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Two-Level Feature Fusion Network for Remote
Sensing Image Change Detection

Mingyao Feng , Ruifan Zhang , Hao Wang , Yikun Liu , and Gongping Yang

Abstract—With the advancement of satellite technology, the ap-
plication space of change detection (CD) in remote sensing images is
continuously expanding. However, the development of satellite re-
mote sensing technology is still ongoing, and limited resolution and
complex ground object information remain significant challenges in
the field of CD. Recent CD networks generally utilize multifeature
fusion to make full use of detailed information at different scales.
However, most networks have limited capabilities in handling
large-scale feature maps, leading to an impact on the effectiveness
in detecting detailed information. In this article, we propose a
two-level feature fusion CD network that enhances the semantic
information contained in large-scale difference feature through a
combination of convolutional neural network and transformer-
based feature fusion structures. Leveraging a simple backbone
network (ResNet-18) to extract dual-temporal feature maps, our
model achieves better performance to mainstream state-of-the-art
networks. On the LEVIR-CD, WHU-CD, and SYSU-CD datasets,
we obtain F1 scores of 92.03%/92.73%/83.25%, intersection over
union of 85.24%/86.45%/71.31%, and Kappa coefficient (κ) of
91.61%/92.45%/78.26%, respectively.

Index Terms—Change detection (CD), dilated convolution,
feature fusion, remote sensing image, semantic information.

I. INTRODUCTION

CHANGE detection (CD) based on remote sensing technol-
ogy is the process of utilizing two or more images captured

at different times of the same geographical location to identify
and recognize differences in land features [1]. The development
of remote sensing technology has captured the interest of many
researchers and has been applied in various fields, including
disaster monitoring [2], [3], resource survey [4], [5], [6], urban
planning [7], [8], and more.

For CD tasks, remote sensing images often exhibit complex
backgrounds with features, such as mountains, rivers, forests,
and roads, making the learning of background information chal-
lenging. Simultaneously, due to differences in capture times,
factors such as lighting and climate can lead to differences in
the distribution of images. Considering the focus on building
CD tasks, where the target is buildings that vary in morphology,
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factors such as changes in shadow patterns due to building height
and differences in roof colors may also have a negative impact
on the accuracy of CD result.

In the past few decades, considerable efforts have been in-
vested in developing various CD methods, including traditional
approaches [9], [10] and those based on deep learning [11].
Nowadays, owing to the powerful feature extraction capabilities
of convolutional neural networks (CNNs), CD methods based
on CNNs have become the predominant method in the field
of remote sensing image CD and have demonstrated excellent
performance. Simultaneously, with the success of transform-
ers [12], originally from the field of natural language processing
(NLP), the vision transformer (ViT) [13] introduced its structure
into the field of computer vision (CV), its powerful contextual
modeling ability has effected interest in various CV field. Net-
works structured with the transformer architecture have become
prevalent in the CV domain [14], [15], [16], [17]. Transformer
has also been introduced to the field of remote sensing image
CD and has achieved promising results [18], [19], [20], [21],
[22].

Due to the fact that satellite technology is still in the devel-
opment stage and the high costs of the manual annotation, the
public datasets mainly used in the field of remote sensing image
CD often lead to a negative insufficient in dataset accuracy and
image quantity. These issues result in a more significant impact
of factors, such as lighting and shadows in the image affecting the
model’s judgment of the distribution of pixel features to a greater
extent, ultimately affecting the score effect of the model. Current
CD tasks predominantly involve the use of siamese networks
structured with the U-Net architecture [23]. These networks
employ a shared parameter backbone network and designed
modules to model the feature maps for obtaining semantic
feature maps of dual-temporal images as an encoder structure.
The decoder structure process two semantic feature maps to
derive the temporal change information, and fuse features in
different scales during the upsampling phase. Existing methods
primarily focus on the feature extraction stage of dual-temporal
remote sensing images, aiming to design siamese networks with
the shared weights and strong representational capabilities to
extract high-level semantic features of dual-temporal remote
sensing images [24], [25], [26], [27]. For the decoder stage, most
models use some traditional methods such as concatenation or
making a difference [28] to calculate differential feature maps,
and the final prediction map is obtained through the upsample
operation to the differential feature maps [29], [30], [31], [32].
In this process, the large-scale feature map obtained from the
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middle layer of the network contains fewer semantic features
and can only use to supplement some detailed information of
small receptive fields.

To address the aforementioned issues and enhance the seman-
tic information representation capability of large-scale feature
maps, we propose a two-level feature fusion CD network ar-
chitecture. This architecture aims to strengthen the model’s CD
capability by improving the accuracy of the temporal change
information at different scales while fully integrating semantic
information at various scales. Considering that the main function
of CNN is to learn feature representations of input images
through neural networks, dual temporal remote sensing images
come from different distribution spaces, and the feature infor-
mation of dual temporal feature maps obtained using siamese
networks belongs to different distributions. By subtracting ab-
solute values, the generated feature maps can belong to the
same distribution. To model the large-scale feature maps in
the model and enrich their semantic information representation,
our model use a primary-level feature fusion module (PFFM)
to fuse semantic information from feature maps of different
scales. After obtaining the temporal change information through
subtractions, mixed convolutions (Mixed-conv) is applied to the
large-scale feature maps to significantly increase the receptive
field with lower computational cost and enhance the semantic
information representation. Finally, an advanced feature fusion
transformer (AFF Transformer) is employed to further fuse
large-scale feature maps with the high-level semantic infor-
mation of small-scale feature maps, augmenting the semantic
information of large-scale feature maps and enhancing the seg-
mentation effectiveness of change regions.

The contributions of our work are as follows.
1) We propose a two-level feature fusion model for CD in

remote sensing images. The network employs different
feature fusion approaches during the stages of obtaining
semantic feature maps of dual-temporal images and pro-
cessing the temporal change information of feature maps.
This is done to enable low-level, high-resolution feature
maps to capture more advanced semantic information,
thereby enhance the detection effect of the model on
change regions.

2) To enhance the receptive field of large-scale feature maps
while preserving local dependencies between pixels, we
design a Mixed-conv composed of a combination of
dilated convolution and regular convolution to enhance
the temporal change information. This convolutional ap-
proach allows large-scale feature maps to maintain a
higher receptive field range and capture detailed semantic
information, thereby increasing the semantic information
representation.

3) We propose a feature fusion cross-transformer structure to
handle multiscale feature maps. This structure facilitates
the global modeling of difference features through global
attention, while simultaneously allowing the integration
of advanced-level semantic information from small-scale
feature maps into large-scale feature maps.

The rest of this article is as follows. Section II provides a brief
overview of recent related work. Section III details the proposed

methodology. Section IV presents a series of experimental re-
sults and analyzes the model. Finally, Section V concludes this
article.

II. RELATED WORK

A. Remote Sensing Image CD Based on Deep Learning

Different from earlier methods primarily utilizing traditional
approaches for CD tasks [33], [34], [35], [36], [37], [38], [39],
contemporary remote sensing image CD predominantly em-
ploys deep learning methods [40]. These models often use U-Net
as the main architecture [29], [30], [31]. In these models, the
backbone network first extracts feature maps from dual-temporal
remote sensing images. The dual-temporal feature maps are then
fused to obtain the temporal change information, and the final
prediction results are obtained through an upsampling structure.
As CD tasks involve processing two input images captured at
different times, the fusion of dual-temporal feature maps can
be categorized into two ways based on Daudt et al.’s [28] work:
image-level and feature-level. Image-level methods, represented
by the FC-EF model [28], directly connect dual-temporal images
as a whole input to the semantic segmentation network by
concatenation or similar operation to obtain the temporal change
information. The network in Peng et al.’s [31] work adopted
the image-level method by feeding dual-temporal images into
the U-Net++ network. Feature-level methods, more popular
than image-level methods, simultaneously feed dual-temporal
images into feature extraction networks with the same structure
and shared weights. Feature-level models, such as FC-Conc and
FC-Diff [28], used concatenation and elementwise subtraction
of dual-temporal feature maps, respectively, to obtain the tempo-
ral change information. The change maps are then reconstructed
through upsampling and convolution modules. Feature-level
methods are more favored as they are computationally efficient
and avoid the cost of learning the differences in dual-temporal
feature maps. Most of the feature-level methods used subtrac-
tion [24], [25], [27], [30] while a few used concatenation [41].
In addition, other features and methods are being explored.
SUACDNet [42] used the sum, difference, and the feature maps
themselves of dual-temporal feature maps. The authors in [43]
and [44] proposed algebraic methods to derive difference maps.

Contemporary models are mostly focused on enhancing
the feature representation capability of the obtained dual-
temporal feature maps primarily through attention mechanisms.
STA [45] used a spatial–temporal attention module to cap-
ture rich global spatial–temporal relationships among pixels
in the entire spatial–temporal space, aiming to acquire more
discriminative features. BIT [18] utilized a transformer encoder–
decoder structure to enhance the interested change content in
dual-temporal feature maps and exclude irrelevant changes. In
addition to enhancing the semantic information of dual-temporal
feature maps, some networks also enhance the temporal change
information through various approaches. In order to improve
the boundary integrity and internal compactness of objects in
the output change map, IFN [46] integrated multilevel deep
features of the original image with difference features through
channel attention and spatial attention modules for change map
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reconstruction. MeGAN [26] utilized a metric-learning-based
GAN framework to obtain change prediction information.

B. Multifeature Fusion

The CNN network extracts semantic features from the input
through layerwise convolution, with each layer having different
receptive fields. Higher layers, due to their larger receptive fields,
yield small-scale high-level feature maps with powerful seman-
tic information representation. However, these feature maps
have lower resolution, losing many spatial details during the
downsampling process, making them suitable for detecting large
target objects. On the other hand, lower layers produce large-
scale low-level feature maps with higher resolution, containing
more spatial details. However, they have smaller receptive fields
and poorer semantic information representation capabilities,
making them suitable for detecting small target objects [47].
The approach of multiscale feature fusion involves combining
features from both high and low layers, absorbing the advantages
of different-scale feature maps, enabling the feature maps to
possess both semantic and spatial information.

Multiscale feature fusion networks, known for their effective-
ness, have found widespread application in the field of remote
sensing. Virtually all existing CD networks have embraced the
concept of multiscale feature fusion in their network design.
Numerous works have focused on enhancing neural network
feature extraction by incorporating multilayer feature fusion
structures [45], [46], [48], [49], [50]. There are two prevalent
methods for multiscale feature fusion. Some kinds of method
using the parallel multibranch network structure, exemplified by
the structure used in HRNet [51], as seen in the pyramid spatial–
temporal attention model used in Chen and Shi’s [45] work. This
kind of approach combines different scales of spatial–temporal
attention contexts to generate multiscale attention features.
Other kinds of method using the serial multibranch structure,
represented by the upsampling process in the U-Net structure.
In this kind of approach, low-level feature maps are fused
with high-level feature maps that have undergone upsampling
through skip connections, which is the primary method used in
the upsampling process. For instance, the neighbor aggregation
module used in Li et al.’s [52] work adopts a structure similar
to HRNet, allowing each dimension of the feature map to fuse
semantic features from adjacent dimensions. Many methods,
including [27], [46], [52], and [53], used skip connections
to fuse features during the upsampling process. In addition,
during the upsampling stage, SEIFNet [54] used an adaptive
context fusion module to guide the recovery of low-level features
by utilizing contextual information from high-level features.
It changes the attention weights of high-level and low-level
features through attention operations in the max pooling and
average pooling layers, achieving the fusion of high-level and
low-level features. It is noteworthy that most of these multi-
feature fusion modules were primarily used in enhancing the
feature representation of deep-layer feature maps or improving
the upsampling effect of deep-layer feature maps, with limited
emphasis on improving information from large-scale feature
maps.

C. Dilated Convolution

Dilated (atrous) convolution, initially proposed for addressing
image segmentation challenges [55], was designed to extract
multiscale information without altering the resolution of the
feature map by controlling the receptive field. In the early
segmentation approaches, networks typically underwent a se-
ries of downsampling processes to compress images, reducing
computational complexity, followed by a series of upsampling
processes to restore the original image size. However, this addi-
tional upsampling step inevitably led to the loss of a considerable
amount of detailed information. The introduction of dilated
convolution aims to circumvent the downsampling–upsampling
network structure. By introducing gaps between the elements
of the convolutional kernel, dilated convolution achieves an
enlargement of the receptive field without sacrificing detailed
information, thus providing an effective means of multiscale
information extraction with lower computational overhead.

However, dilated convolution, due to its computation resem-
bling a checkerboard pattern, generates convolution results in a
layer that entirely come from independent sets of the previous
layer, lacking mutual dependence and leading to the loss of local
information. In addition, the sparse sampling of input signals by
dilated convolution results in information obtained from distant
convolutions lacking correlation, affecting the learning effec-
tiveness. This issue is referred to as the gridding effect [56]. Since
dilated convolution does not utilize all pixel values within its
range, and there are unused elements between nonzero elements,
it inevitably loses the local dependency characteristics inherent
in regular convolution modules. In remote sensing imagery,
where pixels encompass factors, such as lighting and shadows,
avoiding interference from these elements makes the informa-
tion from neighboring pixels particularly crucial. Consequently,
only a few CD models in recent years have incorporated dilated
convolution. Models such as those in [25] and [41] employed
four dilated convolutions of different sizes in a parallel structure,
forming a Mixed-conv inserted into the backbone convolutional
network to extract hierarchical features, increase the depth and
width of the network. In Li et al.’s [52] work, a serial structure
connected dilated convolutions with different dilation rates,
gradually exploring temporal changes in the receptive field from
large to small.

D. Cross Attention Transformer Model

The transformer, a deep learning model proposed by Vaswani
et al. [12], has gained immense popularity, primarily dominating
the field of NLP. Drawing inspiration from the success in NLP,
ViT introduced by Dosovitskiy et al. [13] directly apply the
standard transformer to the CV domain. While transformers lack
certain inductive biases from convolutions, the global recep-
tive field inherent in transformer networks provides powerful
contextual modeling capabilities. With sufficient training, trans-
formers have demonstrated outstanding results that surpass those
achieved by CNNs. As a result, transformer-based models have
rapidly gained prominence in various CV tasks, including image
classification, semantic segmentation, object detection, image
generation, superresolution, and more. Their effectiveness has
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positioned transformers as a formidable architecture in the CV
domain, expanding their influence beyond their initial success
in NLP.

For wide range remote sensing images representing extensive
ground areas, effectively addressing the long short-term de-
pendencies can significantly enhance the model’s performance.
Many models tackle this issue by employing a global attention
mechanism. The usage of the global self-attention mechanism
in transformer models have quickly become a well-performing
framework in the remote sensing image domain. Numerous
instances of using transformers in CD tasks have emerged. For
instance, the work by BIT [18] pioneered the design of a hybrid
model, which concatenated CNN with transformer components,
exploring the potential of transformers in CD tasks. The con-
cise structure of the transformer-mixed model demonstrated
the effectiveness of transformers. Global semantic relationship
modeling in both temporal and spatial dimensions is advanta-
geous for representing semantic changes. Another example is
SLDDNet [22], which adopted a CNN-transformer architecture,
using a transformer semantic selector to capture global semantic
relationships and strengthens local feature information through
a pyramid structure of feature stacking. In addition, the Change-
Former model proposed by Bandara and Patel [19] introduced
a transformer-based siamese network structure. It combined
hierarchical transformer encoders with MLP decoders to extract
coarse and fine features of dual-temporal image for CD.

The application of transformer models with cross-attention
mechanisms first appeared in Vaswani et al.’s [12] work as part
of the decoder structure, primarily used in NLP for tasks, such
as machine translation, text recognition, and image captioning.
These models can fuse information from multiple sources or
handle cross-modal data, enabling them to better capture depen-
dencies between different types of information. In the CV do-
main, there are also several applications of transformer models
with cross-attention mechanisms. For instance, CrossViT [57]
investigated the effectiveness of incorporating the idea of feature
fusion at different scales into transformers. In the field of CD in
remote sensing images, BIT was among the first to use this cross-
attention mechanism to reintegrate advanced-level semantic in-
formation extracted from the feature maps back into the feature
maps. BIT employ the approach reduces the computational cost
of the transformer module by extracting limited-length high-
level semantic information. Another work, DCAT [58] modeled
the changes in relationships between patches by connecting a
series of hierarchical double-cross-attention blocks to extract
multiscale features.

III. MODEL STRUCTURE

A. Overview

Our two-level feature fusion model’s process is illustrated
in the Fig. 1. Distinguishing itself from existing networks, our
model achieves more accurate semantic feature extraction in the
process of obtaining dual-temporal feature maps. Our model
employs the simplest pretrained residual network structure,
ResNet-18 [59], as the backbone network, using the first four
layers’ outputs as different-scale feature maps. These maps are

then preliminarily fused through the primary-level feature fusion
model (PFFM). The PFFM’s process is illustrated in the Fig. 2.
Subsequently, similar to most networks, the dual-temporal fea-
ture maps of the same dimension are subtracted and the absolute
value is taken, resulting in the temporal change information
representing different scales.

Due to the simple structure of the backbone and the PFFM,
the network extracts less temporal information for dual-temporal
images. To enhance the change information in large-scale feature
maps, we design a Mixed-conv that runs in parallel with dilated
convolution and ordinary convolution, significantly increasing
the receptive field while preserving local dependencies. Con-
sidering that small-scale feature maps in the network can best
express the distribution information of temporal information,
they represent a valuable form of advanced semantic features.
Consequently, we fuse change maps of different scales with
small-scale feature maps using an AFF Transformer. This allows
the semantic information of large-scale feature maps and the
advanced semantic information of small-scale feature maps to
form a mapping relationship, enabling large-scale feature maps
to incorporate more high-dimensional semantic information at
the global level. This achieves the fusion of advanced multiscale
feature maps. Finally, we adopt a step by step upsampling
approach. After all, different-scale feature maps are fed into
the upsampling module, which generates pixel-level prediction
maps as the overall output of the network through simple con-
catenation and convolution.

B. Primary-Level Feature Fusion Module

Considering that ResNet-18 extracts limited semantic infor-
mation, we preliminarily fuse feature maps of different scales
through PFFM. For remote sensing images, the semantic infor-
mation contained in feature maps of different scales is crucial for
the subsequent CD process. Larger scale feature maps contain
more detailed information, while smaller scale feature maps
possess higher dimensional semantic information. Inspired by
HRNet, we use a parallel network structure to fuse feature maps
of different scales, exchanging information between feature
maps of different scales to learn sufficiently rich features of var-
ious scales. Subsequently, we convert feature maps of each scale
to the same number of channels, reducing redundant information
in smaller scale feature maps to decrease computational costs
during subsequent feature fusion, and enhancing the semantic
information that larger scale feature maps can store.

1) For the feature map F , we pass it through a 3 × 3
convolutional block to further extract semantic features
while adjusting the channel number to C0. This ensures
that the resolution of the new feature mapF ′ is the same as
F , and that it undergoes the same number of convolutions
as feature maps of other scales.

2) For the large-scale feature map F+ with higher resolution,
we pass it through a 3 × 3 convolutional block to extract
semantic features while adjusting the channel number
to C0. Subsequently, we perform downsampling using
MaxPooling to obtain a new feature mapF ′

+ with the same
resolution as F .
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Fig. 1. Visualization of the overall workflow of our two-level feature fusion model. A shared-weight ResNet-18 is utilized to extract four different-scale feature
maps for a pair of dual-temporal feature maps. PFFM is employed to merge semantic information across various scales. Mixed-conv is applied to significantly
increase the receptive field while retaining local dependencies among neighbor pixels. The AFF Transformer as the advanced level feature fusion model use to
integrate deep semantic information from the smallest scale feature map.

Fig. 2. Primary-level feature fusion module.

3) For the small-scale feature map F− with lower resolution,
we use an interpolation upsampling module to obtain the
same resolution asF . Subsequently, we pass it through a 3
× 3 convolutional block to reduce the loss of information
accuracy caused by the interpolation during the upsam-
pling process, while adjusting the channel number to C0.
This yields a new feature mapF ′

− with the same resolution
as F .

4) Finally, we concatenate the new feature maps with the
same resolution, adjust the channel number to C through

a 3 × 3 convolution, obtaining the fused feature Fnew at
that scale. Using residual learning, we add Fnew to the
original-scale feature map F , which has had its channel
number normalized through a 1 × 1 convolution. This
results in the module’s final output Fout at that scale.

Where C0 represents the same number of channels to which
various scale feature maps are adjusted in the intermediate
process, and C represents the same number of channels for
different scale feature maps in the final output. Taking the feature
map F3 as an example, the process of PFFM is as follows:

F′
1 = maxPooling(conv3×3(F1)) (1)

F′
2 = maxPooling(conv3×3(F2)) (2)

F′
3 = conv3×3(F3) (3)

F′
4 = conv3×3(UpSample(F4)) (4)

Fout
3 = conv1×1(F3) + conv3×3(Cat(F′

1,F
′
2,F

′
3,F

′
4)) (5)

where F1, F2, F3, and F4 are different scale feature maps,
Fout

3 is the output of the feature map F3, maxPooling(·) rep-
resents downsampling pooling operation by maxpooling oper-
ation, UpSample(·) represents the upsampling process using
bilinear interpolation, and conv3×3(·) in this place represents
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a 3 × 3 convolutional layer with batch normalization and ReLU
activation, and Cat(·) denotes the concatenation operation.

In the above-mentioned process, we adjust the channel num-
ber to the same value C0 for each scale feature map, ensuring
that different-scale feature maps have the same semantic weight
during concatenation. It is worth noting that, to reduce the
computational cost and improve the learning efficiency of the
subsequent model, the channel number C after multifeature
fusion for each scale feature map is the same. This ensures
that pixels in the large-scale feature map contain more semantic
information and that the semantic information in the small-scale
feature map is more compact.

C. Mixed-conv Blocks

Although multiscale feature fusion can effectively combine
high-level semantic information from small-scale feature maps
with detailed information from large-scale feature maps, the
large-scale feature map passes through fewer layers, containing
lower level details. The semantic information obtained from
the small-scale feature map will introduce errors during the
upsampling process. In addition, the subtraction and absolute
difference operations for derive the temporal change information
from the dual-temporal feature map result in a loss of semantic
information, making it challenging for large-scale feature maps
to contain sufficient semantic information. To supplement the
semantic information of large-scale feature maps and efficiently
increase the receptive field, increasing the receptive field is a
simple and effective method. However, as the scale of the feature
map increases, the loss of semantic information becomes more
severe, requiring a substantial increase in the receptive field,
leading to an exponential growth in computational demands. To
address this, we explore the application of dilated convolutions
in the field of remote sensing imagery. Our goal is to increase
the receptive field of the feature map to a certain extent. Since
our objective is relatively straightforward, the common improve-
ments for dilated convolutions are too complex for our needs.
Therefore, we opt for a simple approach named Mixed-conv
by incorporating a standard convolution in parallel with the
dilated convolution. Different from the Mixed-conv used in the
related works using four different dilation rate, we only use
one 3 × 3 dilated convolution with a dilation rate of 3 and one
standard 3× 3 convolution. The Mixed-conv reduces the impact
of the gridding effect, simultaneously increasing the receptive
field of the large-scale feature map without sacrificing local
dependencies between pixels.

The formula for each Mixed-conv is as follows:

MixedConv(F) = ReLU(BN(Conv3×3(F) + Convd=3
3×3 (F)))

(6)
where MixedConv denotes the Mixed-conv, ReLU(·) represents
the ReLU activation function, BN denotes the batch normal-
ization layer, Conv3×3(·) in this place is a standard 3 × 3
convolution, Convd=3

3×3 (·) is a 3 × 3 dilated convolution with
a dilation rate of 3.

For larger scale feature maps requiring a greater increase
in receptive field, our network allows the larger scale feature

maps to pass through more Mixed-conv blocks. In subsequent
experiments, we demonstrate the effectiveness of this simple
parallel Mixed-conv approach in enhancing the semantic infor-
mation for large-scale feature maps. In addition, for small-scale
feature maps that do not use Mixed-conv modules, due to their
small resolution, dilated convolutions may skip a large amount
of relevant semantic information. As an alternative, we let them
pass through a 3× 3 convolution block, allowing the pixels in the
feature map to focus only on the semantic information of their
neighboring pixels, thereby reducing the impact of semantic
information loss during the subtraction process of feature maps
to some extent.

D. Advanced-Level Feature Fusion Transformer

A small-scale feature map is the temporal change information
obtained through a complete CNN backbone and a primary-level
FFM. It is a high-level semantic feature that contains rich
high-level semantic information. This semantic feature has a
large receptive field, deep feature information, and also contains
some detail information of large-scale feature maps, which can
well represent the semantic information of differential features.
After enhancing the semantic information of large-scale feature
maps, we use an AFF Transformer structure to further fuse
the advanced semantic features in small-scale feature maps. In
order to achieve the fusion of features at different scales, unlike
the usual transformer structure, our AFF transformer does not
focus on global long and short-term memory. Instead, it utilizes
the transformer structure to adaptively learn the corresponding
relationships between different positions. The input K vectors,
Q vectors, and V vectors required by the transformer are all
modified to the transpose of the original content, focusing on
the correlation information of features at different scales, and
the feature information of each region is weighted based on the
importance of each feature.

To calculate the similarity information of features between
feature maps of different scales, these feature maps need to have
the same number of semantic features, that is, the same number
of regions. We crop different scale feature maps of various
scales into 16 × 16 regions, with each region transformed into a
semantic word vector of length (C × Ph × Pw), from RC×H×W

to R(C·Ph·Pw)×16×16, where C is the number of channels in the
original feature map, and Ph = H

16 , Pw = W
16 are the height and

width of each region, ensuring that each feature map obtains
the same number of semantic features. Due to cropping feature
maps of different scales into the same number of blocks to
obtain semantic features, blocks located at the same position
on the change feature map will represent the same region. In the
process of cross attention, we treat large-scale feature maps as
query vectors and small-scale feature maps as key vectors and
value vectors. By performing dot product operations between
query vectors and key vectors, we calculate the attention weights
between large-scale and small-scale features, and use the soft-
max function to obtain the similarity correlation attention map
between large-scale feature maps and small-scale feature maps.
Then, the obtained attention map use to weight and sum the
small-scale feature map, calculate the region information that
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the large-scale feature map focuses on, and obtain the final AFF
Transformer output. The AFF Transformer cross attention and
each layer of multihead cross attention are defined as follows:

CA(Q,K,V) = σ

(
QKT

√
dk

)
V (7)

Out(FL,FS) = (Cat(head1, . . ., headh)W
O)T (8)

where headj = CA((FL)TWq
j , (F

S)TWk
j , (F

S)TWv
j )

(9)

where Wq
j ,W

k
j ,W

v
j ∈ RPhPw×d, WO ∈ Rhd×PhPw are pa-

rameter matrices obtained from linear mappings, σ(·) denotes
the softmax function operated on the channel dimension of
small-scale feature map, h is the number of attention heads, d is
the spatial dimension of three linear projection layers, FL rep-
resents the transformed large-scale feature map, FS represents
the transformed small-scale feature map. The output of the AFF
Transformer module will be transformed back to the same scale
of the large-scale feature map.

Similarly, the AFF Transformer structure can also act as self-
attention on minimum scale feature maps, enhancing features
with high correlation and reducing features with low corre-
lation, learning the correlation information between features
through self-attention, and strengthening feature information
that is more suitable for the minimum scale. Considering that
AFF Transformer may cause the feature map to lose some low
correlation feature information, the minimum scale feature map
first performs AFF Transformer with other scale feature maps,
while the minimum scale change feature map that passes through
the transformer structure only participates in the subsequent up-
sampling stage. It is worth noting that due to the limited number
of channels in feature maps of different scales, transformers
using this cross attention structure reduce a significant amount
of computational requirements compared to self-attention trans-
formers.

E. Loss Function

For loss optimization, we utilize a hybrid loss function com-
bining binary cross-entropy loss and dice loss, proposed by
A2-Net [52]. In addition to the overall output of the network,
after each concatenation operation in the upsampling stage at the
network’s end, a 1× 1 convolution module is applied to generate
a pixel-level prediction map at that scale. These prediction map
are then upsampled and compared with the ground truth to
calculate the loss, which are added to the total loss. This process
is employed to further optimize the parameters of the model at
that scale and smaller scales. The specific formula for the loss
function is as follows:

Lbcei(pi, gt) = pi · log gt+ (1− pi) log (1− gt) (10)

Ldicei(pi, gt) = 1− 2 · pi · gt
||pi||+ ||gt|| (11)

L =
4∑

i=1

(Lbcei(pi, gt) + Ldicei(pi, gt)) (12)

where pi represents the predicted map after upsampling for
the ith dimension, gt is the ground truth, and || · || denotes L1
regularization.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

1) Experimental Details: Our experiments are implemented
using PyTorch [60], and all experiments are conducted on a
system equipped with an Intel Xeon Gold 5218 CPU (2.30 GHz)
and a GeForce RTX 3090 GPU (24 GB memory). The experi-
ments are carried out on three commonly used datasets. During
training, we apply standard data augmentation techniques, such
as flipping, cropping, scaling, and Gaussian blur. The model is
optimized using the adaptive moment estimation [61] optimizer,
with a batch size of 8, an initial learning rate of 1.25e-4, mo-
mentum of (0.9, 0.99), and weight decay of 1e-4. The learning
rate decay followed a polynomial decay strategy, as given by the
formula:

lrnew = lr ·
(
1− cur_epoch

max_epoch + 1

)0.9

(13)

where lr represents the initial learning rate, lrnew is the updated
learning rate calculated using the formula, cur_epoch denotes
the current epoch number, and max_epoch is the total number
of epochs for training.

2) Evaluation Indicators: We adopt five commonly used
evaluation metrics, with F1-score as the primary metric, cal-
culated using precision and recall. In addition, we employed
precision (Pre), recall (Rec), intersection over union (IoU), and
Kappa coefficient (κ) as evaluation metrics, with the following
formulas:

Pre =
TP

TP+FP
(14)

Rec =
TP

TP+FN
(15)

F1 =
2Pre · Rec
Pre+Rec

(16)

IoU =
TP

TP+FN+FP
(17)

OA =
TP+TN

TP+FP+TN+FN
(18)

Pe =
(TN+FN) · (TN+FP) + (FP+TP) · (FN+TP)

(TP+FP+TN+FN)2
(19)

κ =
OA − Pe

1− Pe
(20)

where TP, TN, FP, FN represent the quantities of true positive,
true negative, false positive, and false negative, respectively.

B. Datasets

In this experiment, we conduct tests using three datasets, and
the details of each dataset are provided as follows.
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1) Learning, vision, and remote sensing (LEVIR-CD) [45]:
LEVIR-CD is a widely used public large-scale dataset for build-
ing CD. It comprises 637 pairs of CD images, each with a size
of 1024 × 1024 and a spatial resolution of 0.5 m. Following the
dataset processing described in the literature, we divide it into
three parts: training, validation, and testing sets. The images are
cropped into nonoverlapping blocks of size 256× 256, resulting
in 7120 pairs for training, 1024 for validation, and 2048 for
testing. This dataset is among the most extensively utilized for
building CD tasks.

2) WHU building dataset (WHU-CD) [62]: WHU-CD is
a large and accurate open-source dataset of aerial and satel-
lite images provided by Wuhan University. This aerial dataset
contains over 220 000 independent buildings in Christchurch,
New Zealand, covering rural, residential, cultural, and industrial
areas. The dataset consists of a pair of aerial images with
dimensions of 32 507 × 15 354 pixels and a spatial resolution
of 0.075 m. As the authors have not provide a specific dataset
segmentation plan, we crop the images into nonoverlapping
blocks of size 256 × 256. We randomly split the dataset
into three parts, comprising 5205 pairs for training, 743 for
validation, and 1486 for testing, ensuring that the three parts
have a similar distribution. While this dataset has fewer in-
stances compared to the LEVIR-CD dataset, it boasts a higher
resolution.

3) SYSU-CD [63]: The SYSU-CD dataset comprises 20 000
pairs of dual-temporal remote sensing images, each with a
size of 256 × 256 pixels and a spatial resolution of 0.5 m. It
includes various types of complex scene changes, such as road
expansion, new urban construction, vegetation changes, subur-
ban expansion, and preconstruction groundwork. The dataset
has been divided into three parts for training, validation, and
testing, with 12 000, 4000, and 4000 pairs, respectively. Due to
the presence of vegetation changes and other variations in the
dataset, the detection of vegetation changes in the test set may be
significantly affected by factors, such as lighting, shadows, and
seasons. Moreover, the annotation accuracy of this dataset is rel-
atively lower than that of the other two datasets. It contains some
overlapping regions, and the extraction of dual-temporal feature
maps can have a substantial impact on the model’s performance.
In this experiment, the SYSU-CD dataset is primarily use to
evaluate the model’s performance in challenging environments
compared to other models.

C. Comparison With SOTA

We compare our proposed method with several state-of-the-
art approaches, including three convolution-based methods: FC-
EF [28], FC-Siam-Di [28], FC-Siam-Conc [28]; two attention-
based methods: STA [45] and IFN [46]; a transformer-based
method BIT [18]; and three recent methods: A2-Net [52] uti-
lizing a lightweight network, SLDDNet [22] incorporating a
CNN-transformer hybrid encoder and SEIFNet [54] enhancing
the exploration of time differences and the utilization of mul-
tiscale features. We conduct experiments using the parameters
suggested in the respective papers for each of these methods as
follows.

1) FC-EF [28] proposed an image-level fusion method,
where the concatenated dual-temporal images were fed
into a fully convolutional network (FCN) to extract se-
mantic features.

2) FC-Diff [28] was one of the first siamese extensions of
FCNs. It employed siamese FCNs to extract multilevel
features and fused the temporal information through dif-
ference of features during the step-by-step upsampling
process.

3) FC-Conc [28] was one of the first siamese extensions of
FCNs. It employed siamese FCNs to extract multilevel
features and fused the temporal information through con-
catenation of features during the step-by-step upsampling
process.

4) STA [45] introduced a metric-based siamese FCN-based
method, integrating temporal–spatial attention mecha-
nisms to expand more features.

5) IFN [46] proposed a deep supervision image fusion net-
work. It used attention modules to merge deep features
from the original images and change image features in the
CD network, helping the reconstruction of the the temporal
change information.

6) BIT [18] presented a transformer-based method, incorpo-
rating transformer into the CD task for improved context
modeling of dual-temporal images.

7) A2-Net [52] introduced a new lightweight model (with
only 3.78 M parameters and 6.02 G FLOPs). It used
supervised attention to progressively merge multilevel
features, employing a coarse-to-fine strategy to identify
change information.

8) SLDDNet [22] introduced a novel CNN-transformer hy-
brid encoder for dual-temporal image feature extraction.
By parallelizing pyramid structure feature stacking with
the transformer semantic selector, it addressed the lim-
itation of existing methods only use a single CNN or
transformer architecture for feature extraction.

9) SEIFNet [54] proposed a spatiotemporal enhancement
and interval fusion network. A spatiotemporal difference
enhancement module with a dual branch structure was
designed to obtain the changing features of dual temporal
images, and the interlayer features were integrated through
an adaptive context fusion module to better reconstruct the
detailed information of objects.

We employ publicly available code to invoke the model code
for the aforementioned CD networks. The hyperparameters and
optimizer are set according to the parameters mentioned in the
papers, the default parameters in the publicly available code, and
the priority of parameters used in our model.

1) Quantitative Evaluation: Table I reports the overall per-
formance scores on three datasets and presents the model pa-
rameters (Params) size and floating point operations (FLOPs)
for these methods. Our model’s performance in Pre. and Rec.
metrics on three datasets is not as outstanding as other ad-
vanced models. However, our research focuses on improving
F1 scores because it comprehensively calculates Pre. and Rec.,
It is a more comprehensive evaluation indicator, and by finding
a balance point between two indicators, we can obtain more
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TABLE I
COMPARISON RESULTS FOR THREE CD TESTSETS

LEVIR-CD WHU-CD SYSU-CD

robust and reliable results. Compared with other methods, our
model consistently demonstrates superior performance, with
F1 scores 0.54%/0.25%/043% higher than the second highest
score on the three datasets, IoU higher by 0.92%/0.44%/0.67%,
and κ coefficients higher by 0.57%/0.26%/0.69%, indicating
the effectiveness of the proposed model. The A2-Net had a
low number of Params and FLOPs, and achieved the highest
Pre. score in the LEVIR-CD dataset. However, our model has
stronger feature expression ability through the two-level feature
fusion module, resulting in better experimental performance on
other scores in all three datasets. The same phenomenon also
occurs in lightweight networks BIT and SLDDNet that use the
transformer structure. Compared to BIT that does not use a mul-
tifeature fusion structure and SLDDNet that directly uses skip
connections, our model improves its feature expression ability
by increasing the semantic expression ability of feature maps at
different scales at the cost of computational cost. SEIFNet has a
better Rec. score in the challenging SYSU-CD dataset, and has
a similar number of Params and FLOPs as our model. However,
due to the improved feature representation ability of large-scale
feature maps through Mixed-conv and AFF Transformer, our
model as a whole achieved better scores.

2) Qualitative Evaluation: Fig. 3 illustrates the visual com-
parisons of these methods on three datasets. For better visualiza-
tion, we use different colors to represent true positives (white),
false positives (red), true negatives (black), and false negatives
(green). The white regions indicate correctly detected changed
areas, red areas represent unchanged regions incorrectly iden-
tified as changed, green denotes changed regions that were
not recognized, and black regions denote correctly identified
unchanged areas. The results suggest that the proposed method
exhibits superiority in the following aspects.

It can be observed that our model achieves a high recall
score while maintaining a good precision score. Our model
can better learn the distribution information representing the
dataset. As shown in Fig. 3 (12), our model better identifies the
difference between green buildings and background in preim-
age and obtains more accurate detection results. As shown in
Fig. 3 (10) and (11), compare to other models, our model also
better identifies changes in building and vegetation information.
As shown in Fig. 3 (6), our model successfully identifies the
difference between buildings and background roads in
postimage. At the same time, our model can effectively rec-
ognize complex terrain information by improving the feature

representation ability of large-scale feature maps. As shown in
Fig. 3 (3) and (5), our model effectively identifies the difference
between the building and shadow information in the image,
and successfully detects the area of building changes. In Fig. 3
(7), it accurately identifies the shadows between buildings of
different heights. Finally, due to the improvement of feature
representation ability of our model in large-scale feature maps,
our model also has a certain improvement in detecting the edges
of changing regions. Both Fig. 3 (1) and (8) demonstrate better
edge segmentation performance.

D. Ablation Studies

To validate the effectiveness of the proposed modules in our
network, we conduct a comprehensive ablation study on three
datasets.

1) PFFMs: We conduct an ablation study on PFFM by re-
moving it from the model to assess its impact. The goal is to
verify if the dual-temporal feature maps pass through the PFFM
could produce better results for subsequent operations on the
feature maps. In the Table II, we observe a significant decrease
in F1 scores on all three datasets when PFFM is removed. We
attribute this decrease to two potential reasons: first, the use of
PFFM effectively enhances the semantic information contained
in the large-scale feature maps, resulting in better performance
in subsequent modules. Second, relying solely on ResNet-18 as
the backbone may limit the effectiveness of operations on feature
maps due to the limited semantic information it contains. The
experiments demonstrate the effectiveness of using PFFM for
feature map fusion.

2) Mixed-Conv Blocks: To validate the effectiveness of
Mixed-convs, we conduct experiments on the parts of the model
that used Mixed-convs, replacing them with different configura-
tions, including removal of Mixed-convs, using only standard
convolutions, using only dilated convolutions, and using the
Mixed-convs. In the Table II, we observe a significant decrease
in F1 scores on all three datasets when Mixed-convs are re-
moved. Experiments using standard convolutions as a replace-
ment achieve higher scores, indicating that the information loss
during the process of subtracting and taking the absolute value of
dual-temporal feature maps is nonnegligible, and convolutions
bring local dependencies that can alleviate the negative impact
of this information loss to some extent. It is noteworthy that
the model using only dilated convolutions performs poorly on
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Fig. 3. Visualization results of different methods on the LEVIR-CD, WHU-CD, and SYSU-CD datasets. Various colors use to illustrate the visual outcomes,
where white represents true positives, black denotes true negatives, red signifies false positives, and green indicates false negatives. Lines (1) to (12) depict the
prediction results of all compared methods on different samples. (a)Preimages. (b) Postimages. (c) Ground truth. (d) FC-EF. (e) FC-Diff. (f) FC-Conc. (g) STANet.
(h) IFN. (i) BIT. (j) A2-Net. (k) SLDDNet. (l) SEIFNet. (m) Ours.

TABLE II
DIFFERENTIAL EXPERIMENTS WERE CONDUCTED ON THREE REMOTE SENSING IMAGE CD DATASETS TO QUANTITATIVELY COMPARE PRE., REC., F1 SCORES,

IOU, AND κ UNDER DIFFERENT CONFIGURATIONS
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TABLE III
EFFECT OF THE DEPTH OF TRANSFORMER ON THREE DATASETS TO

QUANTITATIVELY COMPARE F1 SCORES, IOU, AND κ

the LEVIR-CD and WHU-CD datasets, with scores similar
to not using any module, indicating the importance of adding
local dependencies to feature maps. However, on the SYSU-CD
dataset with less precise labels, the model achieve higher scores
than the other two datasets, showing that increasing the receptive
field in the presence of less fine-grained labels can effectively
enhance the model’s representational ability. The model using
Mixed-convs demonstrated excellent performance on all three
datasets, proving the effectiveness of the simplicity structure.
The overall experiments indicate that increasing the receptive
field and adding new local dependencies are effective for feature
maps with missing semantic information. Increasing the recep-
tive field of large-scale feature maps can effectively enhance
the quality of the temporal change information contained in
large-scale feature maps, leading to the increase in computation
and parameter costs.

3) AFF Transformer: To validate the effectiveness of the
AFF Transformer module, we conduct experiments by test-
ing the model without the transformer structure, using self-
attention transformer and using cross-attention transformer. In
the Table II, we observe a decrease in F1 scores on all three
datasets when the Transformer module is removed, indicating
the effectiveness of the transformer structure. The model using
self-attention transformer also has better performance, but due
to the high number of channels in large-scale feature maps, the
self-attention transformer model requires a higher amount of
additional computation. It should be noted that the model using
cross attention transformer shows lower score compared to AFF
Transformer on three datasets. We believe that this is because in
the process of fusing advanced semantic features, calculating the
similarity between features at different scales is more suitable for
the model to learn feature fusion compared to spatial similarity.
This also indicates that the AFF Transformer module can achieve
highly effective results with limited computational complexity.

E. Parameter Analysis

1) Depth of Transformer: For a network utilizing the trans-
former model, the number of layers in the transformer is a crucial
hyperparameter that needs to be tested. Having too many layers
in the transformer may increase model complexity, making it
difficult to optimize to the best performance. On the other hand,
too few layers might limit the model’s effectiveness. We test the
impact of different numbers of transformer layers for the feature
maps of various dimensions.

In the Table III, we observe that, for the LEVIR-CD and
SYSU-CD datasets, changing the number of transformer layers
from 1 to 2 does not have a significant impact. However, for
the WHU-CD dataset, having two layers in the transformer

TABLE IV
EFFECT OF THE NUMBER OF MIXED-CONV LAYERS ON THREE DATASETS TO

QUANTITATIVELY COMPARE F1 SCORES, IOU, AND κ

produces noticeably better results. In addition, as the number of
transformer layers further increases, the scores start to decrease.
We believe that a deeper transformer architecture can better
capture information in the feature maps. However, having too
many layers also increases training costs, making it challenging
for the model to reach optimal performance within a limited
training process, resulting in a decrease score. Therefore, we
ultimately chose a model with two layers in the transformer.

2) Number of Mixed-Conv Layers for Different Scale Feature
Maps: We conduct tests on the number of Mixed-conv layers
used for feature maps of various dimensions. The Mixed-conv
layers in the Table IV indicates the number of Mixed-conv layers
used from the largest to the smallest scale feature maps. Consid-
ering the computational cost of Mixed-conv layers, we test the
effects of using [1,1,1,1] and [3,2,1,0] Mixed-conv layers.

In the Table IV, we observe that a higher number of Mixed-
conv modules result in better scores. Increasing the receptive
field for large-scale feature maps has a positive impact on the
overall model, providing more semantic information for larger
scale feature maps. However, higher number of Mixed-conv
layers also lead to a significant increase in computational and
parameter costs. While increasing the training time of the model,
it inevitably increases the optimization cost of the model.

F. Discussions

While our model exhibits favorable overall performance, there
are still challenging issues to address. Our model has higher
parameter and computational requirements compared to newer
models. This is mainly attributed to the extensive use of con-
volutional modules for different-scale feature maps, especially
large-scale feature maps. Although this effectively enhances the
semantic information contained in large-scale feature maps, it
leads to increased parameter demands. Our primary research
focus going forward is to explore methods to include more
high-quality semantic information in large-scale feature maps
with fewer parameters and computational demands.

V. CONCLUSION

In this work, we propose an effective two-level feature fusion
network for CD in remote sensing images. Our model employs
the structurally simple ResNet-18 as the backbone network.
Through PFFM, it preliminarily integrates semantic information
from different-scale feature maps to generate dual-temporal fea-
ture maps. After subtracting and taking the absolute value of the
dual-temporal feature maps, Mixed-conv are used for large-scale
feature maps to enlarge the receptive field and increase the
included semantic information. Finally, the AFF Transformer
structure is utilized to further integrate semantic features from
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small-scale feature maps into large-scale feature maps, resulting
in large-scale feature maps containing more deep-level semantic
information. Our model successfully achieves improvements in
F1 score, IoU, and κ on three datasets (LEVIR-CD, WHU-CD,
SYSU-CD). The results indicate that enhancing the semantic
information contained in large-scale featuree maps can effec-
tively enhance the feature extraction ability of the model, thereby
improving the score.

REFERENCES

[1] A. Singh, “Review article digital change detection techniques using
remotely-sensed data,” Int. J. Remote Sens., vol. 10, no. 6, pp. 989–1003,
1989.

[2] Z. Zheng, Y. Zhong, J. Wang, A. Ma, and L. Zhang, “Building damage
assessment for rapid disaster response with a deep object-based semantic
change detection framework: From natural disasters to man-made disas-
ters,” Remote Sens. Environ., vol. 265, 2021, Art. no. 112636.

[3] L. Moya et al., “Detecting urban changes using phase correlation and
-based sparse model for early disaster response: A case study of the 2018
Sulawesi Indonesia earthquake-tsunami,” Remote Sens. Environ., vol. 242,
2020, Art. no. 111743.

[4] R. Liu, M. Kuffer, and C. Persello, “The temporal dynamics of slums em-
ploying a CNN-based change detection approach,” Remote Sens., vol. 11,
no. 23, 2019, Art. no. 2844.

[5] L. Bruzzone and S. B. Serpico, “An iterative technique for the detection
of land-cover transitions in multitemporal remote-sensing images,” IEEE
Trans. Geosci. Remote Sens., vol. 35, no. 4, pp. 858–867, Jul. 1997.

[6] P. P. De Bem, O. A. de Carvalho Junior, R. Fontes Guimarães, and R.
A. Trancoso Gomes, “Change detection of deforestation in the brazilian
amazon using landsat data and convolutional neural networks,” Remote
Sens., vol. 12, no. 6, 2020, Art. no. 901.

[7] Z. Zhang, G. Vosselman, M. Gerke, D. Tuia, and M. Y. Yang, “Change
detection between multimodal remote sensing data using siamese CNN,”
2018, arXiv:1807.09562.

[8] J. Chen, H. Liu, J. Hou, M. Yang, and M. Deng, “Improving building
change detection in VHR remote sensing imagery by combining coarse
location and co-segmentation,” ISPRS Int. J. Geo- Inf., vol. 7, no. 6, p. 213,
2018.

[9] R. Qin, J. Tian, and P. Reinartz, “3D change detection–approaches and ap-
plications,” ISPRS J. Photogrammetry Remote Sens., vol. 122, pp. 41–56,
2016.

[10] Y. Ban and O. Yousif, “Change detection techniques: A review,” in Mul-
titemporal Remote Sensing: Methods and Applications. Berlin, Germany:
Springer, 2016, pp. 19–43.

[11] T. Liu, L. Yang, and D. Lunga, “Change detection using deep learning ap-
proach with object-based image analysis,” Remote Sens. Environ., vol. 256,
2021, Art. no. 112308.

[12] A. Vaswani et al., “Attention is all you need,” in Proc. Int. Conf. Adv.
Neural Inf. Process. Syst., 2017, vol. 30, pp. 6000–6010.

[13] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for
image recognition at scale,” in Proc. Int. Conf. Learn. Representations,
2020, arXiv:2010.11929.

[14] S. Zheng et al., “Rethinking semantic segmentation from a sequence-
to-sequence perspective with transformers,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2021, pp. 6877–6886.

[15] Z. Liu et al., “Swin transformer: Hierarchical vision transformer using
shifted windows,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021,
pp. 9992–10002.

[16] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and S.
Zagoruyko, “End-to-end object detection with transformers,” in Proc. Eur.
Conf. Comput. Vis., 2020, pp. 213–229.

[17] X. Mao et al., “Enhance the visual representation via discrete adversarial
training,” in Proc. Int. Conf. Adv. Neural Inf. Process. Syst., 2022, vol. 35,
pp. 7520–7533.

[18] H. Chen, Z. Qi, and Z. Shi, “Remote sensing image change detection
with transformers,” IEEE Trans. Geosci. Remote Sens., vol. 60, 2022,
Art. no. 5607514.

[19] W. G. C. Bandara and V. M. Patel, “A transformer-based siamese network
for change detection,” in Proc. IEEE Int. Geosci. Remote Sens. Symp.,
2022, pp. 207–210.

[20] Y. Feng, H. Xu, J. Jiang, H. Liu, and J. Zheng, “ICIF-Net: Intra-scale cross-
interaction and inter-scale feature fusion network for bitemporal remote
sensing images change detection,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 4410213.

[21] X. Su, J. Li, and Z. Hua, “Transformer-based regression network for pan-
sharpening remote sensing images,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 5407423.

[22] Z. Fu, J. Li, L. Ren, and Z. Chen, “SLDDNet: Stage-wise short and long
distance dependency network for remote sensing change detection,” IEEE
Trans. Geosci. Remote Sens., vol. 61, 2023, Art. no. 3000319.

[23] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional networks
for biomedical image segmentation,” in Proc. 18th Int. Conf. Med. Image
Comput. Comput.-Assist. Interv., 2015, pp. 234–241.

[24] J. Liu, M. Gong, K. Qin, and P. Zhang, “A deep convolutional coupling
network for change detection based on heterogeneous optical and radar im-
ages,” IEEE Trans. Neural Netw. Learn. Syst., vol. 29, no. 3, pp. 545–559,
Mar. 2018.

[25] M. Wang, K. Tan, X. Jia, X. Wang, and Y. Chen, “A deep siamese network
with hybrid convolutional feature extraction module for change detection
based on multi-sensor remote sensing images,” Remote Sens., vol. 12, no. 2,
2020, Art. no. 205.

[26] W. Zhao, L. Mou, J. Chen, Y. Bo, and W. J. Emery, “Incorporating metric
learning and adversarial network for seasonal invariant change detec-
tion,” IEEE Trans. Geosci. Remote Sens., vol. 58, no. 4, pp. 2720–2731,
Apr. 2020.

[27] X. Tang et al., “An unsupervised remote sensing change detection method
based on multiscale graph convolutional network and metric learning,”
IEEE Trans. Geosci. Remote Sens., vol. 60, 2022, Art. no. 5609715.

[28] R. C. Daudt, B. Le Saux, and A. Boulch, “Fully convolutional siamese
networks for change detection,” in Proc. IEEE 25th Int. Conf. Image
Process., 2018, pp. 4063–4067.

[29] Z. Zheng, A. Ma, L. Zhang, and Y. Zhong, “Change is everywhere: Single-
temporal supervised object change detection in remote sensing imagery,”
in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2021, pp. 15173–15182.

[30] S. Fang, K. Li, J. Shao, and Z. Li, “SNUNet-CD: A densely connected
siamese network for change detection of VHR images,” IEEE Geosci.
Remote Sens. Lett., vol. 19, 2022, Art. no. 8007805.

[31] D. Peng, Y. Zhang, and H. Guan, “End-to-end change detection for high
resolution satellite images using improved UNet,” Remote Sens., vol. 11,
no. 11, 2019, Art. no. 1382.

[32] Y. Zhan, K. Fu, M. Yan, X. Sun, H. Wang, and X. Qiu, “Change de-
tection based on deep siamese convolutional network for optical aerial
images,” IEEE Geosci. Remote Sens. Lett., vol. 14, no. 10, pp. 1845–1849,
Oct. 2017.

[33] K. Tan, X. Jin, A. Plaza, X. Wang, L. Xiao, and P. Du, “Automatic change
detection in high-resolution remote sensing images by using a multiple
classifier system and spectral–spatial features,” IEEE J. Sel. Topics Appl.
Earth Observ. Remote Sens., vol. 9, no. 8, pp. 3439–3451, Aug. 2016.

[34] M. Hao, W. Shi, H. Zhang, and C. Li, “Unsupervised change detection with
expectation-maximization-based level set,” IEEE Geosci. Remote Sens.
Lett., vol. 11, no. 1, pp. 210–214, Jan. 2014.

[35] H. Li, M. Li, P. Zhang, W. Song, L. An, and Y. Wu, “SAR image change
detection based on hybrid conditional random field,” IEEE Geosci. Remote
Sens. Lett., vol. 12, no. 4, pp. 910–914, Apr. 2015.

[36] T. Celik, “Unsupervised change detection in satellite images using prin-
cipal component analysis and k-means clustering,” IEEE Geosci. Remote
Sens. Lett., vol. 6, no. 4, pp. 772–776, Oct. 2009.

[37] E. P. Crist, “A TM tasseled cap equivalent transformation for reflectance
factor data,” Remote Sens. Environ., vol. 17, no. 3, pp. 301–306, 1985.

[38] L. Bruzzone and D. F. Prieto, “Automatic analysis of the difference image
for unsupervised change detection,” IEEE Trans. Geosci. Remote Sens.,
vol. 38, no. 3, pp. 1171–1182, May 2000.

[39] P. R. Coppin and M. E. Bauer, “Digital change detection in forest ecosys-
tems with remote sensing imagery,” Remote Sens. Rev., vol. 13, no. 3/4,
pp. 207–234, 1996.

[40] A. Shafique, G. Cao, Z. Khan, M. Asad, and M. Aslam, “Deep learning-
based change detection in remote sensing images: A review,” Remote Sens.,
vol. 14, no. 4, 2022, Art. no. 871.

[41] M. Zhang, G. Xu, K. Chen, M. Yan, and X. Sun, “Triplet-based semantic
relation learning for aerial remote sensing image change detection,” IEEE
Geosci. Remote Sens. Lett., vol. 16, no. 2, pp. 266–270, Feb. 2019.

[42] L. Song, M. Xia, J. Jin, M. Qian, and Y. Zhang, “Suacdnet: Attentional
change detection network based on siamese U-shaped structure,” Int. J.
Appl. Earth Observ. Geoinf., vol. 105, 2021, Art. no. 102597.



FENG et al.: TWO-LEVEL FEATURE FUSION NETWORK FOR REMOTE SENSING IMAGE CHANGE DETECTION 8489

[43] Y. Sun, L. Lei, X. Tan, D. Guan, J. Wu, and G. Kuang, “Structured graph
based image regression for unsupervised multimodal change detection,”
ISPRS J. Photogrammetry Remote Sens., vol. 185, pp. 16–31, 2022.

[44] Y. Sun, L. Lei, X. Li, X. Tan, and G. Kuang, “Structure consistency-
based graph for unsupervised change detection with homogeneous and
heterogeneous remote sensing images,” IEEE Trans. Geosci. Remote Sens.,
vol. 60, 2022, Art. no. 4700221.

[45] H. Chen and Z. Shi, “A spatial-temporal attention-based method and a
new dataset for remote sensing image change detection,” Remote Sens.,
vol. 12, no. 10, 2020, Art. no. 1662.

[46] C. Zhang et al., “A deeply supervised image fusion network for change
detection in high resolution bi-temporal remote sensing images,” ISPRS J.
Photogrammetry Remote Sens., vol. 166, pp. 183–200, 2020.

[47] A. Farhadi and J. Redmon, “Yolov3: An incremental improvement,” in
Proc. Comput. Vis. Pattern Recognit., 2018, vol. 1804, pp. 1–6.

[48] Y. Liu, C. Pang, Z. Zhan, X. Zhang, and X. Yang, “Building change
detection for remote sensing images using a dual-task constrained deep
siamese convolutional network model,” IEEE Geosci. Remote Sens. Lett.,
vol. 18, no. 5, pp. 811–815, May 2021.

[49] H. Jiang, X. Hu, K. Li, J. Zhang, J. Gong, and M. Zhang, “PGA-SiamNet:
Pyramid feature-based attention-guided siamese network for remote sens-
ing orthoimagery building change detection,” Remote Sens., vol. 12, no. 3,
2020, Art. no. 484.

[50] H. Chen, W. Li, and Z. Shi, “Adversarial instance augmentation for
building change detection in remote sensing images,” IEEE Trans. Geosci.
Remote Sens., vol. 60, 2022, Art. no. 5603216.

[51] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution representation
learning for human pose estimation,” in Proc. IEEE/CVF Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 5686–5696.

[52] Z. Li et al., “Lightweight remote sensing change detection with progressive
feature aggregation and supervised attention,” IEEE Trans. Geosci. Remote
Sens., vol. 61, 2023, Art. no. 5602812.

[53] B. Hou, Q. Liu, H. Wang, and Y. Wang, “From W-Net to CDGAN:
Bitemporal change detection via deep learning techniques,” IEEE Trans.
Geosci. Remote Sens., vol. 58, no. 3, pp. 1790–1802, Mar. 2020.

[54] Y. Huang, X. Li, Z. Du, and H. Shen, “Spatiotemporal enhancement and
interlevel fusion network for remote sensing images change detection,”
IEEE Trans. Geosci. Remote Sens., vol. 62, 2024, Art. no. 5609414.

[55] F. Yu and V. Koltun, “Multi-scale context aggregation by dilated convolu-
tions,” 2015, arXiv:1511.07122.

[56] P. Wang et al., “Understanding convolution for semantic segmentation,”
in Proc. IEEE Winter Conf. Appl. Comput. Vis., 2018, pp. 1451–1460.

[57] C.-F. R. Chen, Q. Fan, and R. Panda, “CrossVit: Cross-attention multi-scale
vision transformer for image classification,” in Proc. IEEE/CVF Int. Conf.
Comput. Vis., 2021, pp. 347–356.

[58] Y. Zhou, C. Huo, J. Zhu, L. Huo, and C. Pan, “DCAT: Dual cross-attention-
based transformer for change detection,” Remote Sens., vol. 15, no. 9, 2023,
Art. no. 2395.

[59] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[60] A. Paszke et al., “PyTorch: An imperative style, high-performance deep
learning library,” in Proc. Int. Conf. Adv. Neural Inf. Process. Syst., 2019,
vol. 32, pp. 8026–8037.

[61] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980.

[62] S. Ji, S. Wei, and M. Lu, “Fully convolutional networks for multisource
building extraction from an open aerial and satellite imagery data set,”
IEEE Trans. Geosci. Remote Sens., vol. 57, no. 1, pp. 574–586, Jan. 2019.

[63] Q. Shi, M. Liu, S. Li, X. Liu, F. Wang, and L. Zhang, “A deeply supervised
attention metric-based network and an open aerial image dataset for remote
sensing change detection,” IEEE Trans. Geosci. Remote Sens., vol. 60,
2022, Art. no. 5604816.

Mingyao Feng received the B.S. degree in software
engineering from Shandong University, Jinan, China,
in 2021, where he is currently working toward the
M.S. degree in software engineering.

His research interests include change detection,
remote sensing image analysis, and machine learning.

Ruifan Zhang received the B.S. degree in soft-
ware engineering from Qingdao University, Qingdao,
China, in 2021. He is currently working toward the
M.S. degree in artificial intelligence with Shandong
University, Jinan, China.

His research interests include anomaly detection
and machine learning.

Hao Wang received the B.S. degree in software
engineering from Nanchang University, Nanchang,
China, in 2021. He is currently working toward the
M.S. degree in software engineering with Shandong
University, Jinan, China.

His research interests include machine learning and
defect detection.

Yikun Liu received the B.S. degree in mechanical and
electronic engineering from Huazhong Agriculture
University, Wuhan, China, in 2019, and the M.S.
degree in software engineering from Shandong Uni-
versity, Jinan, China, in 2022, where he is currently
working toward the Ph.D. degree in software engi-
neering.

His research interests include remote sensing im-
age analysis and machine learning.

Gongping Yang received the bachelor’s degree in
computer and application, and master’s and Ph.D.
degrees in computer software and theory from Shan-
dong University, Jinan, China, in 1992, 2001, and
2007, respectively.

Since 2013, he has been a Professor with the School
of Software, Shandong University. His research inter-
ests include pattern recognition, computer vision, and
remote sensing image analysis.

Dr. Yang is a Senior Member of CCF and
CAAI, also serve as the Machine Learning Techni-

cal Committee of CAAI and Artificial Intelligence and Pattern Recognition
Technical Committee of CCF. He was also a Program Committee Mem-
ber/Organization/Program Chair of several conferences.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


