applications. Boca Raton, FL, USA: CRC Press, 2009.

H. Bi, J. Sun, and Z. Xu, “Unsupervised POLSAR image classification us-
ing discriminative clustering,” IEEE Trans. Geosci. Remote Sens., vol. 55,
no. 6, pp. 3531-3544, Jun. 2017.

W. Song, M. Li, P. Zhang, Y. Wu, X. Tan, and L. An, “Mixture wg v -mrf
model for POLSAR image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 56, no. 2, pp. 905-920, Feb. 2018.

C. Liu, H.-C. Li, W. Liao, W. Philips, and W. Emery, “Variational textured
dirichlet process mixture model with pairwise constraint for unsupervised
classification of polarimetric SAR images,” IEEE Trans. Image Process.,
vol. 28, no. 8, pp. 4145-4160, Aug. 2019.

W. An, Y. Cui, and J. Yang, “Three-component model-based decomposi-
tion for polarimetric SAR data,” IEEE Trans. Geosci. Remote Sens.,vol. 48,
no. 6, pp. 2732-2739, Jun. 2010.

Y. Cui, Y. Yamaguchi, J. Yang, H. Kobayashi, S.-E. Park, and G.
Singh, “On complete model-based decomposition of polarimetric SAR
coherency matrix data,” IEEE Trans. Geosci. Remote Sens., vol. 52, no. 4,
pp. 1991-2001, Apr. 2014.

S.-W. Chen, “Polarimetric coherence pattern: A visualization and char-
acterization tool for POLSAR data investigation,” IEEE Trans. Geosci.
Remote Sens., vol. 56, no. 1, pp. 286-297, Jan. 2018.

Y. Zhou, H. Wang, F. Xu, and Y.-Q. Jin, “Polarimetric SAR image classi-
fication using deep convolutional neural networks,” IEEE Geosci. Remote
Sens. Lett., vol. 13, no. 12, pp. 1935-1939, Dec. 2016.

S.-W. Chen and C.-S. Tao, “Polsar image classification using polarimetric-
feature-driven deep convolutional neural network,” IEEE Geosci. Remote
Sens. Lett., vol. 15, no. 4, pp. 627-631, Apr. 2018.

X.Tan, M. Li, P. Zhang, Y. Wu, and W. Song, “Deep triplet complex-valued
network for POLSAR image classification,” IEEE Trans. Geosci. Remote
Sens., vol. 59, no. 12, pp. 10179-10196, Dec. 2021.

Y. Jiang, M. Li, P. Zhang, and W. Song, “Semisupervised complex network
with spatial statistics fusion for POLSAR image classification,” IEEE J.
Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16, pp. 9749-9761,
2023.

A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” in Proc. Int. Conf. Learn. Representations,
2021, pp. 1-22.

H. Dong, L. Zhang, and B. Zou, “Exploring vision transformers for po-
larimetric SAR image classification,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 5219715.

X. Liu, Y. Wu, W. Liang, Y. Cao, and M. Li, “High resolution SAR
image classification using global-local network structure based on vision
transformer and CNN,” IEEE Geosci. Remote Sens. Lett., vol. 19, 2022,
Art. no. 4505405.

F. Fan et al., “Efficient instance segmentation paradigm for interpret-
ing SAR and optical images,” Remote Sens., vol. 14, no. 3, Jan. 2022,
Art. no. 531.

Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp.- 10012-10022.

H. Wang, C. Xing, J. Yin, and J. Yang, “Land cover classification for
polarimetric SAR images based on vision transformer,” Remote Sens.,
vol. 14, no. 18, Sep. 2022, Art. no. 4656.

[26]

[27]
(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

8541

Z. Pan, B. Zhuang, H. He, J. Liu, and J. Cai, “Less is more: Pay less
attention in vision transformers,” in Proc. AAAI Conf. Artif. Intell., 2022,
vol. 36, pp. 2035-2043.

Z. Pan, J. Cai, and B. Zhuang, “Fast vision transformers with hilo atten-
tion,” Adv. Neural Inf. Process. Syst., vol. 35, pp. 14541-14554, 2022.
W. Yu et al., “MetaFormer is actually what you need for vision,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2022, pp. 10819-10829.
X. Liu, Y. Wu, X. Hu, Z. Li, and M. Li, “A novel lightweight attention-
discarding transformer for high resolution SAR image classification,”
IEEE Geosci. Remote Sens. Lett., vol. 20, 2023, Art. no. 4006405.

Y. Cao, Y. Wu, M. Li, W. Liang, and X. Hu, “Dfaf-Net: A dual-frequency
PoLSAR image classification network based on frequency-aware attention
and adaptive feature fusion,” IEEE Trans. Geosci. Remote Sens., vol. 60,
2022, Art. no. 5224318.

Y. Cao, Y. Wu, M. Li, M. Zheng, P. Zhang, and J. Wang, “Multifrequency
PoLSAR image fusion classification based on semantic interactive in-
formation and topological structure,” IEEE Trans. Geosci. Remote Sens.,
vol. 61, 2023, Art. no. 5205715.

X. Xin et al., “Semi-supervised classification of dual-frequency POLSAR
image using joint feature learning and cross label-information network,”
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5235716.

X. Dupuis, V. Wasik, A. Alakian, and D. Dubucq, “Multi-band supervised
classification for polarimetric SAR,” in Proc. IEEE Int. Geosci. Remote
Sens. Symp., 2019, pp. 5772-5775.

L. Ferro-Famil, E. Pottier, and L. Jong-Sen, “Unsupervised classification of
multifrequency and fully polarimetric SAR images based on the h/a/alpha-
wishart classifier,” IEEE Trans. Geosci. Remote Sens., vol. 39, no. 11,
pp. 2332-2342, Nov. 2001.

W. Gao, J. Yang, and W. Ma, “Land cover classification for polarimetric
SAR images based on mixture models,” Remote Sens., vol. 6, no. 5,
pp. 3770-3790, 2014.

C. Liu, J. Yin, J. Yang, and W. Gao, “Classification of multi-frequency
polarimetric SAR images based on multi-linear subspace learning of tensor
objects,” Remote Sens., vol. 7, no. 7, pp. 9253-9268, Jul. 2015.

F. Yang, W. Gao, B. Xu, and J. Yang, “Multi-frequency polarimet-
ric SAR classification based on Riemannian manifold and simultane-
ous sparse representation,” Remote Sens., vol. 7, no. 7, pp. 8469-8488,
Jul. 2015.

S. De, D. Ratha, D. Ratha, A. Bhattacharya, and S. Chaudhuri, “Ten-
sorization of multifrequency PoLSAR data for classification using an
autoencoder network,” IEEE Geosci. Remote Sens. Lett., vol. 15, no. 4,
pp. 542-546, Apr. 2018.

D. Hong et al., “Spectralgpt: Spectral remote sensing foundation model,”
IEEE Trans. Pattern Anal. Mach. Intell., Apr. 2024.

D. Hong et al., “Cross-city matters: A multimodal remote sensing bench-
mark dataset for cross-city semantic segmentation using high-resolution
domain adaptation networks,” Remote Sens. Environ., vol. 299, 2023,
Art. no. 113856.

X. He, Y. Chen, L. Huang, D. Hong, and Q. Du, “Foundation model-
based multimodal remote sensing data classification,” IEEE Trans. Geosci.
Remote Sens., vol. 62, 2024, Art. no. 5502117.

K. S. Chen, W. P. Huang, D. H. Tsay, and F. Amar, “Classification of
multifrequency polarimetric SAR imagery using a dynamic learning neural
network,” IEEE Trans. Geosci. Remote Sens., vol. 34, no. 3, pp. 814-820,
May 1996.

T. Gadhiya and A. K. Roy, “Optimized wishart network for an efficient
classification of multifrequency PoLSAR data,” IEEE Geosci. Remote
Sens. Lett., vol. 15, no. 11, pp. 1720-1724, Nov. 2018.

M. Ahishali, S. Kiranyaz, T. Ince, and M. Gabbouj, “Multifrequency
PoLSAR image classification using dual-band 1D convolutional neural
networks,” in Proc. Mediterranean Middle-East Geosci. Remote Sens.
Symp., 2020, pp. 73-76.

D. Hong, N. Yokoya, J. Chanussot, and X. X. Zhu, “An augmented
linear mixing model to address spectral variability for hyperspectral
unmixing,” IEEE Trans. Image Process., vol. 28, no. 4, pp. 1923-1938,
Apr. 2019.

G. Liu, M. Li, Y. Wang, P. Zhang, Y. Wu, and H. Liu, “Four-component
scattering power decomposition of remainder coherency matrices con-
strained for nonnegative eigenvalues,” I[EEE Geosci. Remote Sens. Lett.,
vol. 11, no. 2, pp. 494-498, Feb. 2014.

X. Nie, R. Gao, R. Wang, and D. Xiang, “Online multiview deep forest for
remote sensing image classification via data fusion,” IEEE Geosci. Remote
Sens. Lett., vol. 18, no. 8, pp. 1456-1460, Aug. 2021.



8542

[48]

[49]

[50]

[51]

[52]

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

X. Xu, W. Li, Q. Ran, Q. Du, L. Gao, and B. Zhang, “Multisource remote
sensing data classification based on convolutional neural network,” IEEE
Trans. Geosci. Remote Sens., vol. 56, no. 2, pp. 937-949, Feb. 2018.
Z.Han, Y. Gao, X. Jiang, J. Wang, and W. Li, “Multisource remote sensing
classification for coastal wetland using feature intersecting learning,” /[EEE
Geosci. Remote Sens. Lett., vol. 19, 2022, Art. no. 6008405.

X. Wu, D. Hong, and J. Chanussot, “Convolutional neural networks
for multimodal remote sensing data classification,” IEEE Trans. Geosci.
Remote Sens., vol. 60, 2022, Art. no. 5517010.

K. Ding, T. Lu, W. Fu, S. Li, and F. Ma, “Globallocal transformer network
for HSI and LiDAR data joint classification,” IEEE Trans. Geosci. Remote
Sens., vol. 60, 2022, Art. no. 5541213.

Y. Sun, Z. Fu, C. Sun, Y. Hu, and S. Zhang, “Deep multimodal fusion net-
work for semantic segmentation using remote sensing image and LiDAR
data,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5404418.

Xinyue Xin received the B.S. degree in electrical
information science and technology from Shaanxi
Normal University, Xi’an, China, in 2019. She is
currently working toward the Ph.D. degree in signal
and information processing with the National Key
Laboratory of Radar Signal Processing, Xidian Uni-
versity, Xi’an.

Her main research interests are polarimetric syn-
thetic aperture radar image analysis and interpretation
and deep learning.

Ming Li (Member, IEEE) received the B.S. degree in
electrical engineering and the M.S. and Ph.D. degrees
in signal processing from Xidian University, Xi’an,
China, in 1987, 1990, and 2007, respectively.

In 1987, he joined the Department of Electronic
Engineering, Xidian University, where he is currently
a Professor with the National Key Laboratory of
Radar Signal Processing. His research interests in-
clude adaptive signal processing, detection theory,
ultrawideband, and synthetic aperture radar image
processing.

Yan Wu (Member, IEEE) received the B.S. degree
in information processing and the M.S. and Ph.D.
degrees in signal and information processing from
Xidian University, Xi’an, China, in 1987, 1998, and
2003, respectively.

From 2003 to 2005, she was a Postdoctoral Fellow
with the National Key Laboratory of Radar Signal
Processing, Xi’an. Since 2005, she has been a Profes-
sor with the Department of Electronic Engineering,
Xidian University. Her research interests include re-
mote sensing image analysis and interpretation, data

fusion of multisensor images, synthetic aperture radar autotarget recognition,
and statistical learning theory and application.

Xiang Li received the B.S. degree in electronic and
information engineering and M.S. degree in signal
and information processing from Xidian University,
Xi’an, China, in 2009 and 2012, respectively. He is
currently working the Ph.D. degree with the Depart-
ment of Electronic Engineering, Tsinghua University,
Beijing, China.

He is a Researcher with the Beijing Institute of
Radio Measurement. His research interests include
radar system design, cognitive SAR/ISAR imaging,
and moving target parameter estimation.

Peng Zhang (Member, IEEE) received the B.S. de-
gree in electronic and information engineering, the
M.S. and Ph.D. degrees in signal and information
processing from Xidian University, Xi’an, China, in
2006, 2009, and 2012, respectively.

He is currently an Associate Professor with Na-
tional Key Laboratory of Radar Signal Processing,
Xidian University. His main research interests are
SAR image interpretation and statistical learning the-
ory.

Dazhi Xu received the B.S. degree in electrical and
information engineering from Lanzhou University of
Technology, Lanzhou, China, in 2019. He is currently
working toward the Ph.D. degree in signal and infor-
mation processing with the National Key Laboratory
of Radar Signal Processing, Xidian University, Xi’an,
China.

His main research interests are polarimetric syn-
thetic aperture radar image analysis and interpretation
and deep learning.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


