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Toward Accurate Infrared Small Target Detection via
Edge-Aware Gated Transformer

Yiming Zhu , Yong Ma , Fan Fan , Member, IEEE, Jun Huang , Kangle Wu , and Ge Wang

Abstract—Extracting small targets from complex backgrounds
is the eventual goal of single-frame infrared small target detection,
which has many potential applications in defense security and ma-
rine rescue. Recently, methods utilizing deep learning have shown
their superiority over traditional theoretical approaches. However,
they do not consider both the global semantics and specific shape
information, thereby limiting their performance. To overcome
this proplem, we propose a gated-shaped TransUnet (GSTUnet),
designed to fully utilize shape information while detecting small
target detection. Specifically, we have proposed a multiscale en-
coder branch to extract global features of small targets at different
scales. Then, the extracted global features are passed through a
gated-shaped stream branch that focuses on the shape information
of small targets through gate convolutions. Finally, we fuse their
features to obtain the final result. Our GSTUnet learns both global
and shape information through the aforementioned two branches,
establishing global relationships between different feature scales.
The GSTUnet demonstrates excellent evaluation metrics on various
datasets, outperforming current state-of-the-art methods.

Index Terms—Gated-shaped stream, infrared small target, Swin
Transformer.

I. INTRODUCTION

S INGLE-FRAME infrared small target detection (SISTD) is
a critical task that separates small and dim targets from com-

plex backgrounds such as the sky, ocean, and urban structures.
It plays an essential role in various fields, encompassing defense
security [1], [2], maritime surveillance [2], [3], [4], and precision
guidance [2], [5]. Nevertheless, it poses particular challenges. As
shown in the red boxes in Fig. 1(a) and (b), small targets occupy
only a small portion of the pixels, and their low signal-to-clutter
ratios (SCRs) cause them to be susceptible to blending with
complex backgrounds [6]. In addition, as shown in Fig. 1(c) and
(d), small targets lack texture information, rending traditional
object detection methods that focus on this information become
not well feasible [7]. Meanwhile, as shown in Fig. 1, the shape
and size of targets vary tremendously (5–50 pixels) in differ-
ent scenarios and backgrounds, potentially resulting in missing
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Fig. 1. Unique challenges in SISTD are depicted with the image name from the
NUAA-SIRST [8] dataset in the bottom left corner, and the red box represents
a local zoom. (a) Small and gray point target against terrestrial background. (b)
Point target with low SCRs against sky background. (c) Small target without
texture information but with distinct shape in sky background. (d) Small targets
with discernible shape information against ocean background.

detection, false alarm (FA), inaccurate localization, etc. Con-
sequently, SISTD poses a challenging problem. In addressing
these challenges, it is necessary to devise a method, particularly
on learning shape feature to facilitate the accurate detection of
infrared small targets.

Traditional SISTD methods can be classified into three
classes, including filter-based, human vision system (HVS)-
based, and low-rank matrix (LRM)-based methods. Filter-based
methods [9], [10], [11], [12] employ specifically designed fil-
ters to extract small target from the backgrounds. While they
are effective in filtering out smooth background clutter, their
performance degrades significantly when encountering noise
and background interference of varying intensity. HVS-based
methods [6], [7], [13], [14], [15] rely on the local brightness and
darkness contrast difference between targets and backgrounds,
making them particularly suitable for detecting small targets
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with relatively high brightness. However, in the presence of
strong bright noise in the background, they may result in higher
FA rates. LRM-based methods [16], [17], [18], [19], [20] treat
the infrared image as a low-rank sparse matrix, and introduce the
LRM reconstruction to filter the targets with the backgrounds.
Since the intensity of the target is not significant with respect
to the intensity of the backgrounds, these methods do not de-
tect targets under various shapes well. Overall, when dealing
with complex scenarios, the traditional methods heavily rely on
manual features, which makes it difficult to cope with complex
scenes.

Deep learning methods [21], [22], [23], [24], [25], [26], [27]
have revolutionized the field of SISTD by applying data-driven
strategies, which are widely used due to their ability to learn
infrared small target features. Among deep learning-based meth-
ods, both CNN-based and Transformer-based approaches have
been explored. CNN-based methods have achieved excellent
results by improved convolution for small target scenarios.
However, the convolution operations have limited local recep-
tive fields [28], and the introduced pooling operations will
ignore small targets during the downsampling process [24].
Transformer-based approaches address these issues by inte-
grating global receptive fields and self-attention mechanisms,
but they currently do not specifically consider local feature
information such as edge and shape, which may not only lead
to miss detection, but also affect the recognition of target types
in practical applications [e.g. Fig. 1(c) and (d) can be further
identified as UAV and ship]. Due to the low contrast and low
SCR between infrared small targets and the background, it is
challenging to extract useful edge and shape features of the
targets. Thus, obtaining accurate edges and shapes of infrared
small targets remains a challenging task.

To overcome the aforementioned drawbacks, we consider to
explore a novel paradigm of incorporating target shape learning
into SISTD. we propose gated-shaped TransUnet (GSTUnet) for
SISTD through semantic segmentation. The feature extractor of
GSTUnet consists of two key branches, in the first branch, we
proposed a multiscale feature extraction network built on Swin
Transformer [29] to overcome the receptive field limitation of
convolution operations. This enables the extraction of global
semantic features of small targets at different scales. In the sec-
ond branch, we design an edge-aware gated-shaped stream that
focuses specifically on capturing the shape and edge information
of small targets by using a gated convolution layer composed of
two convolution layers and a sigmoid layer with ResNet [30].
Furthermore, GSTUnet integrates the semantic and shape infor-
mation from the aforementioned two branches and establishes
global dependencies among different feature scales, allowing
for highly discriminate detection of small infrared targets, and
to obtain the exact shape of the target. The contributions of our
work can be summarized as follows.

1) We propose a novel architectural paradigm that incorpo-
rates and meticulously considers edge and shape informa-
tion within the ambit of SISTD.

2) We have engineered an edge-aware gating mechanism
architecture that adeptly extracts edge and shape features
of diminutive targets.

3) We propose an edge-aware loss function specifically tai-
lored to accentuate the extraction of edge and shape infor-
mation against complex backgrounds while concurrently
suppressing FAs.

4) We have conducted extensive experiments on relevant
benchmarks, substantiating the efficacy of our method,
which has culminated in state-of-the-art (SOTA) results.

II. RELATED WORK

A. Single Infrared Small Target Detection

Traditional SISTD methods are based on maintaining con-
sistency in backgrounds and enhancing the salience of small
infrared targets, relying mainly on manual features, suFch as
HVS-based, filter-based, and LRM-based methods.

HVS-based methods primarily rely on the salience of local
gray value contrast between small targets and backgrounds.
For instance, Chen et al. [13] introduced the local contrast
measure (LCM), and Wei et al. [14] further considered the
multiscale feature extraction and designed a multiscale patches
contrast module (MPCM) to enhance the LCM for computing
the salience of small targets salience. However, MPCM neglects
global information, prompting Qiu et al. [6] to develop the
global structure-based LCM (GSLCM), which appropriately
incorporates global information. Building upon GSLCM, Qiu
et al. [7] also proposed an adaptive structure patch contrast
measure (ASPCM). However, the performance of HVS-based
methods degrades significantly in the presence of noise or clutter
in the image.

Filter-based methods focus on suppressing background clut-
ter, For instance, Bai and Zhou [9] proposed the top-hat filter
as a filtering-based method. Li et al. [12] utilized both max-
mean/max-median filter to detect small targets. However, this
type of methods have some limitations, such as the model pa-
rameters enable automatic adjustment on complex backgrounds,
making it suitable only for single backgrounds and uniform
scenes.

LRM-based methods have been developed to utilize the prop-
erties of targets and backgrounds for decomposing the original
image into target and background components. For instance, Dai
and Wu [16] proposed the reweighted infrared patch tensor, and
Wu et al. [31] proposed a tensor train/ring expansion methods,
which utilize alternating direction multiplier method to expand
the components by weighting the kernel norm and balancing the
constraints. While LRM-based methods can achieve superior
detection performance, they often require multiple iterations to
converge and attain optimal solutions, resulting in a less efficient
process.

Traditional methods are highly interpretable and can provide
satisfactory results without the need for large amounts of data.
However, they rely on prior assumptions and exhibit low robust-
ness in complex backgrounds.

B. CNN-Based Infrared Detection Framework

With the development of CNN, which enable the extraction
of features from data-driven and provide end-to-end processing,
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CNN-based methods have surpassed traditional approaches in
suppressing FAs, more precision, and enhancing robustness.
For instance, Ju et al. [32] used ISTDet, which consists of an
image filtering module and an infrared small target detection
module. Dai et al. [8] proposed a one-stage cascade refinement
network that cascades the CNN features for detecting small
targets in infrared images. Qian et al. [33] proposed SiamIST,
which combines side window filter with the improved SiamRPN
model. Han et al. [3], [4] proposed the efficient information reuse
network in marine backgrounds, which combines a dense feature
fusion network with two fusion directions in feature extraction,
and a dual mask attention module to refine the fused feature map.
Meanwhile, facing the special situation of small samples, they
proposed a balanced feature fusion network and a context atten-
tion network. However, object detection techniques only provide
bounding box information and lack detailed shape information,
which is important for further analysis and understanding of
target characteristics in the SISTD.

Since the semantic segmentation can provide detailed seg-
mentation results at the pixel level, where the shape of targets
can be more accurately detected, addressing the aforementioned
issue. Therefore, some works modeled SISTD as a semantic
segmentation task. [23], [24], [25], [27], [34], [35], [36], [37],
[38], [39], [40]. For instance, Dai et al. [23], [34] considered the
feature of small targets and constructed upsampling asymmet-
ric contextual modulation (ACM) and attention local contrast
(ALC) modules, integrating them into CNN structure. Zhang
et al. [38] proposed attention guided pyramid context network,
utilizing attention mechanisms to explore contextual informa-
tion and preserve detailed information. Kou et al. [39], [40]
proposed a multistrategy fusion model that integrates various
class convolution modules, including postprocessing of eight
neighborhood clustering, achieved real-time infrared small tar-
get detection and tracking. As for the shape feature learning,
Zhang et al. [24] designed an end-to-end Taylor differential
operator for improved edge and shape detection. Lin et al. [41]
proposed a framework to fully consider shaped-biased learning
for accurate detect infrared small target. However, the afore-
mentioned methods are all based on CNN, which suffers from a
limited ability to focus on global information due to convolution
and multiple downsampling operations through pooling in the
network. To address this issue, a suitable feature extractor of
framework should be employed.

C. Transformer-Based Infrared Detection Framework

The vision transformer (ViT) [42] has proven highly effective
in computer vision tasks. To extract cross-windows features, the
Swin Transformer [29] used sliding window attention and has
achieved satisfactory results such as image classification [43],
[44], object detection [26], [45], [46], and semantic segmen-
tation [47], [48]. The Swin Transformer consists of two series
blocks [29]. The first block, shown in the left part of Fig. 2,
utilizes a W - MSA module, whereas the second block, shown
in the right part of Fig. 2, utilizes the SW - MSA module. The
W - MSA and SW - MSA modules employ windows attention
and sliding windows attention, respectively. The W - MSA layer

Fig. 2. Two successive Swin Transformer blocks. W-MSA and SW-MSA are
the multihead self-attention modules with windows and sliding windows self-
attention.

separates the input infrared image into nonoverlapping windows,
with each window having a size of M ×M . The different
windows splitting strategies aim to minimize the effects of
windows localization, as illustrated in Fig. 4. The W - MSA
module utilizes localized windows to compute the self-attention
of each individual window, as shown in the left part of Fig. 4. The
SW - MSA layer is designed to facilitate the creation and extrac-
tion of adequate global information between windows without
introducing additional computation costs. The SW - MSA layer
employs the sliding window method, as shown in the right part
of Fig. 4. The SW - MSA employs the sliding window method
and iterates from upper left to bottom right. In addition, the Swin
Transformer module consists of a multilayer perception (MLP)
module, a layer-norm (LN) module, and residual connections.
The computational procedure for two consecutive Swin Trans-
formers is as follows:

ẑl+1 = SW - MSA(LN(zl)) + zl

zl+1 = MLP(LN(ẑl+1)) + ẑl+1

ẑl = W - MSA(LN(zl−1)) + zl−1

zl = MLP(LN(ẑl)) + ẑl (1)

where ẑl represents the output of W - MSA or SW - MSA mod-
ule of lth block and zl represents the output of MLP module.

The Swin Transformer computes self-attention from the fea-
ture map using batch windows. Each batch is composed of mul-
tiple nonadjacent subwindows, as shown in Fig. 4. The patches
that include small targets are marked with red bounding boxes,
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Fig. 3. Overall structure of our GSTUnet, the upper left is a multiscale feature extraction module, the bottom part is a gated-shaped stream, and the upper right
is feature fusion module and upsampling module.

and self-attention can be computed in different subwindows. The
calculation of self-attention in a subwindow is as follows:

Q,K,V = {TWq,TWk,TWv}

Attention (Q,K,V) = Softmax

(
QKT√

d
+B

)
V (2)

where T ∈ RM2×d represents the input of self-attention, and
Wq,Wk, and Wv ∈ Rd×d represent the weights of three
linear projection layers, which implemented using an MLP,
Q,K, and V ∈ RM2×D indicates the query, key, and value
matrices, respectively.M2 denotes the size ofT,Q, and K, and
V and D denote the channel dimensions. In Swin Transformer,
a bias matrix B̂ ∈ R(2M−1)×(2M−1) is parameterized, and the
values of B are taken from this bias matrix.

Building upon ViT for SISTD, Lin et al. [26] proposed
U-Transformer based on Swin Transformer and CNNs, which
has demonstrated satisfactory results in SISTD. Lin et al. [49]
proposed IST-TransNet which combines ViT with CNN blocks
antialiasing contextual feature fusion module and spatial and
channel attention module. Liu et al. [50] proposed a ViT-based
feature embedding module with a feature enhancement module
to learn discriminate features of small targets and prevent missed
detection. These findings suggest that combining CNN with
Transformer models holds great potential for feature extraction
and can address the limitations of CNNs. However, the above
transformer-based methods do not specially consider the local
shape information of small targets. Drawing inspiration from the
above methods, our approach has explored a new idea of incor-
porating target shape reconstruction into small infrared target
detection, which significantly improves over existing methods
and holds great potential for advancing the field of SISTD.

III. METHODOLOGY

The overall structure is illustrated in Fig. 3. GSTUnet com-
prises of three components: a multiscale feature extraction mod-
ule, a gated-shaped stream module, and a feature fusion module.
In the multiscale feature extraction module, we utilize four

sequential stages to extract multiscale semantic feature maps
(see Section III-A). The gated-shaped stream is designed to
extract the shape information from small targets through gate
convolutions (see Section III-B). In the feature fusion module,
we fuse the semantic feature with shape features at multiscale
to obtain the final results (Section III-C). In Section III-D, we
present the loss function for end-to-end training of our network.

The proposed GSTUnet aims to generate detected binary
mask Iout ∈ RH×W×1 to indicate the detected regions. Specifi-
cally, let Iin ∈ RH×W×Cin represent the dimensions of the input
infrared image. Here,H,W , andCin represent the height, width,
and channels of the input image, respectively.

The notation used in this article is as follows:
XS1

,XS2
,XS3

, and XS4
represent the feature maps of

each encoder stage. The feature in the Swin Transformer is
denoted as zl, whereas the XGi

represents the different size
feature map of the gated-shaped stream, the upsampling feature
maps are XU1

,XU2
,XU3

, and XU4
.

A. Multiscale Feature Extraction Module

The detection of infrared small targets in the presence of com-
plex and variable background becomes increasingly challenging
due to the scale variation. Therefore, feature extraction must
consider this issue. And since multiscale feature representation
has been shown to be effective in adapting the scale variation [6],
[8], [51], we incorporate a multiscale mechanism in the design
of our feature extractor. Moreover, Swin Transformer preforms
well in SISTD due to its excellent global attention mechanism
and semantic feature extraction capability. Therefore, we design
the feature extractor using multiple Swin Transformers, which
are capable of extracting multiscale global semantic features.

The feature extractor consists of four stages. Each stage
contains two Swin Transformers blocks, that utilize W-MSA
and SW-MSA to capture self-attention for windows and sliding
windows, respectively. This allows for a global receptive field
view during self-attention computation, and more details have
been illustrated in Section II-C. Subsequently, the output feature
maps of the Swin Transformer are downsampled at each stage
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to capture multiscale global semantic information. The general
approach for downsampling is through maximum or average
pooling. However, this may result in the loss of detailed features
for small targets when the targets are too small [25]. Therefore,
we utilized patch merging instead of pooling to downsample the
feature map. Patch merging has better performance in feature
retention as it integrates all the feature information of each image
patches.

It is worth noting that the self-attention calculations in the
Swin Transformer, as shown in (2), are complicated. Feeding
the input image directly to the multiple Swin Transformer is
computationally complex and time-consuming. Therefore, we
sequentially introduce a patch partition (PP) layer and a lin-
ear embedding (LE) layer before it. The PP layer transforms
the input image Iin ∈ RH×W×Cin into image patches to reduce
computational complexity. Then, the LE layer map the channels
of each patch to a specified dimension C. Specifically, the
resolution of each patch is H/4×W/4, and convolution is
utilized in the PP layer and the LE layer. The convolution kernel
size and stride are both H/4, the input channels of the infrared
image are 1, and the output channels of the LE layer channel are
C.

Overall, the multiscale feature extraction module aims to
capture detailed information and adapts to different target scales
to enhance the performance of SISTD. The structure is shown in
the top-left of Fig. 3. First, it utilizes PP and LE layer to transform
the input image into patches and obtain an initial feature map.
This step can be expressed as follows:

XS0
= ConvPPandLE(Iin) (3)

Second, the initial feature map is fed into the four-stage Swin
Transformer to calculate the self-attention of each window, and
then downsampling the feature map using a patch merging layer.
The step can be expressed as follows:

XSi
= SwinStage[XSi−1

](i = 1, 2, 3, 4) (4)

where XSi
(i = 1, 2, 3, 4) is the output feature maps of each

of Swin Transformer stages. At each stage, the output feature
map size is halved compared with the input feature map size,
whereas the channel size is doubled. After the four stages, the
size of the output feature map decreases from (H/4)× (W/4)
to (H/32)× (W/32), and the channel size increases from C to
8C.

Finally, these four feature maps are concatenated along the
channel dimension to produce a feature map of size (H/2i+1)×
(W/2i+1)× 2i+1C, which is then transformed to 2iC channels
using a linear projection layer.

Specifically, at the ith stage, interval sampling is performed
on the input feature map XSi

∈ R(H/2i+1)×(W/2i+1)×2i−1C , re-
sulting in four feature maps of size (H/2i+1)× (W/2i+1)×
2i−1C. The output feature maps of each stage are referred to as
XS1

,XS2
,XS3

, and XS4
.

B. Edge-Aware Gated-shaped Stream Module

The environment backgrounds are dynamic and perplex, with
various types and orientations of targets, leading to diverse

shapes of small targets [41]. The previously extracted multiscale
features are obtained by processing the semantic features of the
context in the patch sequence. However, they lack the ability to
capture the shape of the target since it does not directly process
the spatial information. This results in the direct extraction of
small targets from the multiscale features, which leads to a
network that lacks both robustness and sensitivity to changes
in target shape. Therefore, extracting shape information can
increase the robustness of SISTD.

For this reason, we design a second auxiliary branch, called
the edge-aware gated-shaped stream, aiming to accurately ex-
tract the shape features of small targets and improving the
detection accuracy. It is an end-to-end network and its structure
is illustrated in Fig. 5. It comprises gated convolutional layer
(GCL), ResNet [30], and 1 × 1 convolution and ASPP [52]
modules. The details of this structure are as follows.

First, considering that the edges are important structural ele-
ments in images that implies the shape information of the target,
it is essential to extract the shape features from the edge region.
Therefore, we utilize the Sobel operator [53] to extract edges
from the original infrared image, resulting in the edge prior graph
XE . Next, XE is fed into the gated-shaped stream through the
input arrow in the lower left corner of Fig. 5.

XE = Sobel(I) (5)

Then, previous studies [24], [41] have demonstrated that
incorporating contextual semantic information enhances the
ability of model to perceive edges. Based on this insight, we
feed multiscale feature maps, comprising XS1

,XS2
, and XS3

,
into the gated-shaped stream, facilitating the fusion of the edge
information and the semantic feature information. Moreover, to
extract the local details and edge information of small targets
and improve the target detection performance, we further ex-
tract deep features from these multiscale feature maps. In this
process, considering that the residual network can prevent small
target features from being lost during downsampling [25], we
concatenate 1×1 convolution and ResNet [30] after XSi

. The
network extracts deep features of multiscale feature maps XS1

,
XS2

, andXS3
by concatenating the residuals, respectively. This

deep feature extraction formula is as follows:

X ′
Si

= ResNet(Conv1∗1(XSi
)), (i = 1, 2, 3) (6)

where ResNet denotes the residual network, XS′
i

denotes the
feature after deep feature extraction. As a deep ResNet may
result in extensive computational requirements, we employ a
lightweight ResNet18 module. Its parameters are obtained from
the pretrained model weights on ImageNet [54], and the three
ResNet18 networks share the same set of weights.

After acquiring the deep semantic features X ′
Si

and the edge
map XE , the next step is to fuse them. It is important to note
that the edge information of infrared small targets in semantic
features tends to be blurred [24]. Consequently, directly fusing
the edge maps with deeper features can introduce noise and
redundancy. To address this, we design the GCL module to
selectively process edge-related information in deep semantic
features and fuse them level by level. The input of the first level
GCL consists ofXE andXS1

. The inputs to the second and third
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GCLs are composed of the outputs of the previous GCLs and the
corresponding multiscale deep semantic features, respectively.

The structure of GCL is illustrated in Fig. 6, which first con-
catenates the deep semantic features and edge features. As shown
in the blue box on the left side of Fig. 6, where the edge semantic
features (represented by light green blocks) and deep semantic
features (represented by dark green blocks) are combined. Next,
the stacked features are processed through two consecutive 1× 1
convolution and batch normalization operations, both followed
by ReLU activation function. Finally, the sigmoid function to
implement the gated convolution operation. In addition, we
integrate the two residual connections into the input feature map
by elementwise multiplication and elementwise addition, the
formula for GCL is as follows:

αi = σ(ReLU(BN(Conv1∗1(Xi||Y i))))

Xout
Si

= Conv1∗1(Xi � αi +Xi), (i = 1, 2, 3) (7)

where X1 denotes the edge prior graph XE , X2 and X3

denote the outputs from the previous level of GCL, Yi denotes
the feature graph after deep semantic feature extraction, BN
represents batch normalization, ReLU denotes the activation
function, σ denotes the sigmoid function, � denotes element-
wise multiplication, || denotes the concating of the feature map,
and Xout

Si
denotes the output of the GCL module. When in the

flat nonedge region, the value of αi will be relatively small,
and the formula will be calculated to get relatively small Xout

Si
,

making the corresponding output of the gated-shaped stream
be relatively small. In summary, GCL controls the flow of
information by using sigmoid function as a gating unit, which
can effectively filter out the details of flat regions in the feature
map and put more focus on image features such as edges and
shapes, and therefore, can output feature maps that contain only
edge information.

Finally, to achieve multiscale feature fusion during the up-
sampling process of the extracted feature maps contain edge
information, we generate multiscale edge feature maps by up-
sampling the feature maps containing edge features with the
purpose of fusing edges and small targets. Specifically, we
introduce the ASPP [52] module to upsample the output of the
final level of GCL to match size as the XS1

,XS2
, and XS3

, as
shown in Fig. 7. In addition, a 1 × 1 convolution is applied to
match the output channel with the input channel. We represent
the feature map after upsampling, as XG1

,XG2
, and XG3

.

C. Upsampling Module

To integrate multiscale features and shape information of
the target, our upsampling process is illustrated in the upper
right corner of Fig. 3. The upsampling process comprises
three stages, each including a fusion module and two Swin
Transformer modules. First, we introduce a fusion module that
integrates features from multiscale feature extraction and the
output characteristics of the gated-shaped stream. The fusion
block employs a fully connected layer and a linear projection
layer to merge and upsample the features, thereby, reducing the
feature dimensional. Second, the Swin Transformer module is
designed to learn finer feature relationships effectively.

Fig. 4. Window partition strategy of W-MSA module and SW-MSA. (Red
rectangle is the patch which includes small target.)

Fig. 5. Specifically of gated-shaped stream, which includes 1× 1 convolution,
ResNet, GCL, and ASPP.

Fig. 6. Specifically of gate convolution layer, input edge semantic feature and
deep semantic feature, with 1 × 1 Conv, BN, and ReLU.

Fig. 7. Specifically of ASPP.
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Fig. 8. Structure of an upsampling stage.

The feature maps of each stage are denoted as XUi
(where

i = 1, 2, 3). To mitigate information loss caused by upsampling,
the feature fusion module comprises a fully connected MLP
and a linear projection Fproj, as shown in the Fig. 8. The fu-
sion block utilizes a patch reshape block to perform the up-
sampling operation. Subsequently, the upsampled feature maps
XUi

(where i = 1, 2, 3) are concatenated with the feature maps
XGi

generated by the gated-shaped stream. Afterward, Fproj is
applied to increase the dimensionality ofXUi

. The dimension is
increased from 24−iC to 25−iC, where C represents the channel
dimension. The upsampling process is formulated as follows:

XUi+1 = Fproj[MLP[Concat(XUi, XGi)]]. (8)

During the upsampling process, after each stage, the chan-
nel dimension of XUi

is halved compared with XUi−1
, and

the spatial resolution is doubled. The size of the feature map
increases from H/32×W/32 to H/4×W/4, whereas the
channels decreases from 8C to C. The ultimate output is the
detection image Iout, where Iout ∈ RH×W×1.

D. Edge-Aware Loss Function Design

GSTUnet is trained end-to-end with a hybrid edge-aware loss
function. During the training, we proposed a loss function to
supervise the output and the boundary map. Here, we utilize the
Sobel operator on the ground truth to indicate the contours of
the small targets. We follow the standard binary cross-entropy
(BCE) loss [24] on the predicted boundary map s, and the BCE
loss on the predicted semantic output map s. Our loss function
comprises two components: one for the output and the other
for the gated-shaped stream, which ground truth is obtained by
applying the Soble [55] operator to the ground truth of the input
image, as shown in Fig. 9. We simultaneously train two data
streams, incorporating both the loss function for semantic seg-
mentation and the loss function for small target boundaries. The
loss function for the output map is a combination of Dice [56]
loss and BCE loss functions.

Ltotal = λ1LBCE(∇y,Xout
S ) + L2(y,Xout)

L2 = λ2LDice(y,Xout) + λ3LBCE(y,Xout) (9)

where the ∇y is the edge ground truth. Xout
S is the output of the

gated-shaped stream, y is the ground truth,Xout is the output map
of GSUnet, and Xout

S is the output of the gated-shaped stream.

Fig. 9. (a) Input infrared image. (b) Ground truth of feature extractor. (c)
Gated-shaped stream.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In Section IV, we conducted experiments on two infrared
datasets and compared the results of SOTA methods to evaluate
the learning and generalization capabilities of GSTUnet. In
Section IV-A, we first provide an overview of the datasets.
In Section IV-B, we describe implementation details. In
Section IV-C, we introduce the evaluation metrics and thor-
oughly analyze the experimental results both quantitatively and
qualitatively. In addition, we provide ablation studies for the
effectiveness of each module.

A. Datasets

1) Infrared Datasets Descriptions: To validate the method-
ology of this article, we evaluate our method on two public
datasets: NUAA-SIRST [23] and NUDT-SIRST [25].

NUAA-SIRST is a small open-source SISTD dataset, which
contains 427 representative images from hundreds of real-world
videos captured at short-midwave-950 nm wavelength, anno-
tated in five ways, such as VOC annotation and mask annota-
tion, to support image detection and semantic segmentation or
instance segmentation tasks. Most small infrared targets are dim
and hidden in complex backgrounds such as the sky, ocean, and
buildings. In addition, nearly 40% of the images belong to the
brightest pixels.

NUDT-SIRST is a large open SISTD dataset, which is a
synthetic dataset and contains 1327 images created by collecting
high-resolution natural scene images, cropping different areas
from these images to get different backgrounds, and then over-
laying small targets by using a 2-D Gaussian function onto the
backgrounds to form synthetic images.

2) Data Augmentation Techniques: We leverage data aug-
mentation to generate additional instances from raw data via
transformations, including rotation, translation, and scaling. Our
experiment involved rotating the dataset by 90◦, 180◦, and
270◦, and applying random cropping and scaling to diversify
the dataset further. Given the significant contrast discrepancies
observed in infrared small target detection datasets across var-
ious backgrounds, we employed image brightness and contrast
perturbation techniques for data augmentation. The data aug-
mentation methods can enhance the quantity of training data
and improve the network’s generalization capabilities.
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TABLE I
TRAINING PARAMETERS

B. Experimental Details

GSTUnet was implemented by the PyTorch framework and
trained on NVIDIA RTX 3090Ti GPU, running on the Ubuntu
environment. The model was trained for 200 epochs. Simul-
taneously, we applied gradient clipping and cosine annealing
to assist the network training. The specific training parameters
are listed in Table I. Our model has three variants: small-scale,
basic-scale, and large-scale versions, and they use Swin-Tiny,
Swin-Base, and Swin-Large as feature extraction encoders, re-
spectively. These Swin Transformer models use the pretrained
model weights from [29]. Different scales of Swin Transformer
blocks, including many layers and attention layers, are shown in
Table II.

C. Experiment Results

In Section IV-C, we compare the performance of GSTUnet
with other methods. We present quantitative results alongside
qualitative visualizations in different backgrounds and target
scales to evaluate our method. Furthermore, we conducted an
ablation study to analyze the contribution of individual technical
components in GSTUnet.

1) Evaluation Metric: To evaluate shape description ability,
our experiments utilize intersection over union (IoU) and nor-
malized intersection over union (nIoU). Meanwhile, we adopt
probability detection (Pd) and FA to evaluate the localization
and detection ability. Furthermore, we draw receiver operation
characteristics (ROC) curves to describe how detection rates
evolve with varying FA rates.

a) IoU: IoU is a pixel-level evaluation metric to describe the
contour of a small target, which calculates the ratio of
intersection area and union area between the prediction
map of small targets and the pixel annotated ground truth,
i.e.,

IoU =
Ai

Au
(10)

where Ai and Au denote the size of the intersection and
union area of the infrared small target prediction mask and
ground truth, respectively.

b) nIoU: nIoU is the normalized IoU, which is calculated as
follows:

nIoU =
1

N

N∑
i=1

(TP[i]/(T [i] + P [i]− TP[i])) (11)

where N is the total number of datasets, TP denotes the
number of true positive pixels, T andP denote the number
of ground truth and predict positive pixels, respectively.

c) Pd: Pd denotes the probability of detection, and we spec-
ified that if the deviation of the predicted mask’s regional
center and the center of the ground truth is less than a
threshold (set to 3 in this article), these targets are consid-
ered as correctly predicted targets, which is calculated as
follows:

Pd =
Npred

Nall
(12)

where Npred is the correctly predicted point, and all targets
number is the Nall.

d) FA: FA denotes the false alarm rate. We specified that if
the deviation of the predicted mask’s regional center and
the center of the ground truth is more than the predefined
threshold (set 3 in this article), we consider those pixels as
falsely predicted ones

Fa =
Nfalse

Nall
(13)

where Nfalse is the false alarm points, and all targets
number is the N.

e) ROC: ROC curve describes the change tendency of the Pd
under different FA. The area of the ROC curve expresses
the robustness of the model, with a larger area indicating
a stronger model.

2) Compare With SOTA Methods: Our comparison include
quantitative results and qualitative results.

a) Quantitative results:We select MDvsFAcGAN [27], AL-
CNet [34], ACMNet [23], IAANet [36], UIUNet [35],
and CGRANet [37] as the CNN-based methods. To com-
pare the traditional methods, we select the filter-based
method SRTHT [11], max-mean/median-based method
TLMS [12], the HVS-based method MPCM [14], and the
LRM-based methods: IPI [17] and RIPT [16]. The key
parameters configuration are shown in Table III:
The quantitative results are shown in Table IV, we selected
the top-performing from the three GSTUnet variants (-T,
-B, and -L) as our method results. Our quantitative re-
sults demonstrate SOTA performance in Table IV. Our
method achieves 82.61% and 84.51% in the IoU and nIoU
metrics and achieves 80.97% and 82.19% in the nIoU,
respectively, indicating the effectiveness of our approach
in detecting the shapes of small targets. It also achieves
98.91% and 99.91% in Pd, respectively, compared with the
lower FA of 5.32 × 10-6 and 4.92 × 10-6, reflecting the Pd
of small targets with fewer FA enabled by our method.
We also plot ROC and Precision-Recall curves for com-
parison experiments, as Fig. 10, which demonstrates that
GSTUnet significantly outperforms other methods, with a
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TABLE II
DETAILS OF SWIN TRANSFORMER BACKBONE VARIANTS

TABLE III
CONFIGURATIONS FOR ALL COMPARATIVE EXPERIMENTS

TABLE IV
EVALUATION INDEX OF COMPARE EXPERIMENT

larger AUC than filter-based, HVS-based, and LRM-based
methods. Meanwhile, the method performs better than
CNN-based methods, which proves the effectiveness of
the proposed model.

b) Qualitative results:We visualized the results of the meth-
ods and 3-D gray figure on the NUAA-SIRST dataset with
the comparison experiments, shown in Figs. 11–15. These

Fig. 10. ROC and Prec-Recall curves of different methods on the NUAA-
SIRST dataset, Our method is blue solid line, other compared methods are
dashed line.

experiments demonstrate that GSTUnet can accurately
detect and locate targets even under low contrast and low
SCRs conditions while obtains complete and precise target
shapes. This high level of accuracy is achieved through
the combination of GCL with Swin Transformer, which
enables the effective establishment of a global view and
the extraction of valuable edge information through the
gated-shaped stream method and feature fusion modules.

Compared with traditional infrared small targets, which are
susceptible to miss detection at low SCRs and FAs at high
contrast. It is prone to have FAs and miss detection in the
complex backgrounds, as shown in the yellow circle of MPCM,
IPI in Figs. 11–15. Compared with traditional HVS, LRM-based
methods, our method produces accurate target localization and
shape outputs with very low FA rates. However, the traditional
method performs well only on point-shaped targets, is less
effective at characterizing shape, and is prone to localized high-
lighting that tends to produce many FAs, as shown the white
circle in Figs. 11–15. While GSTUnet maintains high accuracy,
the performance of traditional methods decreases dramatically
when the size of the point target increases and the number
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Fig. 11. Point small target on ocean backgrounds.

Fig. 12. Point small target on land backgrounds.

Fig. 13. Point target on sky backgrounds.

of bright spots with backgrounds interference increases. It is
because the performance of the traditional methods is largely
based on manual features and cannot be adapted to different
backgrounds and various sizes.

CNN-based methods (i.e., CGRANet [37] and ALCNet [34])
perform much better than HVS-based and LRM-based methods,
especially on the shape information of the small targets. How-
ever, due to the complexity of the scenes, many FAs and missed

detection regions are generated, as shown by the white circles
in Figs. 11–15. Our GSTUnet is more robust to these scene
variations and can detect small targets on sky, ocean, and field
backgrounds. In addition, our GSTUnet generates more accurate
shape information than ALCNet [34], as shown in the zoomed
region in Figs. 11–15. In summary, our GSTUnet can adapt to
the challenges of different clutter backgrounds and target shapes,
which achieves better performance.



ZHU et al.: TOWARD ACCURATE INFRARED SMALL TARGET DETECTION VIA EDGE-AWARE GATED TRANSFORMER 8789

Fig. 14. Shape feature small target on land backgrounds.

Fig. 15. Shape feature small target on sky backgrounds.

D. Ablation Study

To investigate the feasibility of each component of GSTUnet,
we will take various ablation studies in this section, including
utilizing the skip connection instead of the gated-shaped stream
and exploring different scale structures Swin Transformer fea-
ture extractors’ ability to the SISTD.

1) Impact of Gated-shaped Stream: To thoroughly inves-
tigate the effectiveness of ResNet in preserving small target
features during gated-shaped stream, and the capability of the
GCL module to effectively handle edge-related information in
semantic features. The ablation study of the gated-shaped stream
comprises two parts. The first part involves removing the second
gated-shaped stream and replacing it with a skip connection be-
tween the encoder and decoder, as shown in Fig. 16. In addition,
it is necessary to modify the loss function in Section III-D, which
encompasses two components: DiceLoss and BCELoss, shown
as follows:

Lablation = LDice(y,Xout) + λaLBCE(y,Xout) (14)

where y is the ground truth of the image, Xout is the output of
the network, and λa is set to 1. The second study we remove
the ResNet of gated-shaped stream, utilize only GCL. We plot
the 3-D of the gray–scale map, enhancing the visualization
results, clearly demonstrating the effectiveness of the residual

Fig. 16. Ablation study network structure on gated-shaped stream. (a) Skip
connection between encoder and decoder. (b) Original gated-shaped stream
remove ResNet18.

network in retaining small target features during downsampling
as shown in Fig. 17. We can clearly observe that when there
are targets of different scales, adding ResNet not only preserves
the targets with shape features, but also preserves the features
of small targets to overcome missed detections. After removing
the gated-shaped stream, as shown in Fig. 17, facing the blurred
edges of small targets, FAs are easily generated at the edges, and
the shape information of small targets can not be well described.
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Fig. 17. Ablation study of baseline, GSTUnet and w/o ResNet18, the GSTUnet
can accurately detect the edges and shapes of small targets, and also does not
overlook small targets in complex backgrounds.

TABLE V
EVALUATION INDEX OF BASELINE AND GSTUNET

The quantitative results are shown in the Table V. After re-
moving the gated-shaped stream, on the NUAA-SIRST dataset,
the IoU, nIoU, and Pd decreased to 80.88%, 78.27%, 98.87%,
and the FA increases to 6.59%. On the NUDT-SIRST dataset, the
IoU, nIoU, and Pd decreased to 82.07%, 80.79%, 98.68%, and
the FA increased to 5.82%. Subsequently, we plot the bar chart
as Fig. 18, according to the quantitative result, the gated-shaped
stream can approve the Pd and the IoU, and nIoU, decreasing
Fa.

Meanwhile, we visualize the feature map of gated-shaped
stream every 50 epochs, as shown in Fig. 19. As the number
of training epoch increases, gated-shaped stream can learn local
edge information of small targets.

2) Impact of Loss Function Weights: In order to explore
the impact of different loss function weights on the overall
performance of the network, we conducted ablation experiments
on the weight of the loss function on (9). To investigate the
impact of weights on the performance concerning small target
edges and shapes, we conducted qualitative experiments. We

Fig. 18. Metric of ablation on two datasets, as the network increases, the
various components we propose improve performance on Pd, IoU, and nIoU,
whereas FA decreases.

Fig. 19. Visualization of the output of gated-shaped stream during the training
process with a heat map, we visualize every 50 epochs.

TABLE VI
EVALUATION INDEX OF DIFFERENT WEIGHTS OF THE LOSS FUNCTION

set λ1 = 1, λ2 = 1, and λ3 = 0.5 as the loss function weights
in NUAA-SIRST to determine their effect on the IoU perfor-
mance of the network (under consistent conditions as detailed in
Table VI, training for 200 epochs and repeating the training
ten times to calculate the average). The experimental results
are presented in Table VI. Subsequently, we plotted the lines
in three cases: λ1 = 1, λ3 = 0.5, λ1 = 1, λ3 = 0.5, and λ2 =
1, λ3 = 0.5, as shown in Fig. 20.

As shown in Fig. 20, changing the loss function influences
the performance of the network, when λ1 is set low, the network
pays less attention to edge features, which will reduce the IoU.
However, while the change of weights on loss function will only
impact less on the overall performance, that also reflects the
robustness of our method.
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TABLE VII
EVALUATION INDEX OF SWIN TRANSFORMER BACKBONE VARIANTS

Fig. 20. Change tendency of different weights of loss function.

3) Impact of Swin Transformer Backbone: To explore the
different parameters of the feature extractor, we replaced the
pretrained model weights with the Swin-T, Swin-B, and Swin-L
feature extraction backbone. The various parameters are shown
in Table II. The parameter configuration settings are the same as
those in Table I.

According to the ablation study. The result of different back-
bone are shown in Table VII three different sizes of Swin
Transformer backbones have little impact on infrared small
object detection tasks. Swin-L has the largest number of pa-
rameters but it is not significantly ahead of Swin-T and Swin-B
in terms of evaluation index. It is because infrared images
have low resolution, which makes large backbones unable to
leverage their global vision capabilities fully. It also indicates
that lightweight backbones can achieve good results and have
broad application prospects, which provides potential value for
model light-weighting.

V. CONCLUSION

This work proposes the GSTUnet, a network with two data
streams based on U-shaped encoder-decoder architecture for
infrared small object detection. Our GSTUnet is built upon a
hierarchical Swin Transformer and innovatively incorporates
Swin Transformer modules in the decoder. In addition, we
introduce a gated-shaped stream based on the GCL after feature
extraction, which focuses solely on extracting and computing
edge information of small infrared objects. We have trained the
neural network end-to-end and performed an upsampling infor-
mation fusion from the two data streams by adding the edge loss
and overall loss function. We establish long-term dependency
relationships between different scale features through a self-
attention mechanism and effectively fuse multiscale features
with edge-sensitive results. Extensive experiments on real and
synthetic datasets demonstrate that our GSTUnet significantly

outperforms other advanced methods. In future work, we will
focus on designing lighter transformer-based models and achiev-
ing better pixel-level intrinsic structural features generated by
patch partitioning in visual transformers.
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