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Remote Sensing Images
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Abstract—As we all know, semantic segmentation of remote
sensing (RS) images is to classify the images pixel by pixel to
realize the semantic decoupling of the images. Most traditional
semantic decoupling methods only decouple and do not perform
scale-separation operations, which leads to serious problems. In the
semantic decoupling process, if the feature extractor is too large,
it will ignore the small-scale targets; if the feature extractor is too
small, it will lead to the separation of large-scale target objects
and reduce the segmentation accuracy. To address this concern, we
propose a scale-separated semantic decoupled transformer (SSDT),
which first performs scale-separation in the semantic decoupling
process and uses the obtained scale information-rich semantic
features to guide the Transformer to extract features. The network
consists of five modules, scale-separated patch extraction (SPE),
semantic decoupled transformer (SDT), scale-separated feature
extraction (SFE), semantic decoupling (SD), and multiview feature
fusion decoder (MFFD). In particular, SPE turns the original im-
age into a linear embedding sequence of three scales; SD divides
pixels into different semantic clusters by K-means, and further
obtains scale information-rich semantic features; SDT improves
the intraclass compactness and interclass looseness by calculating
the similarity between semantic features and image features, the
core of which is decoupled attention. Finally, MFFD is proposed to
fuse salient features from different perspectives to further enhance
the feature representation. Our experiments on two large-scale
fine-resolution RS image datasets (Vaihingen and Potsdam) demon-
strate the effectiveness of the proposed SSDT strategy in RS image
semantic segmentation tasks.

Index Terms—Geophysical image processing, geoscience and
remote sensing, semantic segmentation.
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1. INTRODUCTION

ITH the rapid development of new technologies such
W as satellite sensors and aerospace, remote sensing (RS)
technology continues to progress and image resolution is in-
creasing. Rational analysis and use of high-resolution RS images
are significant to monitoring disaster forecasting, autonomous
driving, and national land resource protection [1], [2], [3], [4].
Semantic segmentation [5] is an important topic in computer vi-
sion, which aims to achieve region segmentation by determining
the class of individual pixels in an image and then recognizing
the semantic information of that class to superimpose high-level
semantics on the segmentation result. In recent years, deep
learning has led to breakthroughs in the field of semantic seg-
mentation, but the task of semantic segmentation of RS images
remains challenging due to the differences between RS optical
images and ordinary images, and the existence of a large number
of target objects with different scales and different semantics in
RS images.

In recent years, most of the cutting-edge semantic segmenta-
tion models have been based on convolutional neural networks
(CNNs), which further extend the scope of semantic segmen-
tation and improve the accuracy of distinguishing recognized
objects. The classical deep learning semantic segmentation net-
works include CNN-based FCN [6], UNet [7], SegNet [8], etc,
in which the “encoder-decoder” paradigm [7], [8], [9], [10] is the
main network structure framework. Since contextual informa-
tion is the most critical factor in improving the performance
of semantic segmentation, Chen et al. [11], [12], [13], [14]
proposed the DeepLab series to explore multiscale contextual
information to improve target recognition at different scales.
In addition, using attention mechanisms [15], [16], [17], [18]
to capture contextual information or feature extraction through
graph convolutional networks (GCNs) [19], [20], [21], [22],
[23], [24] can further model the relationships between target
objects. MSCG-Net [24] is based on GCN to establish con-
nections between pixels by building nodes and edges and can
integrate context information to obtain better performance. With
Transformer’s excellent performance in NLP, the introduction of
ViT [25] led the field of computer vision to take a significant
step forward, and the authors in [26], [27], [28], [29] fully
explored the segmentation capability of ViT and improved the
global long-range modeling capability of the network. The most
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Fig. 1. Here, we illustrate the current problems. (a) Unsatisfactory decoupling
result caused by the traditional decoupling method. The red box shows semantic
entanglement in RS images: the “Tree” in the green box is coupled above the
“Low Vegetation” in the blue box. In the process of decoupling the two semantics,
if the feature extractor is too large, such as the convolution kernel of CNN is set
large, it will mainly decouple the “Low Vegetation” semantics in the blue box,
resulting in ignoring the small-scale target object tree. If the feature extractor
is too small, it will decouple the “Tree” semantics in the green box, which will
lead to the separation of the “Low Vegetation” of the big-scale target object and
decrease the segmentation accuracy. (b) Shows our SD method. In the process
of SD, a scale-separation operation is carried out to avoid the interference of
scale information on decoupling, and the most ideal decoupling result can be
obtained.

popular of these methods is the Swin Transformer [29], which
proposes a hierarchical transformer that brings higher efficiency
by restricting the self-attentive computation to nonoverlapping
local windows, while still allowing crosswindow connections.
Swin-UNet [30] adds the idea of UNet on its basis and constructs
a purely transformer-based U-shaped structure.

Although the above techniques have contributed to promoting
progress in the field of semantic segmentation, the above meth-
ods still have shortcomings when used in the field of RS images:
they cannot segment the coupled target objects accurately on
the scale entangled feature space. Traditional methods such as
Swin-UNet [30], although the interrelationship between individ-
ual semantic features is extracted using the attention mechanism
to achieve semantic decoupling (SD), no scale-separation oper-
ation is performed in the SD process. This will lead to a serious
problem that the semantics of each scale are mixed and the
cluttered scale information will affect the semantic judgment. In
addition, due to the different imaging principles, RS images will
contain more information than ordinary images, which makes
it more difficult to recognize target objects. Therefore, it is not
reliable to use only semantic information for RS image semantic
segmentation, which limits the semantic extraction ability of the
segmentation model. Fig. 1(a) shows the unsatisfactory decou-
pling result caused by the traditional decoupling method. It is
obvious that the RS image has two coupled semantics in the same
location space: the “Tree” in the green box is coupled above the
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“Low Vegetation” in the blue box. In the process of decoupling
the two semantics, if the feature extractor is too large, such as the
convolution kernel of CNN is set large, it will mainly decouple
the semantics in the blue box, and ignore the small target object
“Tree” in the decoupling process. If the feature extractor is too
small, it will decouple the semantics in the green box, which will
cause the big target object “Low Vegetation” to be separated, and
the segmentation accuracy will be reduced. From the above two
points, it can be seen that semantic segmentation in RS images
with seriously entangled semantic information scales is prone
to missegmentation.

To solve the above problems, we propose semantic informa-
tion based on scale-separation to guide Transformer decoupling
model, to improve the accuracy of the model description of
coupling target objects. Fig. 1(b) shows our SD method. In the
process of SD, scale-separation operations are carried out to
avoid the interference of scale information on the decoupling,
and the most ideal decoupling results can be obtained. First,
we still inherit the traditional Swin Transformer module to
ensure the interaction of global contextual information, using
Swin-UNet [30] as a baseline, unlike Swin Transformer which
uses a single scale for feature extract, this article proposes scale-
separated patch extraction (SPE), which chunks the original
image at different scales sizes to generate three scales of linear
mapping embedding sequences for global contextual representa-
tion modeling. Second, scale-separated feature extraction (SFE),
and SD are proposed to use scale information to divide pixels into
different semantic clusters by clustering methods, which can ob-
tain scale information-rich semantic features. It is worth noting
that the semantic information we add is the semantic information
after scale-separation modeling extracted from the image itself,
and it is not supervised by additional word embedding (such
as Segmenter [27]), which avoids the difference between the
modes between the word and the image. In addition, semantic
decoupled transformer (SDT) is proposed to extract intraclass
feature interdependencies and reduce interclass feature associ-
ations by computing the similarity between semantic features
and image features, with decoupled attention at its core. Finally,
multiview feature fusion decoder (MFFD) is proposed to fuse
salient features from different perspectives to further enhance the
feature representation. We compare our method with previous
methods on two public datasets. Experiments show that our
method outperforms the state-of-the-art semantic segmentation
models. The main contributions are as follows.

1) We propose a scale-separation semantic decoupled trans-
former (SSDT) for semantic segmentation of RS images,
which implements a SD module within the Transformer.
This can effectively avoid the influence of scale coupling
on semantic judgments, and not only helps the Trans-
former to provide effective semantic features but also
helps to compensate for the lack of spatial location of the
Transformer.

2) We propose five modules: SPE, SDT, SFE, SD, and
MFFD. The total network framework superimposed by
each module can obtain the scale information-rich seman-
tic features and use the semantic features to guide and
reduce the correlation of interclass features to solve the
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problem of severe coupling of semantic information scales
within RS images.

3) We validated the validity of the proposed method on
the Potsdam dataset and the Vaihingen dataset. Several
comparative and ablation experiments were carried out to
prove the effectiveness of the scale-separated SD Trans-
former framework in RS image segmentation.

The rest of this article is organized as follows. Section II
introduces the work related to the semantic segmentation of RS
images. Section III provides details of the SSDT. Section IV
describes the corresponding experimental results and analysis.
Finally, Section V concludes this article.

II. RELATED WORK
A. Semantic Segmentation Based on CNNs

In recent years, common semantic segmentation models are
based on CNNs, which further extend the scope of semantic
segmentation and improve the accuracy of distinguishing recog-
nized objects, among which the classical deep learning semantic
segmentation networks include FCN [6], UNet [7], SegNet [8],
etc. In particular, FCN [6] brings semantic segmentation into
an end-to-end training to achieve the pixel-level classification
of images, thus, solving semantic-level image segmentation.
But context information is the most crucial factor in improving
semantic segmentation performance, as different objects and
scenes exhibit different contextual relationships at different
scales. To capture scale information between pixels more ef-
fectively, an “encoder-decoder” paradigm is proposed [7], [8],
[9], [10]. UNet [7] adds low-level spatial features to high-level
semantic features through skip-connection to achieve feature
fusion at different scales, and PSPNet [ 10] adds a spatial pyramid
pooling module to obtain a set of feature maps with different
sensory field sizes to fuse features at different scales. To improve
the utilization of global information, the DeepLab series pro-
posed by Chen et al. [11], [12], [13], [14] explores multiscale
contextual information to improve target recognition at different
scales and increase segmentation accuracy. DeepLabV1 [11]
proposed the concept of dilated convolution, increasing the size
of the receive field to enable networks to capture a larger range
of contextual information. However, the model has two main
issues: continuous pooling operations leading to a decrease in
spatial resolution, and the invariance of spatial transformations
required for the classifier to obtain object-centered decisions. To
address these issues, DeepLabV2 [12] introduced atmosphere
spatial pyramid pooling, which allows the network to perform
feature extraction at multiple different sampling rates, thereby
segmenting objects more accurately. DeepLabV3 [13] improved
the ResNet structure based on V2, enabling it to use dilated con-
volutions and pyramid dilated convolutions. This improvement
enables the network to maintain the size of the feature map
while maintaining the receptive field, thereby better preserv-
ing spatial information. DeepLabV3+ [14] introduced dilated
spatial pyramid pooling and improves the upsampling method
to achieve higher resolution and more accurate segmentation
results. However, there are still some challenges and limitations,
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such as high computational complexity and the need to improve
model robustness.

Further, some researchers perform feature extraction through
graph convolution [19], [20], [21], [22], [23] to model the
relationship between target objects. Other researchers have
concentrated on attention mechanisms [15], [16], [17], [18] to
capture contextual information, which allows networks to ignore
irrelevant information and focus on priority information, includ-
ing spatial domain attention, channel domain attention, layer
domain attention, hybrid domain attention, temporal domain
attention, and self-attention mechanisms. For example, Ding
etal. [16] proposed local attention network (LANet), which com-
bines patch attention module and attention embedding module to
obtain the degree of interlocation dependency by calculating the
pixel-to-pixel similarity and incorporating the neighboring pixel
information into the computed pixels, thus, freeing the fusion
of global information from the limitation of image distance.
SENet [17] can be interpreted as making the model focus more
on a certain aspect of features and correspondingly will assign
weights to each channel, thus distinguishing the importance
of different features and achieving the effect of reinforcing a
certain feature. DANet [18] attached two attention modules to
the dilated FCN based on a self-attentive mechanism, modeling
semantic dependencies in the spatial and channel dimensions, re-
spectively. However, the multiscale features extracted by atrous
convolution or pyramidal pooling are limited, so LoG-CAN [31],
which improves the segmentation performance of RS images
by utilizing local details and global semantic information of
the image is proposed. Hang et al. [32] used a “multiscale
progressive segmentation network” to gradually segment objects
into small, large, and other scales, which solves the problem that
due to the limited learning capacity of each CNN, it tends to make
tradeoffs when segmenting objects of different scales. Wang
et al. [33] proposed structure-driven relation graph networks,
which utilize graph networks to model complex relationships
between objects and capture subtle differences between them
through a structure-driven approach, thereby improving the ac-
curacy of fine-grained recognition.

In addition, models for hyperspectral data are also growing.
SDEnet [34] utilized single-source hyperspectral data and unla-
beled data in the target scene to design a generator that includes a
semantic coder and a morphological coder to classify hyperspec-
tral images in the target scene and achieves good performance
on the cross-scene hyperspectral image classification task. The
FHS-SSL [35] algorithm is a self-supervised learning method
for hyperspectral image classification using unlabeled data. The
algorithm introduces migration learning and meta-learning to
further improve the classification accuracy. However, the above
model requires a large amount of unlabeled data for training, and
some labeled data need to be manually selected for supervised
learning. Therefore, GACP [36] using graph neural networks,
ARMA filters, and parallel CNNs has been proposed to be
able to combine the spatial structure and spectral features of
hyperspectral data to improve the accuracy of hyperspectral
image classification. However, the GACP algorithm has high
computational complexity and requires a long training time.
Then, the cross-scene hyperspectral image classification method
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LDGnet [37] was proposed, which is a joint modeling method
using linguistic modalities and visual modalities with prior
knowledge of remotely sensed features. The core idea is to align
visual and linguistic features category-by-category to output the
classification prediction probability of visual modalities, which
can improve classification accuracy and reduce the dependence
on domain knowledge.

Although discriminable feature learning methods based on
attention mechanisms can extract discriminative information
in images. However, there are still two problems: First, in
the field of semantic segmentation of RS images, there is no
relevant research that considers both intraclass compactness
and interclass looseness of RS objects; Second, although the
existing multiscale based semantic segmentation methods are
relatively mature, the scale coupling phenomenon of semantic
information is serious, which makes the results of multiscale
prediction models unreliable. Therefore, the above methods
cannot maximize the accuracy of semantic segmentation.

B. Semantic Segmentation Based on Transformer

With the excellent performance of Transformer in NLP, the
introduction of ViT [25] led the field of computer vision to take
a big step forward. Zheng et al. [26] proposed SETR to analyze
image segmentation from a sequence perspective and thoroughly
explored the segmentation capability of ViT. Strudel et al.[27]
proposed a semantic segmentation method (Segmenter) using
only Transformer for context modeling, which has the advantage
of capturing global interactions between scene elements using
the global image context at each layer of the model and improv-
ing global dependencies between features by using predefined
class embeddings in the decoding part to capture semantic
information by masking Transformer to obtain class labels.
SegFormat proposed by Xie et al. [28] used a new position-free
coded and hierarchical Transformer encoder with a lightweight
ALL-MLP decoder design to achieve better results. Swin Trans-
former [29] is another collision of Transformer in the field of
vision, whose main idea is to divide the feature map into multiple
disjoint regions and to perform self-attentive computation only
within this window to reduce the computation, especially when
the shallow feature map is large. Still, at the same time, it
also reduces the information transfer between spatial locations.
MPVIT [38] proposed a multiscale block coding and multipath
structure, where blocks of different sizes are coded simultane-
ously by overlapping convolution operations to produce features
with the same sequence length, and then the resulting features
are fed into the Transformer structure in parallel to produce
better results. SOT-Net [39] utilizes ultrahigh resolution RS
and LiDAR data for structured analysis, which strengthens the
semantic association of multisource information, and achieves
an adaptive fusion of multimodal data through the crossattention
mechanism, which can achieve higher classification accuracy.

In the field of computer vision such as semantic segmenta-
tion of RS images, CNNs show excellent performance, mainly
due to convolution operations. The ability to collect local fea-
tures of different layers for better feature representation. How-
ever, the use of global information needs to be improved. At
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the same time, Transformer is being applied to computer vi-
sion, enabling self-attention mechanisms and multilayer sensing
machine structures to reflect complex spatial transforma-
tions and long-distance feature dependencies. Hence, some
works [40], [41], [42], [43] proposed combining the two for fea-
ture extraction to fuse global and local information interactively.
UNetFormer [40] used only the UNet architecture and simply
splices the CNN with the Transformer-based decoder, aiming
to improve the global feature extraction capability of neural
networks on raw images for efficient semantic segmentation of
RS urban scene images. Valanarasu et al. [44] solved the problem
of lack of long-range dependencies in the model due to the
inherent inductive bias of the convolutional architecture by using
the Transformer as a baseline and improving the self-attention
mechanism into a gated axial-attention model. TransUnet [41]
is a combination of Transformer and UNet, which uses Trans-
former to process the CNN feature map into a sequence, captures
the global information with the help of a self-attention operation,
upsamples this information, and then fuses it with the high-
resolution feature map, which effectively improves the segmen-
tation task and achieves accurate localization. Inspired by the
UNet architecture, the authors of Swin-UNet [30] constructed a
U-shaped structure based purely on the Swin transformer, which
replaces the traditional convolutional feature extraction encoder
with Swin transformer to extract features. ST-UNet [42] not only
embedded the Swin transformer into the classical CNN-based
UNet but also proposed three new strategies to enhance the
feature representation of the occluded objects and reduce the
loss of detailed information. Conformer [43] is a hybrid network
structure that relies on feature coupling units to enhance the
learning of feature representations by combining convolutional
operations and self-attentive mechanisms interactively and using
a parallel structure to fuse local and global feature representa-
tions at different resolutions.

C. Semantic Segmentation of RS Images Based on Decoupling

In the era of Big Data, deep learning, known for its efficient
autonomous implicit feature extraction capability, has triggered
a boom in the new generation of artificial intelligence, yet the
unexplainable black box behind it has become a key bottleneck
problem limiting its further development. Therefore, the idea
of decoupling is crucial, and decoupled representation learning
decouples multilevel and multiscale data information from dif-
ferent perspectives, prompting deep learning models to perceive
data autonomously like humans, and gradually becoming an im-
portant new research method. We classify the decoupling strate-
gies in the semantic segmentation domain into the following
three main types: Decoupling using the coarse-to-fine paradigm,
decoupling using intraclass and extraclass relations, and de-
coupling using edge supervision. To decouple the paradigm
from coarse-to-fine, ACFNet [45] used attention to first perform
coarse segmentation results on the original image and then uses
the coarse segmentation results to calculate the class center of
each class to correct the misclassified classes. CDGCNet [46]
used coarse segmentation predictions as class masks to ex-
tract node features and performs dynamic graph convolution
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to learn interclass feature aggregation, which can effectively
exploit long-term contextual dependencies and aggregate usage
information to better predict pixel labels. CCANet [47] proposed
a new class constraint following a coarse-to-fine paradigm of
attention depth network that enables the formation of class
information constraints with explicit remote contextual infor-
mation. For decoupling using intra and extraclass relationships,
CGFDN [48] encoded cooccurrence relationships between dif-
ferent class objects in a scene as convolutional features and
infers segmentation results based on the decoupled features.
Glove [49] could consider cooccurrence relationships between
different words in the encoding process. Michieli and Zanut-
tigh[50] proposed a continuous learning scheme shaping the
latent space to reduce forgetting while improving the recogni-
tion of new classes. For decoupling using edge supervision, Li
et al.[51] proposed a new semantic segmentation paradigm by
explicitly sampling pixels from different parts (body or edge)
and further optimizing the body features and remaining edge fea-
tures of the target object obtained under decoupled supervision.
BGCNet [20] used the BGC module to guide the construction
of graphs using node features and boundary predictions After
convolving the graph, the inferred features and the input features
are fused to obtain the segmentation results. Nie et al. [52] pro-
posed scale-relation joint decoupling network by simultaneously
considering decoupling scales and decoupling relationships to
excavate more complete relationships of multiscale RS objects.

Inspired by these excellent works, we adopt a semantic clus-
tering module with scale-separation to provide semantic features
to guide the SD of the Swin-UNet, which ensures the inter-
action of global contextual information while fully exploiting
the coupled target object features. To the best of the authors’
knowledge, the proposed SSDT is the first to extract the semantic
information within the image to guide the Swin-UNet network
applied to the RS image segmentation task, which makes up for
the shortcomings of the traditional Swin-UNet and improves the
segmentation accuracy.

III. PROPOSED METHOD

In this section, we first introduce the general structure of the
proposed SSDT and describe the motivation and architecture
involved. Next, five important modules in SSDT are introduced,
namely, SPE, SFE, SD, SDT, and MFFD. Finally, we explain
the loss function used for network training.

A. Overview of the Proposed SSDT

To address the challenge of spatial scale coupling of semantic
information features presented in Chapter 1, we propose SSDT,
a network that uses scale-separated semantic information for
decoupling as a way to guide the Swin Transformer in extracting
features. The network consists of five modules, SPE, SDT, SFE,
SD, and MFFD. In particular, SPE transforms the original image
into a linear mapping embedding sequence of three scales; SD
divides pixels into different semantic clusters based on the scale
information extracted by SFE through clustering methods to
further obtain scale information-rich semantic features; SDT
extracts intraclass feature interdependencies and reduces the
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association of interclass features by calculating the similarity
between semantic features and image features, the core of which
is Decoupled Attention. Finally, MFFD is proposed to fuse
salient features from different perspectives to further enhance
the feature representation.

Specifically, the framework SSDT is shown in Fig. 2. For the
input original image X, it is divided into two branches, which
are, respectively, used to construct global context information
and extract semantic features of scale-separation. In the upper
branch, the original image X is sliced at different scale sizes
by SPE to generate three scales of linear embedding sequences
E' for global contextual representation modeling, where i =
{small, medium, big}. Subsequently, E* will undergo two stages
of processing to obtain the attention feature F'Z: Stage I is to
input the linear mapping embedding sequence E° of three scales
generated by SPE to the traditional Transformer block can get
the feature F*, and the feature F* of three scales, big, medium
and small, are merged to get multipatch feature F'*, which
is used to extract the deep representative information of the
image. The core of Stage 2 is decoupled attention, the details of
which are the similarity calculation between the linear mapping
embedding sequence £’ and output of SD module semantics S’
to obtain scale semantic information-rich attention features 2 g‘,
after merged into attention features F'# for saliency extraction
of semantic information on different scale features. Second,
the lower branch goes through DCNN and then enters SFE
to get multiscale feature FX, which can be modeled subscale
in the feature space of scale entanglement and solve the scale
entanglement problem effectively. After that, the SD module
is based on FX, the pixel is divided into different semantic
clusters by clustering method to generate semantics S? (the cth
semantic feature on the ith scale), and then concat according
to different semantics to get multisemantic feature F°. Finally,
MFFD was used to integrate significant features from different
perspectives to further improve the representation ability of
features, including the output attention feature F'Z of the SDT
module, the output multiscale feature I X of the SFE module,
and the output multisemantic feature FS of the SD module, to
obtain the final output feature ' = [F'#, FX F*].

B. Scale-Separated Patch Extraction

Since context information is the most critical factor to improve
semantic segmentation performance, this article proposed that
the SPE module cut patches of different sizes to match different
sensitivity fields of the SFE module. SPE divides the input image
X € RE>XWxCinto three scales p' can obtain N = HW/(p?)?
image blocks, where i = {small, medium, big}, p’ is the length
and width of small image blocks, and they are mapped into a
linear projection sequence, represented as follows:

E' = [e} +pi. €5+ ps, .. €y + PN (H
where €} is image embedding and p! is image position em-
bedding. Finally, we take the output of SPE: The sequence of
embedding at three scales (big, medium, and small), as the input
of the SDT for the next operation.
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Fig. 2.

Architecture of the proposed SSDT. The framework is divided into two branches, which are used to construct global contextual information and extract

scale-separated semantic features, respectively. First, the upper branch slices the original image X into patches of different scales by SPE to generate a linear
mapping of three scales. After that, the semantic features obtained from SD are imported into SDT for guided modeling to obtain attention features. Second, the
lower branch goes into SFE after DCNN to get the scale feature, and the pixels are divided into different semantic clusters by the K-means clustering method based
on this scaling feature in the SD module to get the semantic features rich in scale information. Finally, MFFD is utilized to integrate the meaning features from
different perspectives, including the attention features output from the SDT module, the multiscale features output from the SFE module, and the multisemantic

features output from the SD module, to obtain the final output features.

C. Semantic Decoupled Transformer

SDT is proposed to solve the problem that the scale of seman-
tic information in RS images is seriously entangled. Based on the
deep network characterization of DCNN, multiple scale features
can be obtained through convolutional layers with different
void convolution rates. Traditional feature extraction methods
can directly extract semantic information in RS images, but
their methods cannot solve the problem of severe coupling of
various semantic scales. Compared with traditional methods,
our method uses scale modeling and separate SD for each scale
information, which can obtain multiperspective and multiscale
semantic information and further assist the Swin-UNet encoder
to carry out accurate feature characterization.

The module includes two stages, the traditional Transformer
block, and decoupled attention. Stage 1: The sequence E* €
RN*()?C obtained from SPE can be input into the tradi-
tional Transformer block to obtain output featuresF?, where
i = {small, medium, big}. And the feature F** of three scales,
big, medium, and small, are merged to get multipatch feature
F, as shown below:

Fl — [FSmall’ FMedium7FBig]. (2)

The essential module in the traditional Transformer block is
the MSA module, which consists of multiple self-attention
mechanisms, whose inputs include three vectors Q*, K*, V" €

RN*(»")? ©. as shown below:
Q' =E'Wq,K'= E'Wg,V' = E'Wy 3)

where W¢, Wi, and Wy, are learnable parameters and Eiisa
scale-separated linear mapping embedded sequence. The self-
attention mechanism consists of a calculation between three
vectors, calculated as follows:

Q (KT)'
Vd

where d is the dimension of vector K. The output features A;;l
of the multiple attention mechanism at layer [ — 1 is sent into
the multi layer perceptron (MLP), and the layer norm (LN) is
applied before each block. After the residual connection, the
output feature of the coding region can be obtained by loop I
times. The calculation formula is as follows:

11 =MSA(LN(F/,)) + F, Q)

MSA(Q, K',V*) = softmax Vi (4

F} = MSA(LN(A} ))) + 4] ;. (6)

The network architecture of decoupled attention is shown in
Fig. 3. It is different from the traditional Transformer mod-
ule. For the traditional Transformer module, the three vectors
Q', K',and V' of the attention mechanism are composed of
multistream linear mapping embedded sequences, whereas the
vectors Q’,K i,Vi € RNx(0")*C of decoupled attention add
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Fig.3. Architecture of the proposed decoupled attention. This module is differ-

ent from the traditional MSA module, the vectors Q?, K%, and V' of decoupled
attention add the semantic information of scale-separation extracted from the

original image. Based on the multistream original image sequence Q* and the
scale-information-rich semantic sequence V!, dot product calculation is carried
out to obtain the scale-semantic information-rich attention feature ZZ. Then, the
three scales Z? of each semantic are combined into c attention features F'Z¢.

the semantic information of scale-separation extracted from the
original image, the calculation process is as follows:

W/ ANT
O ( Ki)
Vd

. . A (7
where Wq and Wy are learnable parameters, E* is a scale-
separated linear mapping embedded sequence, and S! €
RN*(")? C ig the ¢ semantics with rich scale information output
by the SD module after reshaping to the linear embedding
sequence with the same width as E'. Vi € RN*¢ is a linear
embedding sequence of ¢ semantic information obtained from
the calculation of similarity between Q¢ and K. Different
from the traditional Transformer module, we conduct Split and
Expend on vector VZ that is, divide N x ¢ into N x 1 of ¢
1-D semantic information and then expand it to N x (p*)? C.
The extended linear embedding sequence Vi € RN*(#)*C of

each semantic can be obtained, and the calculation process is as
follows:

Qi = E'Wq, Ki = S'Wyg, Vi = softmax

V! = Expend(Split(V?)) (8)

Based on the scale-separated original image sequence Ql and
the scale-information-rich semantic sequence V!, dot product
calculation is carried out, as shown in (14), to obtain the scale-
semantic information-rich attention feature 2 g Then, the three
scales Z of each semantic are combined into c attention features
FZ¢_ and the calculation process is as follows:

Zi=Q oV ©)
FZl — [ZISmull’ Z%\/Iedium7 Zf‘ig]
FZ° — [ZSmall 7Medium Zﬁig]

FZ =[F7", . F7]. (11)

D. Scale-Separated Feature Extraction

The SFE module is proposed for scale adaptation with SPE,
classifying the scale sentences as Big, Medium, and Small, and
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the module is to obtain multiple-scale features X € RH*WxC

by passing the original image through the convolution layer of
different void convolution rates after passing through DCNN.
The multiscale feature F'X can be obtained by combining the
three scale features X* as follows:

X' = Atrous(X) (12)

FX — [XSmall, XMedium’XBig] (13)

where AtrousConvRate = {1, 6, 12}.

E. Semantic Decoupling

The SD module is proposed to improve the compactness of
intraclass features and expand the dispersion of interclass fea-
tures. The feature information based on scale-separation divides
pixels into different semantic clusters by clustering method. In
the process of clustering, for intraclass features, pixels in the
same class are close to the clustering center and the intraclass
distance is shortened, thus realizing robust intraclass modeling.
For interclass features, since there are different clustering cen-
ters between classes, pixels repel each other, and the distance
between classes is elongated. Therefore, semantic features can
be fully utilized to excavate the differences between classes.
Compared with the traditional feature extraction method using
a CNN, the clustering method is used to extract semantic in-
formation. Our method can realize parameterless training and
generate feature representations of each category in the context
of less computation, thus realizing SD better. SD module is based
on scale features X¢ € RE*WxC The original image at each
scale is divided into different semantic clusters by the clustering
method. The ¢ semantic Sé on the ith scale is output, and then the
three scales S! of each semantic are combined into ¢ semantic
features 2.

Si = Cluter(X") a4
FSI _ [Sfmall7 S%/Iedium, vaig]
- (15)
FS° — [Ss.mall SMedium S?ig]

FS=[FS, . P, (16)

E. Multiview Feature Fusion Decoder

The multiview feature fusion decoding module integrates the
saliency features of different views, including the output atten-
tion feature F'Z of the SDT module, the output multiscale feature
FX of the SFE module, and the output multisemantic feature '°
of the SD module, to obtain the final output F' = [F'Z, FX F5].

The SSDT architecture proposed in this article extracts the
scale semantic information-rich attention features by calculat-
ing the similarity between the semantic features rich in scale
information and the original image features, representing the
pixel-level features with the similarity features, and decoupling
the coupled semantic information one by one. It can be seen that,
compared with the traditional Transformer model, the feature
representation of the SSDT guided by the semantic information
of similarity is no longer a single image pixel-level information,
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but establishes the correlation between semantic features and
image features. The model is more robust and improves the
accuracy of the model’s description of coupling target objects.

G. Loss Function
In this article, the standard multiclassification crossentropy
loss function is adopted, which is expressed as follows:

n

Lew = 3" (~Vilog(¥;) - (1 - ¥i)log(1 — Y:)
i=1

a7

where n refers to all pixels of the RS image, Y; is the prediction
result generated by the model, and —Y is the multiclassification
label.

IV. EXPERIMENTAL RESULTS AND ANALYSIS
A. Datasets

The effectiveness of the SSDT is tested using the International
Society for Photogrammetry and Remote Sensing (ISPRS) Pots-
dam dataset and the ISPRS Vaihingen dataset [54].

Potsdam: The Potsdam dataset contains 38 true orthophotos
(TOP) images and their corresponding DSMs, which are ob-
tained from a historic city. The spatial sizes of the data files
are 6000 x 6000 pixels, and the ground sampling distance
(GSD) is 5 cm. There are four spectral bands in each TOP
image, including near-infrared, red, green, and blue bands, and
one band in each DSM. Note that we use only the red, green,
and near-infrared channels in our experiments. We utilize 24
images for training and the remaining 14 images for testing. The
Potsdam dataset is labeled according to seven semantic types,
which include Impervious Surfaces (white), Buildings (blue),
Low Vegetation (cyan), Trees (green), Cars (yellow), Clutter
(red), and Undefined (black).

Vaihingen: The Vaihingen dataset contains 33 TOP images
and their corresponding DSMs, which are obtained from a small
village. The spatial sizes of the data files are 2494 x 2064 pixels,
and the GSD is 5 cm. Different from the Potsdam dataset,
there are three spectral bands in each TOP image, including
near-infrared, red, and green bands, and one band in each DSM.
We utilize TOP tiles in our experiments without the DSMs.
We utilize 16 images for training and the remaining 17 images
for testing. The Vaihingen dataset is split into the same seven
categories as those of the Potsdam dataset.

LoveDA: The LoveDA (Land-cOVE dataset for domain adap-
tation) [55] dataset was created by the State Key Laboratory of
Information Engineering in Surveying, Mapping, and Remote
Sensing at Wuhan University. The purpose of this dataset is to
promote semantic segmentation and transfer learning tasks. It
contains 5987 high-resolution images with 0.3 m resolution and
166 768 annotated semantic objects from three different cities:
Nanjing, Changzhou, and Wuhan. The LoveDA dataset involves
two different domains, namely, urban and rural, which results
in complexity and diversity, such as multiscale objects, compli-
cated background samples, and inconsistent class distributions.
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B. Evaluation Metrics

The performance of the SSDT is evaluated by using pixel
accuracy (PA), mean pixel accuracy (MPA), and mean intersec-
tion over union (mloU). In addition, we use the F1 score (F1)
and the frequency-weighted intersection over union (FWIoU)
to further evaluate the network performance, where F1 is a
comprehensive indicator considering both precision and recall,
and FWIoU is an improvement of mloU, taking into account the
frequency of each class. Among all evaluation metrics, mloU is
the most commonly used metric due to its simplicity and strong
representation.

C. Implementation Details

In this section, we focus on the implementation details of
the proposed method. To train our network, we crop the image
into 1000 random patches of 256 x 256 space size. Random
flip or mirror for data expansion to better train the network. In
addition, we use argumentation library [56] for enhanced data,
and all the training images belonging to one become [0.0, 1.0].
The K-means algorithm is unsupervised learning, with K=7 per
data set. In addition, p parameters corresponding to small and big
in MIPS are 4/8/16, respectively. All models were implemented
using the PyTorch and Adam optimizer with a learning rate of
le-5. We set the batch size to 10 and train the model with about
300 epochs. All experiments were conducted on an NVIDIA
2080Ti GPU server.

D. Baselines

FCN [6]: This network can save spatial information, can real-
ize point-to-point learning and end-to-end training, and greatly
reduce the time cost compared with CNNs.

UNet [7]: This network is an encoder-decoder structure that
consists of a contracting path and an expanding path. The con-
tracting path can extract abstract features, whereas the expanding
path restores the location information.

SegNet [8]: The network consists of an encoder network,
a corresponding decoder network, and a pixel-level classifi-
cation layer. The decoder uses the pooled index calculated in
the maximum pooling step of the corresponding encoder to
perform nonlinear upsampling, which reduces the number of
parameters and computation and eliminates the need for learning
upsampling compared with deconvolution.

PSPNet [10]: The pyramid scene parsing network is applied
to capture different subregion representations, followed by up-
sampling and concatenation layers to form the final predictions.

DeepLabV3+[14]: To introduce multiscale information in
Deeplabv3+, the main body of the encoder is DCNN with hole
convolution. Then, there is the atrous spatial pyramid pooling
module with atrous convolution. Compared with DeepLabv3,
v3+ introduces the Decoder module, which further integrates
the low-level features with the high-level features.

LoG-CAN [31] is a local-global class-aware (GCA) network
for semantic segmentation of RS images, which combines local
and global contextual information to improve the segmentation
performance of RS images.
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TABLE I
COMPARATIVE EXPERIMENT RESULTS ON POTSDAM DATASET

Method Ir‘;‘ff:f;l;“s Building Low Vegetation Tree  Car | PA(%) MPA (%) mloU (%) FWIoU (%) scilre
FCN [6] 78.00 85.80 70.63 6658 7507 | 8426 73.04 75.23 73.01 70.80
UNet [7] 75.33 80.67 70.92 6670 7588 | 83.18 75.05 73.90 71.45 70.15
SegNet [8] 78.61 84.73 67.79 6372 7813 | 84.08 73.23 74.60 73.34 70.88
PSPNet [10] 78.00 85.80 70.58 5772 7602 | 83.10 77.28 73.62 74.11 65.47
DeeplabV3+ [14] 76.97 90.99 76.54 7241 8018 | 87.20 74.48 80.62 78.75 7237
LoG-CAN [31] 83.59 9235 75.97 7131 80.18 | 88.01 78.53 81.49 78.97 76.54
MSCG-Net [24] 76.66 84.93 69.63 65.65 7798 | 86.25 83.93 73.18 74.97 72.47
DANet [18] 76.54 81.34 69.62 6295 7720 | 82.90 72.70 73.53 71.87 69.38
LANet [16] 81.66 87.99 74.97 67.64 81.66 | 86.56 75.58 78.78 75.94 74.52
CCANet [53] 81.97 86.04 74.34 7019 70.68 | 85.10 68.73 76.64 75.75 67.78
ViT [25] 71.19 77.18 72.50 5198 3679 | 79.53 63.67 65.93 69.38 60.67
UNetformer [40] 83.33 90.66 77.05 7054 8253 | 87.54 76.12 80.82 77.17 75.97
Swin Transformer [29] 67.61 74.88 58.78 4508 5638 | 75.80 60.74 60.54 62.68 58.57
Swin-UNet [30] 84.79 89.45 78.01 7377 8342 | 8835 78.90 81.89 79.30 76.02
SSDT(Ours) 84.88 91.90 78.79 7520 8297 | $8.45 77.49 8275 79.55 7478

The bold font represent the optimal values for the experiment.

MSCG-Net [24]: This network is proposed based on GCN,
which uses multiple views to explicitly utilize rotation invariance
in airborne images, fuses global context information of multiple
views, and verifies the influence of multiple angles on RS image
segmentation.

DANet [18]: This network captures feature dependencies in
spatial dimension and channel dimension based on the self-
attention mechanism, and adds two kinds of attention modules
to dilated FCN to model semantic dependencies in spatial di-
mension and channel dimension, respectively.

LANet [16]: This network obtains the degree of interlocation
dependency by calculating the pixel-to-pixel similarity and in-
corporating the neighboring pixel information into the computed
pixels, thus freeing the fusion of global information from the
limitation of image distance.

CCANet [53]: This network proposes a new attention depth
network that follows a coarse-to-fine paradigm for class con-
straints, which enables the formation of class information con-
straints to obtain clear remote contextual information.

ViT [25]: ViT is a pioneering work based on Transformer
for computer vision tasks, completely changing the field of
computer vision. Although ViT is an excellent substitute for
CNN, it lacks the inherent inductive bias of CNNs, such as
translation, which makes its generalization ability poor when
training on insufficient data.

UNetFormer [40] uses only the UNet architecture and simply
splices the CNN with the Transformer-based decoder, aiming
to improve the global feature extraction capability of neural
networks on raw images for efficient semantic segmentation of
RS urban scene images.

Swin Transformer [29]: The main idea of Swin Transformer is
to divide the graph into disjoint regions and only perform self-
attention calculations in this window to reduce computational
complexity. Especially when the shallow feature map is large,
it reduces computational complexity and isolates information
transmission between different windows.

Swin-UNet [30]: This network was inspired by the UNet
architecture and replaced the feature extraction encoder with a
Swin Transformer to extract features, constructing a pure Swin
Transformer based U-shaped encoding and decoding structure.

E. Comparison With State-of-The-Art Methods

In this section, we compare our method with nine baselines on
the ISPRS Potsdam and Vaihingen datasets. The experimental
results are listed in Tables I and II, where the first five columns
of data are the results of mIoU in each category, and the last five
columns are the experimental results of common indicators. We
can conduct the following analysis.

First, the first three rows are FCN-based methods, such as
UNet and SegNet, which perform the worst due to the extraction
of features without considering low-level semantic features,
ignoring shallow detail information and spatial information, as
well as the fusion method is too simple and crude. As shown
in Table I, the mIoU of UNet is only 73.90% on the Potsdam
dataset, and our proposed SSDT is 8.85% higher than it. Second,
DeepLabv3+ performs better than the FCN-based approach
because it utilizes atrous convolution to achieve multiscale
feature mining. However, the multiscale features extracted by
atrous convolution or pyramidal pooling are limited, so graph
convolution-based methods, such as MSCG-Net are proposed,
which are based on GCN to interact pixels with each other
by constructing nodes and edges to establish connections and
fuse contextual information to obtain better performance. In
addition, attention-based mechanisms such as DANet, LANet,
and CCANet are proposed, where CCANet proposes a new class
constraint following the coarse-to-refine paradigm of attention-
depth networks for SD. The above methods have achieved
specific effects, but generally not as good as Swin Transformer,
Swin Transformer has the best performance among all base-
lines. Therefore, we proposed a SSDT based on this method.
PA, mloU, and FWIoU of SSDT on the Potsdam dataset are
0.10%, 0.86%, and 0.25% higher than the second-best model
Swin Transformer, respectively. On the Vaihingen dataset, PA,
MPA, mloU, and FWIoU increased by 2.01%, 17.03%, 2.21%,
and 3.62%, respectively. It proves the SSDT is fully effective.
We also noticed that SSDT produced lower mean F1 scores,
which we analyzed due to the imbalanced category in the test
data. Therefore, when small objects like cars are accurately
segmented, the SSDT model has higher mIoU values, whereas
larger objects like bare ground with accurate segmentation have
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TABLE II
COMPARATIVE EXPERIMENT RESULTS ON VAIHINGEN DATASET
Method I“;ﬁ;‘c"eus Building Low Vegetation ~Tree ~ Car | PA(%) MPA (%) mloU (%) FWIoU (%) CFolre
FCN [6] 79.53 8331 66.86 6960 6222 | 8559 7798 7231 75.26 7027
UNet [7] 81.41 84.69 68.94 6837 6111 | 8676 7231 72.90 77.16 84.03
SegNet [8] 80.68 85.11 69.78 6475 6170 | 86.08  71.30 72.40 76.10 83.68
PSPNet [10] 79.75 84.40 62.26 6409 4976 | 83.82 80.44 68.11 72.98 80.36
DeeplabV3+ [14] 85.32 84.13 72.05 69.25 68.19 | 88.42 83.88 76.65 79.76 75.46
LoG-CAN [31] 84.71 87.48 71.79 7260  69.37 | 88.61 73.78 77.19 80.02 86.93
MSCG-Net [24] 81.04 85.70 67.02 6825 63.94 | 86.25 72.28 73.19 76.34 70.76
DANet [18] 81.72 82.10 64.30 6370 50.15 | 8456  69.30 68.40 74.07 80.60
LANet [16] 84.97 86.20 68.48 6741 6568 | 8720  72.03 74.55 77.85 85.12
CCANet [53] 81.12 88.49 70.36 7055 51.86 | 8722 7172 72.48 78.06 83.42
ViT [25] 69.61 76.46 60.47 64.93 3749 | 80.53 76.39 61.79 67.87 75.47
UNetformer [40] 85.00 88.10 71.33 67.44  70.04 | 88.00  73.49 76.38 79.18 86.35
Swin Transformer [29] 76.61 75.09 64.36 65.66 4646 | 8249 6701 65.64 70.57 78.71
Swin-UNet [30] 84.24 88.03 69.09 7083 6873 | 87.71 72.87 76.18 78.67 86.24
SSDT(Ours) 86.66 §7.70 74.54 7218 7043 | 8973 89.90 7830 81.93 75.13

The bold font represent the optimal values for the experiment.

TABLE III
COMPARATIVE EXPERIMENT RESULTS ON LOVEDA DATASET

Method PA MPA  mloU FWIoU F1
(%) (%) (%) (%) score
FCN [6] 6775 73.62  57.04 41.97 56.49
UNet [7] 6232 6740 47.61 39.12 50.59
SegNet [8] 61.36 64.55 48.80 42.07 47.20
PSPNet [10] 5727 4393  46.62 32.40 44.32
DeeplabV3+ [14] 66.59 63.67 5598 43.47 59.92
LoG-CAN [31] 63.03 7498 5577 38.68 58.92
MSCG-Net [24] 60.28 52.03  48.38 37.17 49.74
DANet [18] 5190 51.66 39.34 25.59 47.95
LANet [16] 62.11 74.09 51.05 44.18 51.38
CCANet [53] 63.63 67.07 55.63 31.40 59.38
ViT [25] 60.68 46.97  46.92 36.94 52.99
Swin Transformer [29] | 51.41 55.48 42.74 20.93 48.08
SSDT(Ours) 72.84 76.72 56.72 46.42 67.99

higher F1 scores. These results also indicate that the proposed
SSDT is superior in processing small categories of RS objects.
In addition, we also verify the proposed method on a large-
scale dataset LoveDA, and the relevant results are shown in
Table III. Compared with the best segmentation model LoG-
CAN, the proposed SSDT achieved a 2.32% improvement in the
MPA evaluation metric. It can also be noted that considering the
Transformer-based method, our network exceeds ViT by 20.89%
with a significant promotion. Thus, the above data sufficiently
demonstrate the effectiveness of the SSDT mechanism.

FE. Performance of SFE, SPE, SD, and SDT

In this section, we conduct a set of experiments to verify the
effectiveness of the proposed modules SFE, SPE, SD, and SDT,
as shown in Table IV. It is worth noting that the first row of data
in the table represents the initial semantic segmentation network
without any module added, i.e., the baseline Swin Transformer.
Based on Table IV, several sets of observations can be obtained.

By comparing the first three rows of Table IV, it can be
observed that both the scale-separation modules SFE+SPE and
the SD module contribute to the enhancement of model per-
formance. The mloU evaluation metric is improved by 1.84%
and 2.00%, respectively, when compared with the Swin Trans-
former method. Besides, as shown in the last two rows, the
SDT module enhances model accuracy by 1.39% for the mloU

evaluation metric, thus, proving the effectiveness of the SDT
module. However, after comparing the results of SFE+SPE
and SFE+SPE+SD, we surprisingly found that integrating SD
resulted in a decrease in semantic segmentation accuracy. We
found that the reason for the reduced accuracy in SFE+SPE+SD
is due to considering both scale and SD only on the CNN ar-
chitecture instead of the Transformer architecture, which causes
cognitive confusion in the segmentation, eventually reducing the
performance of the model. Besides, we believe that the lower
performance of SD+SDT compared with SD is because the
labels in SD cannot model different scale semantic information,
resulting in poor robustness of the labels and, thus, failing to
supervise SDT effectively. In summary, through analyzing the
above data, it can be concluded that every module is indis-
pensable, and as indicated in the last row of the table, the
segmentation performance reaches its peak by integrating all
modules.

G. Performance With Different Clustering Methods

To verify the effectiveness of the SD module, we conducted
the following experiments, as shown in Table V. Here, we briefly
explain the various abbreviated clustering methods in the table.
The first row of AGNES is hierarchical clustering. The specific
steps are as follows:

1) Each object is regarded as a class and the minimum

distance between the two pairs is calculated;

2) Merge the two classes with the smallest distance into a
new class;

3) Recalculate the distance between the new class and all
classes;

4) Repeat (2) and (3) until all classes are finally merged into
one class in which the number of output cluster partition
K=17.

The second row of MinBatch K-means is a variant of the
K-means algorithm, which uses a small batch of data subsets
to reduce the computation time while still trying to optimize
the objective function. The specific steps are: 1) Randomly
select some data from the data set to form a small batch and
assign them to the nearest center of mass; and 2) Update the
centroid, where the output number of cluster partition K = 7.
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TABLE IV
PERFORMANCE OF DIFFERENT MODULE ON VAIHINGEN DATASETS
Impervious o Low PA MPA  mloU FWIoU F1
Method Suace  Building g ion Tree  Car | on GGy @ score
Swin Transformer 84.24 88.03 69.09 70.83  68.73 | 87.72 7287 76.18 78.67 86.24
SFE+SPE 86.37 89.35 72.90 68.67 70.62 | 88.88 84.05 77.58 80.48 82.27
SD 86.22 90.48 73.67 68.98 69.14 | 89.33 73.80 77.70 81.25 87.17
SD+SDT 84.08 87.76 71.76 7236  69.88 | 88.60 89.55 77.17 79.94 75.42
SFE+SPE+SD 84.46 87.65 70.97 72.57 70.50 | 88.68 8030 77.23 80.19 72.47
SFE+SPE+SD+SDT(our SSDT) 86.66 87.70 74.54 72.18 7043 | 89.73 89.90 78.30 81.93 75.13
The bold font represent the optimal values for the experiment.
TABLE V TABLE VI

PERFORMANCE OF DIFFERENT CLUSTERING METHODS ON VAIHINGEN AND
POTSDAM DATASETS

. mloU (%)
Clustering Method Vaihingen | Postdam
AGNES 77.71 82.57
MinBatch K-means 77.48 82.37
K-means(Ours) 78.30 82.74

The data is updated on every small sample set compared with the
K-means algorithm. For each small batch, the updated centroid
is obtained by calculating the average value, and the data in the
small batch is allocated to the centroid. With the increase in the
number of iterations, the change of this centroid is gradually
reduced until the centroid is stable or the specified number of
iterations is reached, and the calculation is stopped. As shown
in Table V, the K-means clustering method we used performed
best in both datasets for the mloU metric. Compared with
AGNES and MinBatch K-means, K-means is 0.59% and 0.82%
higher on the Vaihingen dataset and 0.17% and 0.37% higher
on the Potsdam dataset. This is attributable to the following
advantages of the K-means algorithm: First, it can determine the
classification of some samples based on the categories of fewer
known clustered samples; Second, to overcome the inaccuracy
of clustering a small number of samples, the algorithm itself
has an optimization iteration function, which iterates again
on the clusters already obtained to determine the clusters of
some samples, optimizing the initial supervised learning of the
unreasonable classification of samples. Therefore, we used the
K-means clustering method to effectively extract rich semantic
clustering information, and the experimental results proved the
effectiveness of the method.

H. Performance With Different Fusion Methods

In this section, we conducted three experiments on the Pots-
dam dataset and the Vaihingen dataset to verify the effective-
ness of the fusion methods used within the MFFD module. In
this experiment, three different fusion methods, elementwise
addition (Add), matrix multiplication (Mul), and concatenation
(Concat), were used to fuse the output attentional features F'Z of
the SDT module, the output multiscale features F of the SFE
module and the SD module’s output multisemantic features £
are fused.

As shown in Table VI, the first row is elementwise addition,
which performs direct element-by-element addition of features.
The second row is matrix multiplication, which performs the

PERFORMANCE OF DIFFERENT FUSION METHODS ON VAIHINGEN AND
POTSDAM DATASETS

. mloU (%)
Fusion Method Vaihingen | Postdam
Element-wise Addition 77.00 82.32
Matrix Multiplication 76.41 82.07
Concat(Ours) 78.30 82.74

interaction of information between elements by matrix multi-
plication. Since the above methods fuse in a too crude way,
the performance is not satisfactory in both datasets. The Concat
fusion method we used performed best in mloU metrics on both
datasets. Compared with Add and Mul, Concat is 1.30% and
1.89% higher on the Vaihingen dataset and 0.42% and 0.67%
higher on the Potsdam dataset, respectively. Therefore, we used
the Concat method to effectively fuse the multiview features, and
the experimental results proved the effectiveness of the method.

1. Boxplot Analysis of Scale-Separated Results

To verify the necessity of scale-separation within SD, we
randomly selected 20 images within the Vahingen dataset for
input to the two models, and the resulting mloU data were
generated as boxplots. The difference between the two models is
whether the scale-separation operation is added or not. As shown
in Fig. 4 boxplot, the vertical axis is the mIoU metric and the
horizontal axis is the individual semantics within the dataset.
Fig. 4(a) is our proposed SSDT method, which performs the
scale-separation operation within the SD and avoids the influ-
ence of scale information on the SD; Fig. 4(b) is the method with-
out scale information, which ignores all scale information, does
not perform scale-separation, and only performs SD. Boxplot
is a statistical graph used as a display of information about the
dispersion of a set of data, which can reflect the characteristics
of the data distribution, and also allows comparison of the
characteristics of the distribution of multiple sets of data. The
boxes plotted for each semantic in the figure include the upper
edge, lower edge, median, and two quartiles of a set of data; the
box connects the two quartiles; the upper and lower edges are
connected to the box, and the median is in the middle of the box.
The analysis follows.

First, it is obvious from observing the two boxplots that (b)
has four more small circles, or outliers, than (a). Outliers in
a batch of data deserve attention, and it is very dangerous to
ignore the existence of outliers. Including outliers in the process
of calculating and analyzing data without eliminating them can
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Fig. 4. Boxplot of scale-separated results. (a) Our proposed SSDT method.

(b) Method without scale information.

have adverse effects on the results. Second, since the SSDT
method incorporates a scale-separation operation, the obtained
scale information-rich semantic features are used to guide the
Transformer model to extract features, resulting in improved
intra-class compactness and smaller intra-class variance, such as
the quartile size of (a), which is a shorter box length. Meanwhile,
the median of each semantic in (a) is significantly higher than
that in (b), indicating that the SSDT method is more stable than
the method without scale information, and the overall mIoU
index is also higher. In addition, the length between the upper
and lower edges of each semantic in (a) is significantly smaller
than that of the box in (b), indicating that the distribution of
the normal values of mloU is more concentrated in the SSDT
method with the addition of the scale-separation operation.
Finally, the experimental results demonstrate the necessity of
scale-separation within the semantic decoupling.

J. Qualitative Analysis of the Semantic Segmentation Results

Here, we give the visualizations of the predicted semantic
segmentation maps for the Potsdam and Vaihingen datasets. As
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shown in Figs. 5 and 6, the first column is input raw image,
the second column is ground truth, the remaining columns in
the middle are the viewable views of each baseline, and the last
column presents the viewable views of SSDT in this article.

First, Fig. 5. is the visualization of the Potsdam dataset: the
third, fourth, or fifth columns are for the FCN-based approach.
For example, due to the simplistic and crude way of UNet fusion,
the semantics of “Building” and “Tree” in the black box in
the fourth column are not recognized as they should be; the
SegNet extraction of features ignores the shallow semantic detail
information and spatial information, resulting in severe blurring
in the black box in the fifth column and a large number of pixel
missegmented within the image. The sixth, seventh, or eighth
columns are scale-specific approaches, such as DeepLabv3+ for
multiscale feature extraction using null convolution, PSPNet
using pyramid pooling, and LoG-CAN using GCA modules
and local class-aware modules. However, the scale information
extracted by the above methods is limited, for example, the
sixth column should have identified only “Low Vegetation,” but
PSPNet classified both “Tree” and “Low Vegetation” semantics;
the two red boxes in the seventh column where “Clutter” should
have appeared have been misclassified as another semantic;
in the eighth column, the semantics of “Building” in the red
box are missing and not fully segmented. Therefore, graph
convolution-based methods, such as MSCG-Net (ninth column)
are proposed, which is based on GCN to interact pixels with each
other by constructing nodes and edges to establish connections
and fuse contextual information to obtain better performance.
But it cannot optimally solve the semantic coupling problem, as
shown in the green box in the figure, there is a messy splitin what
should be a clear diagram. In addition, the tenth, eleventh, and
twelfth columns are the attention mechanism-based methods,
DANet, LANet, and CCANet. DANet improves the segmenta-
tion accuracy based on the self-attention mechanism to obtain
the dependence of features in spatial dimension and channel
dimension. LANet calculates the similarity between pixels to
obtain the dependence degree between locations so that the fu-
sion of global information is not limited by image distance. The
above method achieves specific results, but does not consider
the influence of scale information on semantic information, and
ignores important contextual information, such as some confu-
sion areas appearing in the yellow box in the figure. Moreover,
among several ViT-based models, Swin-UNet performs the best,
in which UNetFormer uses only the UNet architecture and sim-
ply splices the CNN with the Transformer-based decoder, with
unsatisfactory results such as missegmentation in the purple box;
nearly half of the pixels in the Swin Transformer’s visualization
are misclassified as “Impervious Surface.” It is worth noting
that our proposed SSDT based on Swin-UNet shows extremely
high intraclass compactness and interclass relaxation for each
semantic class, and also achieves pleasing details in spatial
consistency.

Second, Fig. 6 is a visualization of the Vaihingen dataset:
Observing the first three rows, it can be seen that some small
scale target objects in the red box are ignored. This phenomenon
is not only present in the CNN-based network (UNet) but also
in the Transformer-based method. This is because the model is
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Fig. 7. Examples of visualizations with significant semantic interweaving on
the Vaihingen dataset.

modeled for big scale target objects without the scale-separation
operation in the SD process, and thus the small scale targets
are overwhelmed. Semantic entanglement occurs in the black
boxes in the middle three lines, either other semantics are newly
recognized, or new semantic connections appear on the origi-
nal semantics with unclear boundary segmentation. The purple
boxes in the last four rows show some confusing results, such as
the unclear edge segmentation of the “Tree” semantics, which is
a consequence of too little similarity within the same semantics
and too much similarity between different semantics in the
modeling process. It is worth noting that the method proposed in
this article (SSDT) has the most convincing visualization both in
terms of SD for each scale size and in terms of boundary detail
regions.

Specifically, as shown in Fig. 7, we identified some visualiza-
tions with significant semantic interweaving in the Vaihingen
dataset to highlight the advantages of SSDT effectively. On
the one hand, when the scale is too small, as shown in the
above figure, a “Tree” that should not appear appears. On the
other hand, when the scale is too large, it causes semantic
space entanglement, and the edges that should have been mixed,
resulting in a decrease in semantic segmentation results. On the
contrary, our proposed method SSDT has significant advantages
over the traditional methods mentioned above. Not only does it
avoid semantic entanglement that should not occur, but it also
has clear edges and achieves better segmentation results.

K. Complexity Analysis

We also performed complexity analysis experiments and show
the results in Table VII. The “Time Cost” in the table represents
the time for the model to segment an image. As can be seen from
the table, FCN has the lowest time complexity with 0.08 due
to its simple network architecture. Compared with our model,
the training time cost has slightly increased and we analyze
that is because we have built a two-layer architecture of CNN
and Transformer and achieved joint decoupling of scale and
semantics. In addition, we also provide the parameters of the
baselines and our SSDT model with ten million measurement
units. As can be seen from the table, MSCG-Net has the smallest
parameters since the applied GCN involves fewer parameters.
In addition, because our model considers scale-separation in
both CNN and Transformer architectures, it has relatively large
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TABLE VII
COMPLEXITY RESULTS

Method Time Cost(s) | Parameters (10 m)
FCN [6] 0.08 0.19
UNet [7] 0.12 0.17
SegNet [8] 0.09 0.29
PSPNet [10] 0.11 0.28
DeeplabV3+ [14] 0.12 0.59
LoG-CAN [31] 0.10 0.31
MSCG-Net [24] 0.11 0.10
DANet [18] 0.11 0.50
LANet [16] 0.09 0.24
CCANet [53] 0.10 0.59
ViT [25] 0.14 0.89
UNetformer [40] 0.09 0.12
Swin Transformer [29] 0.11 0.88
Swin-UNet [30] 0.08 0.41
SSDT(Ours) 0.18 1.86

The bold font represent the optimal values for the experiment.

training parameters. In the future, we will continue to work on
reducing the computational cost.

V. CONCLUSION

To solve the serious entanglement of semantic information
scale in RS images, a new idea is proposed in this article:
scale decoupling in the process of SD can effectively avoid the
impact of scale coupling on semantic judgment. Meanwhile, the
SD module is implemented in the Swin Transformer. This will
not only help the Swin Transformer provide effective semantic
features but also help make up for the lack of spatial location
in the Swin Transformer. We creatively came up with SSDT,
which consists of five modules, SPE, SDT, SFE SD, and MFFD,
using scale information to divide pixels into different semantic
clusters by clustering method, semantic features rich in scale
information can be obtained, and semantic features can be used
as guidance, and the similarity between image features can be
calculated to mining the interdependency of features within the
class, and the correlation between features between the classes
can be reduced. The problem of serious coupling of semantic
information scales in RS images is solved.

We conduct multiple sets of comparison experiments and
ablation experiments on the Potsdam dataset and the Vaihingen
dataset to verify the effectiveness of the proposed method.
Qualitative and quantitative results demonstrate the effective-
ness of the SD Transformer framework with scale-separation in
RS image segmentation tasks. Specifically, the proposed SSDT
outperformed the state-of-the-art Swin Transformer by 0.86%
and 2.12% on the Potsdam and the Vaihingen datasets for mloU
evaluation, respectively.
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