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Zhong Chen , Tianhang Liu , Xueru Xu , Student Member, IEEE, Junsong Leng , and Zhenxue Chen

Abstract—Instance segmentation in remote sensing images (RSI)
poses significant challenges due to the diverse scales of targets,
scene complexity, and a high number of targets, making most meth-
ods struggle with suboptimal performance and time-consuming
computations. To solve those problems, a fast and accurate RSI
instance segmentation model (named DCTC) is designed in this
article. DCTC transforms classification problem into regression
problem to improve the reference speed. DCTC contains two par-
allel branches. The contour branch performs iterative regression
on contours, extracting precise contour information to improve
boundary accuracy. Meanwhile, the discrete cosine transformation
(DCT) branch refines mask predictions and supplements instance
context information, which particularly benefits the segmentation
of small targets. DCT encoding is employed in the DCT branch to
convert the mask representation into DCT format, aligning the out-
puts of the contour and DCT branches. Three innovative modules
are introduced in the DCT branch: the coarse result generation
(CRG) module, iteratively deform and regression (IDR) module,
and contour and DCT fusion module (CDF). The CRG module
generates coarse DCT vectors and contour coordinates, facilitating
information exchange between the contour and DCT branches. The
IDR module iteratively refines DCT vectors, enabling DCTC to
focus more on small targets and instance details. The CDF module
merges DCT vectors and contour coordinates, ensuring effective
interaction between boundary and context information, thereby
enhancing performance. Extensive experiments demonstrate the
superiority of DCTC, which achieves 67.7, 36.3, 67.4, and 55.1AP
on NWPU VHR-10, iSAID, synthetic aperture radar (SAR) ship
detection dataset, and high-resolution SAR images dataset, re-
spectively, and ranks first among state-of-the-art methods while
maintaining real-time processing capability. Furthermore, DCTC
exhibits strong performance on both optical and SAR images, and
the designed DCT branch can be simply plug into any contour-
based method to improve the network performance.

Index Terms—Contour-based method, discrete cosine transfor-
mation (DCT) encoding, instance segmentation, remote sensing.
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I. INTRODUCTION

THE advancement of satellite technology has facilitated the
easy acquisition of high-resolution remote sensing image

(RSI) in recent years, thereby making RSI applications, such
as object detection [1], [2] and change detection [3], [4], a
prominent focus in the field of computer vision. Among these
applications, instance segmentation holds particular significance
as it not only identifies and classifies objects in each image
but also segments each object at the pixel level. Instance seg-
mentation can be viewed as a synthesis of object detection
and semantic segmentation, offering substantial utility in both
civilian and military domains, such as automatic driving, and
national security and defense.

However, the task of instance segmentation in RSI presents
formidable challenges, including the following:

1) large variations in target scales;
2) a high number of targets in each image;
3) intricate and complex scenes;
4) the presence of noise in the images [5].
Two-stages methods [5], [6], [7] make improvements based

on Mask R-CNN [8] and feature pyramid network (FPN) [9]
to make network focus more on small objects and object varia-
tions. Some one-stage methods [10], [11], [12], [13] have also
refined FPN to extract features at different scales, or incorpo-
rated self-attention modules to guide networks toward crucial
information. These methods, designed specifically for RSI, have
demonstrated improved performance in both object detection
and instance segmentation. Nevertheless, most methods utilize
fully convolutional networks to generate binary mask of fixed
size for each instance. These dense prediction methods are often
constrained by low inference speeds due to the large number
of objects in RSI. Moreover, the process of mask prediction
may encounter challenges from noise and scene complexity,
which further compromises the overall performance of these
approaches.

Different from those methods, contour-based approaches
[14], [15] transform the 2-D mask prediction problem into a 1-D
boundary regression problem, resulting in a significant reduction
in time consumption. These methods iteratively regress predic-
tions to fit object contours, proving suitable for RSI due to the
relatively stable and usually convex contour topology of targets.
However, challenges arise due to varying object scales, small
object sizes, blurred object boundaries, and similar contours for
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different categories (e.g., cars and boats) in RSI, all of which
can decrease the segmentation accuracy.

In this article, a novel network named DCTC that combines
the advantages of mask-prediction methods and contour-based
methods is introduced. Since the boundary refinement is impor-
tant yet difficult in instance segmentation due to the ambiguity of
object boundaries, a contour branch is used to extract boundary
features and refine object contour iteratively. To address chal-
lenges posed by complex scenes and image noise, a discrete co-
sine transformation (DCT) encoded mask branch, referred to as
the DCT branch, is designed to complement context information.
DCT encoding transforms mask classification into DCT vector
regression, aligning the DCT branch with the contour branch
and reducing time consumption. The DCT branch comprises
three innovative modules: the coarse result generation module
(CRG), iteratively deform and regression (IDR), and contour
and DCT fusion (CDF) module. The CRG module enhances
information exchange between the contour and DCT branches,
the IDR module iteratively refines DCT vectors to complement
and refine context information, and the CDF module fuses
results of DCT branch and contour branch, interacts information,
and maximizes the advantages of both branches. In DCTC, in-
stance context information is effectively interacted with bound-
ary information, resulting in more accurate instance segmen-
tation results. Besides, the designed modules can work inde-
pendently, making it easy to apply them to any contour-based
methods.

The main contributions are highlighted below.
1) A remote sensing instance segmentation framework that

combines the advantages of mask-prediction methods and
contour-based methods is designed, which extracts bound-
ary information and context information in parallel, and
produces high-quality instance segmentation results with
high speed.

2) A DCT branch that includes three novel modules is de-
signed to complement context information and make net-
work focus on small targets as well as instance details. Ex-
periments show that the designed branch can be added to
any contour-based method and improve the performance
of network greatly.

3) Comprehensive experiments showcase the efficacy of
the proposed network in both optical RSI and syn-
thetic aperture radar (SAR) images. It accurately seg-
ments complex targets within intricate scenes, even in
the presence of strong noise. DCTC outperforms state-
of-the-art methods, securing the top position on NWPU
VHR-10 dataset, iSAID dataset, SAR ship detection
dataset (SSDD), and high-resolution SAR images dataset
(HRSID).

The rest of this article is organized as follows. Related works
of image instance segmentation are introduced in Section II.
The overall architecture and adopted method are described in
Section III. Comparison results and ablation experiments are
showed in detail in Section IV, as well as the visualization
results of different methods. Finally, Section V concludes this
article.

II. RELATED WORK

A. Instance Segmentation

Instance segmentation methods can be categorized as two-
stages, one-stage, contour-based, attention-based methods, and
so on. Two-stages methods follow the framework of “detect
and then segment.” Mask R-CNN adds a segmentation head
to Faster R-CNN [16] to predict instance mask labels, Cascade
Mask R-CNN [17] uses a cascaded RPN to improve the quality
of input bounding boxes (bbox), while HTC [18] concatenates
previous mask predictions and sends to mask head. HTC also
uses semantic branch to supervise instance segmentation branch.
One-stage methods generate mask predictions while producing
object detection bbox. YOLACT [19] adds a mask coefficients
prediction branch to RetinaNet [20] and generates prototype us-
ing FPN, and the mask coefficients and prototype are then com-
bined to generate binary mask of instance. Some other algorithm
adopts different combination methods. BlendMask [21] gener-
ates attention maps instead of coefficients, while CondInst [22]
adopts dynamic filters for combination. Most two-stages and
one-stage methods generate binary mask in bbox, which is es-
pecially time consuming. Meanwhile, as the number of instances
increases, the memory resources it occupies also increases
dramatically.

Contour-based approaches transfer prediction problems into
regression problems, which may reduce the dependency of
computational resources. Those methods can be further cat-
egorized to one-stage methods and two-stages methods. For
one-stage methods, PolarMask [23] converts contour coordi-
nates into polar space and adds a prediction head to generate
polar coordinates. FourierNet [24] converts coordinates into
Fourier space. While one-stage methods predict contour co-
ordinates directly, two-stages methods produce target contour
iteratively. DeepSnake [14] uses circular convolution to iterate
initial contour. DANCE [25] adopts segmentwise matching to
alleviate the problem of correspondence interlacing and learns
an edge attention map to enhance the contour deformation.
E2EC [15] changes the handcrafted initial contour to learnable
initial contour and designs dynamic matching loss to reduce
learning difficulty. Two-stages contour-based methods predict
contours similar to active contour models [26], which may
perform better for instances compared with one-stage methods.
Since contour-based methods regress boundary coordinates in-
stead of predict pixel-level masks, they are suitable for resource
constrained situations. However, those methods may be overly
concerned with contours, but the context information of instance
is also important.

Some other methods adopt transformer framework or diffu-
sion framework to achieve better performance. QueryInst [27]
uses dynamic mask head to interact information between mask
and bbox, and SOLQ [28] concatenates a set of instance
mask vectors behind object queries of deformable DETR [29].
Mask2former [30] uses masked attention to mask background
when computing attentions to reduce memory usage and ex-
changes order between self-attention module and cross-attention
module. DiffusionInst [31] follows the “noise to filter” pipeline
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and adds dynamic filters, such as CondInst to DiffusionDet [32].
Most of them improve from transformer or diffusion detection
framework, which makes them especially time consuming.

B. Instance Segmentation in Remote Sensing

Most methods for remote sensing instance segmentation fol-
low the binary mask generation paradigm and focus on im-
provements of FPN. FB-ISNet [13] adopts BiFPN to improve
the performance of multiscale feature fusion. Chen et al. [33]
improved the fusion module in FPN and got better perfor-
mance on detecting multiscale targets. LFG-Net [6] designs
LFCP architecture to enhance low-level features information
and achieves good performance on SAR images. Furthermore,
LFG-Net and IBMG-Net [34] improve RoI module and intro-
duce high-resolution feature interaction. RPFNet [35] enhances
low-frequency features and fuses them with high-frequency
features, and OSM-Net [36] adopts orientation prediction to
improve the precision.

However, those mask generation methods consume more re-
sources at runtime as the number of instances increases, making
them unsuitable for situations where are resource constrained or
require high reference speed. Furthermore, most remote sensing
instance segmentation models are specially designed for specific
scenes, such as building segmentation and SAR image ship seg-
mentation, a method satisfied for wide range of remote sensing
scenes is imperative.

C. DCT Encoding

Many studies investigate different ways of mask representa-
tion to reduce the complexity. MEInst [37] uses PCA to encode
instance mask to a compact vector, which is send to one-stage
instance segmentation framework. PolarMask transfers contour
coordinate to polar coordinate and predicts the distance from
boundary to center with fixed angular intervals. Similar to Polar-
Mask, FourierNet transfers boundary coordinates into frequency
domain. These studies achieve higher inference speed through
converting mask to a more compact representation. However,
their mask quality is not ideal enough for high-quality instance
segmentation.

DCT is widely used in computer vision field, and the field
of instance segmentation based on deep learning in particular.
DCTMask [38] improves R-CNN mask head and outputs a set
of DCT vectors using fully connected layer. PatchDCT [39]
separates image by patches and refines mixed patch using DCT
encoding. SOLQ concatenates a set of vectors encoded by DCT,
which represents instance mask to object queries containing
categories and bbox coordinates. LFG-Net adopts DCT as seg-
mentation representation. Since pixel-based mask representa-
tion uses 2-D binary mask to represent instance in low resolution
(28× 28 for example), which suffers decline of mask quality,
DCT encoded mask representation can break the limits while
not increasing the complexity, making high-quality mask for
instance segmentation become possible.

III. METHOD

In this section, we introduce DCTC in detail, which includes
backbone network, detection network, and instance segmenta-
tion network. Three modules of DCTC: CRG, IDR, and CDF
are then introduced. Lastly, the loss function used in DCTC is
presented.

A. Overall Architecture

The overall architecture of DCTC is illustrated in Fig. 1,
which is composed of three basic components: the backbone
network to extract features, the detection network to detect
locations of objects, and the segmentation network to generate
contour coordinates of each instance. Deep layer aggregate
(DLA) network [40] is used as the backbone. The backbone
network extracts features of the input X ∈ RH×W×3 and get

hierarchical features Bi ∈ R
H
Si

×W
Si

×Ci using deformable con-
volution, where i ∈ {1, 2, 3, 4, 5, 6}, Si ∈ {2, 4, 6, 8, 16, 32},
and Ci ∈ {16, 32, 64, 128, 256}. The features of each layer
are then aggregated with downsample ratio R, and final features
F ∈ R

H
R × W

R ×C are output using deformable convolution. The
backbone network aggregates features in different scales and
sends features to detection network. Since the features have been
aggregated, the pipeline of DCTC can discard FPN completely,
which is of great importance in remote sensing domain. Thus,
the speed of DCTC is greatly improved. In detection network,
CenterNet [41] is used to generate bbox of object detection.
CenterNet generates a series of heatmap Y ∈ [0, 1]

H
R ×W

R ×C ,
where R is the downsample ratio and C represents the num-
ber of heatmap. Yx,y,c = 1 represents the detected keypoint,
and Yx,y,c = 0 represents the background. For each keypoint,
CenterNet also predicts four values x, y, w, h that represent the
offset, bbox width, and bbox height, respectively. The extracted
features and generated heatmap are then sent to segmentation
network.

Segmentation network takes the object bbox as input, and
iteratively refines both contour coordinates and DCT vectors to
generate final segmentation results. It consists of two parallel
branches. The contour branch iteratively refines contours to fit
target boundaries. Contour branch brings boundary information
to the network and focuses on object boundaries. The DCT
branch encodes binary masks to DCT vectors and refines DCT
vectors iteratively. In DCT branch, masks of small objects are
filled to a large size, making DCT branch focuses on details of
small targets. Three modules are designed and work sequentially
in DCT branch. CRG module produces coarse DCT vectors for
mask branch. Coarse DCT vectors are iteratively deformed with
IDR module in the following. The contours and DCT vectors are
well trained and fused in CDF module to produce final contour
of instance.

B. CRG Module

Since the RSI own the characteristic of complexity scenes,
instance-awareness-based approaches may fail to differentiate
between instance and background. Meanwhile, the boundaries
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Fig. 1. Proposed framework of DCTC. CRG module takes the initial contour and image features as input and interacts the extracted features to generate coarse
DCT vectors and coarse contours. IDR module uses circular convolutions to iteratively refine DCT vectors. CDF module combines the results of two branches by
fully connected layers and interacts information of two branches to generate the final prediction.

of the objects in RSI are relatively stable and almost convex.
These make contour-based methods fit for RSI. However, some
objects of different class may have similar boundary or texture,
making it hard for the network to tell them apart. On the other
hand, feature of the instance context is particularly helpful for
the network to localize objects and segment contours. To make
DCTC more concentrates on the instance details and context, a
mask branch is designed to complement information of instance
and background. In order to harmonize the input form of contour
branch and mask branch, as well as reduce the consumption of
computing resource, DCT encoding is adopted in mask branch
to transform classification problem into regression problem.

Given a K ×K mask, DCT transfers Maskk×k into a fre-
quency domain Maskfk×k

Maskf
k×k(u, v) =

2

K
C(u)C(v)

K−1∑
x=0

K−1∑
y=0

Mk×k(x, y)cos
(2x+ 1)uπ

2K
cos

(2y + 1)vπ

2K
(1)

where C(w) = 1√
2

for w = 0, and C(w) = 1, otherwise. The

top left-hand side corner of Mf
k×k represent low-frequency

values that contain most information of the mask. After that,
zigzag scanning is used on Maskfk×k to obtain 1-D vec-
tors with length M . In DCTC, M = 2N , where N is the
number of contour points. The inverse transform equation is

as follows:

Maskk×k(x, y) =
2

K
C(x)C(y)

K−1∑
u=0

K−1∑
v=0

Mf
k×k(u, v)cos

(2x+ 1)uπ

2K
cos

(2y + 1)vπ

2K
. (2)

Therefore, the mask branch is converted to DCT branch.
As the initial contours are generated and sent to CRG module,

CRG module produces the coarse DCT vectors for DCT branch
and coarse contours for contour branch in parallel. CRG module
extracts features of N contour points first, and concatenates
initial contours and center point coordinates behind features.
The input of CRG module is then sent to feature transmission
head consisted of two convolution layers, notice that the output
of transmission head is shared in both DCT branch and contour
branch. A simple multilayer perceptron (MLP) is used to per-
ceptual the initial vectors. Two fully connected layers are used
for DCT branch to obtain coarse DCT vectors, which will be
refined in IDR module. CRG module is illustrated in Fig. 2.

C. Iteratively Deform and Regression Module

The contour iteration branch fits boundaries iteratively, while
the IDR module regresses the DCT encoded binary mask. Two
branches are running in parallel but with same iteration times.
Features of N points contours are first extracted. For DCT
branch, coarse DCT vectors are combined with features, and
circular convolution with different dilation rate is used for fur-
ther integration of features. Convolution blocks are designed as
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Fig. 2. Proposed CRG module. CRG takes features and initial contours as
input and generates coarse DCT vectors and contour offsets in parallel. Two
independent MLPs are used for different branches.

residual block [42] format. All the output of convolution blocks
are concatenated and fused by convolution layer in fuse head.
Max function is used as a substitute for max pooling function.
After that, fused features are sent to prediction head for vector
generation. In order to fully interact the information in each
dimension of the DCT vectors, two fully connected layers are
used to further refine the DCT predictions and output final DCT
offsets. Fig. 3 illustrates the IDR module. The pipeline of IDR
module is as follows:

State = Conv(Cat(Res(Head(f ; v))×7)) (3)

Head(·) = BN(RELU(Conv(·))) (4)

Res(x) = BN(RELU(Dconv(x))) + x (5)

Pred = Conv(RELU(state;Max(state)))×3 (6)

Offset = FC(FC(Pred)) (7)

where f are CNN features of contour points, v are the DCT
vectors, Conv represents circular convolution, Dconv represents
circular convolution with dilation,×nmeans repeatn times with
different dilation rates, and Cat is a concatenation operation. For
IDR module, the dilation rate of each block is {1, 1, 1, 2, 2, 4, 4}.

When the offset of DCT branch is got, the offset is simply
added to input DCT vector as DCT result.

D. CDF Module

After getting the contour coordinates and DCT vectors, CDF
module is used to fuse results of two branches and output final
contour coordinates. Since the output of the DCT branch is
already aligned with that of the contour branch, DCT vectors
and contour coordinates can be simply concatenated together.
Besides, the extracted features are also important as they provide
sufficient information for supervising the fusion of DCT branch
and contour branch. A bottleneck-like multilayer perceptron is

Fig. 3. Proposed IDR module. Circular convolution with dilation is introduced
to refine DCT vectors in this module.

designed for this module as follows:

Offset = FC256(FC1024(FC1024(f ; c; p; d))) (8)

where f are CNN features, and c are center polygons that
represent the relative coordinates of contour. p is the contour
coordinate, and d are the DCT vectors. FCN represents fully
connected layer with N output neurons. Same as IDR module,
DCTC produces the offset of contour coordinates to make learn-
ing less difficult. The predicted offset is then added to polygon
coordinates from previous contour branch. Therefore, the DCT
branch serves as an aid to enhance detailed information. CDF
module is illustrated in Fig. 4.

E. Loss Function

The architecture of our method has three subtasks: detection
subtask, contour fitting subtask, and mask regression subtask.
DCTC has detection loss, contour loss, and mask loss counter-
part.

For mask loss, DCTC first transfers groundtruth polygons into
binary masks. In order to adapt to the small target scale of RSI,
relative coordinates are used of the contour

R(x, y) = C(x, y)− (xm, ym) (9)
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Fig. 4. Proposed CDF module. CDF takes features, DCT vectors, and contour
coordinates as input. A small MLP is used to produce the final contour prediction.

where R(x, y) are the relative coordinates, C(x, y) are the
initial coordinates, and xm and ym represent the minimum value
of initial coordinates in x-axis and y-axis, respectively. The
binary mask Mgt is resized to 128× 128 after that to increase
mask resolution. By doing this, we hope the DCT branch to
focus more on the details of the instance, especially for small
targets. Different types of loss function are tried for DCT branch.
Contour loss of our algorithm will be applied to the final contour
as well.

In the first type of loss function, DCTC inversely transforms
the results of DCT branch using (1) to generate binary mask
predictions Mdct with size of 128× 128. Binary cross entropy
loss is used to compute loss between Mgt and Mpred. The overall
loss function is as follows:

LDC = λ1LDet + λ2LPoly

+ λ3(BCE(Mgt,Miter) + BCE(Mgt,Mcoarse)) (10)

where LDC is the total loss of DCTC, LDet represents the de-
tection loss, Lpoly represents loss of contour branch, BCE(·)
represents binary cross entropy loss, Miter and Mcoarse are re-
versed forms of coarse DCT and results of DCT iteration branch,
respectively, and λ1, λ2, and λ3 are hyperparameters.

In the other type of loss function, DCTC converts the masks
of groundtruth to DCT form using (2) to get DCT vectors of
groundtruth Vgt, which has the same size of DCT prediction
Vpred. Smooth L1 loss is used to compute loss between Vgt and
Vpred. The overall loss function is as follows:

LDC = λ1LDet + λ2LPoly

+ λ3(SL(Vgt, Viter) + SL(Vgt, Vcoarse)) (11)

where SL represents smooth L1 loss, and Viter and Vcoarse are
coarse DCT vectors and DCT iteration results, respectively.

IV. EXPERIMENTS

In this section, DCTC is tested on four datasets, including
optical images and SAR images. Four datasets are introduced
elaborately first, and the result of DCTC will be showed and
compared with other state-of-the-art methods subsequently. Af-
ter that, the efficiency of each module in DCTC will be proved
through ablation study as well as the applicability of our branch
for different contour-based methods. Finally, the loss functions
and hyperparameters of DCTC will be experienced.

DCTC will be tested on NWPU VHR-10 dataset [43], iSAID
dataset [44], SSDD [45], and HRSID [46]. The precision results
of different methods are listed in the following. Frames per
second (FPS) and parameter count are tested on NWPU VHR-10
dataset and SSDD. The NWPU VHR-10 dataset and SSDD will
be used for ablation studies and hyperparameters experiments.

A. Datasets

NWPU VHR-10 Dataset is a geo-remote sensing dataset for
space object detection, which has 650 images containing targets
and 150 background images, totaling 800 images, and the target
categories include airplanes, ships, oil tanks, baseball stadi-
ums, tennis courts, basketball courts, track and field stadiums,
harbors, bridges, and automobiles, totaling ten categories. We
randomly divided the whole dataset, 0.7 for training set and 0.3
for test set.

iSAID Dataset uses the images in the DOTA dataset for
pixel-level labeling, and corrected the label errors in the DOTA
dataset. Compared with the 188 282 target instances in DOTA,
iSAID provides a much larger sample size and a much finer level
of detail in the labeling. The target categories in the dataset
include: plane, ship, storage tank, baseball diamond, tennis
court, basketball court, ground track field, harbor, bridge, large
vehicle, small vehicle, helicopter, roundabout, swimming pool,
and soccer ball field, which basically covers the key targets of
urban remote sensing interpretation. iSAID contains 15 classes
with 655 451 target instances, the number of images reaches
2806, and the number of instances in a single image can be up
to 8000 with an average of 239, which is the first large-scale
instance segmentation dataset in the field of remote sensing.
The original images in dataset are cropped to size 800× 800,
and the final number of train set is 28 029, validation set is 9512,
and test set is 19 377. As for the groundtruth of test dataset is
not provided, we use a validation set for comparison and submit
our test result to iSAID online server to get the final precision.

SSDD is the first open dataset widely used to study the deep
learning-based ship detection and instance segmentation for
SAR imagery. Due to the differences in the scale of the ships in
SSDD, ships of different scales or sizes will produce different
numbers of contour points. Larger ships provide more points
while smaller ships provide fewer points. SSDD contains images
with a total number of 1160 and is officially divided to a training
set with 928 images and a test set with 232 images.

HRSID is a dataset released by the University of Electronic
Science and Technology in January 2020. The dataset contains
a total of 5604 high-resolution SAR images and 16 951 ship
instances, which includes SAR images of different resolutions.
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TABLE I
INSTANCE SEGMENTATION RESULTS (MASK AP) ON NWPU VHR-10 DATASET (%)

The resolutions of SAR images are: 0.5, 1, and 3 m. The HRSID
has been partitioned into a training set that contains 3783 images
and a test set that contains 1821 images. Each image of the
dataset holds a resolution of 800× 800.

B. Evaluation Metrics and Implement Details

All datasets are prepared as COCO format and adopt COCO
evaluation metrics to test the performance. COCO tests average
precision (AP) with a step size of 0.05, and IoU ranges from 0.5
to 0.95. IoU is a basic evaluation metrics

IoUmask =
Predm ∩ Gtm
Predm ∪ Gtm

(12)

where Predm is the mask prediction of models and Gtm is the
corresponding ground truth. The predictions can be categorized
into true positive (TP), true negative (TN), false positive (FP),
and false negative (FN) with a certain IoU, and the precision (P)
can be defined as

P =
TP

TP + FP
. (13)

The APthr is defined as

APthr =

∫ 1

0

Pdr (14)

Therefore, AP is the mean value of 10 APthr. Besides, to indicate
the performance of objects in scales, APS ,APM , and APL are
adopted in COCO evaluation metrics. The inference speed of
DCTC and other methods is measured using FPS, which in-
dicates the total time consuming for dataset loading, dataset
processing, and inference. The parameter count is also figured
out, which indicates the size of each model. DCTC and other
methods are tested on Ubuntu system and GeForce RTX 3090
GPU. The initial learning rate is selected as 0.0001, and half
the amount at 80 and 120 epoch. DCTC is optimized by Adam
optimizer. We have fixed a batchsize of 4, and the number of
polygon points is 128. The iteration time of the IDR module is
2. There is no data enhancement strategy used during training.

C. Comparison Results

1) Comparison on the NWPU VHR-10 Dataset: Table I
presents the instance segmentation results for DCTC and other
state-of-the-art methods, as well as some classical methods
on NWPU VHR-10 dataset. Models specific to RSI, such
as HQ-ISNet [7], Shi and Zhang [10], YOLOv5s-MLS [11],
FB-ISNet [13], ARE-Net [48], and Kumar [49], are chosen,
as well as some classical models are used in RSI, such as
Mask R-CNN [8], Cascade R-CNN [17], YOLACT [19], and
PointRend [47]. DCTC achieves best performance on AP, AP75,
and APsmall, of which the AP indicator is 0.5% higher than the
second place, which indicates that DCTC greatly improves the
segmentation ability of the model, especially for small-scale
objects, which gives DCTC an advantage in testing on the entire
dataset. DCTC ranks second place on APmedium and APlarge,
which represents that DCTC owns the ability to segment objects
with different scales precisely. Meanwhile, Table II gives that
DCTC achieves 23.88fps on the NWPU VHR-10 test set, nearly
twice as much as the suboptimal method (YOLACT). It indi-
cates that DCTC improves time consuming without sacrificing
segmentation accuracy.

2) Comparison on the iSAID Dataset: Same as the NWPU
VHR-10 dataset, Box2Mask-C [55] and Luo et al. [56] are se-
lected as RSI specific methods, while Mask R-CNN [8], Cascade
Mask R-CNN [17], YOLACT [19], PointRend [47], SOLO [57],
and Mask Scoring R-CNN [58] are chosen as classic models. The
results are tested on the iSAID validation set. DCTC gains 0.4%
on AP performance compared with the second rank method.
Meanwhile, DCTC performs best on APsmall and APmedium,
which indicates that the DCT branch can make network focus
on small objects and their details, thus improve the segment
precision on those objects. DCTC also ranks second place on
AP50 and AP75, which demonstrate that DCTC achieves good
results on both detection and segmentation. In addition, DCTC
achieves 21.47fps on the iSAID dataset. Table IV reveals more
details.

3) Comparison on the SSDD: For SSDD, models for SAR
image instance segmentation specifically are chosen, such as
LFG-Net [6], C-SE Mask R-CNN [50], EMIN [51], FL-CSE-
ROIE [52], MAI-SE-Net [53], SAR-CNN [54], as well as other
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TABLE II
PARAMETER COUNT AND FPS ON NWPU VHR-10 DATASET AND SSDD

TABLE III
INSTANCE SEGMENTATION RESULTS (MASK AP) ON SSDD (%)

TABLE IV
INSTANCE SEGMENTATION RESULTS (MASK AP) ON ISAID VALIDATION SET (%)

classic methods. Table III exhibits the comparison results. It
can be seen that DCTC performs best on SSDD and achieves a
performance gain of 3.2% compared with LFG-Net algorithm.
Besides, DCTC performs well on AP75, APmedium, and APlarge,
which demonstrates that DCTC gains improvement on segmen-
tation when dealing with different scales, especially for large
ships. DCTC achieves 34.0fps on SSDD, much higher than the
compared methods.

4) Comparison on the HRSID: For HRSID, DCTC is com-
pared with one-stage models, such as YOLACT [19] and
SOLO [57], and two-stages models, such as Mask R-CNN [8],
Cascade R-CNN [17], and so on. From the comparison results

in Table V, it can be find that DCTC is tied for first place with
PANet [59] on AP. Meanwhile, DCTC performs best on AP75,
APsmall, and APlarge, which further indicates that DCTC owns the
ability to segment targets with different scales, and the designed
branch helps network to segment objects precisely.

D. Ablation Study

In this section, details about ablation experiments will be
showed. In the first section, each module of DCTC is sequen-
tially removed, and different types of combination are experi-
enced to prove the effectiveness of the modules. The modules
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TABLE V
INSTANCE SEGMENTATION RESULTS (MASK AP) ON HRSID (%)

TABLE VI
ABLATION EXPERIMENTS OF EACH MODULE ON NWPU VHR-10 DATASET

TABLE VII
ABLATION EXPERIMENTS OF EACH MODULE ON SSDD

are also attached to other contour-based method to show the
applicability. In the second section, the experiments on the loss
functions as well as the hyperparameters will be showed in
order to get the best learning result. All the ablation studies
and experiments are tested on NWPU VHR-10 dataset.

1) Ablation Study on Modules. CDF Module: Tables VI and
VII give the comparison of framework with and without CDF
module. If CDF module is ablated, the whole DCT branch will
not work. To serve as a comparison, we change the input of CDF
module, simply concatenate polygon features and coordinates.
Tables VI and VII give that CDF module slightly increases the
AP. It is intuitive since the CDF module without DCT branch
can be viewed as a different form of contour iteration module,
thus can regress and refine the contour prediction solely.

a) IDR Module: Since the IDR module could not exist on
its own, it is tested together with CDF module. Tables VI and VII
give the comparison results. As the CRG module is not added,
the input of IDR module is represented as random vectors in
this experiment. It can be find out that DCT module improves
the performance greatly from 65.7 to 66.9 on NWPU VHR-10
dataset, from 66.1 to 66.6 on SSDD, and is of great importance
for DCTC.

b) CRG Module: Same as the IDR module, the CRG mod-
ule could not stand alone as well. Therefore, the performance of
CRG and CDF modules are tested together. CDF module takes
the coarse result generated by CRG module as input, instead of
iteration result. Tables VI and VII indicate that CRG module
also enhanced the learning ability of model, as the AP increased
from 65.7 to 66.5 on NWPU VHR-10 dataset and from 66.1 to

TABLE VIII
COMPARISON OF LOSS FUNCTION

TABLE IX
EXPERIMENTS ON DIFFERENT MODELS

67.0 on SSDD. All the modules contribute to the performance
improvement of the network.

c) Loss Function: Since the binary mask is encoded into
DCT format, two different types of supervisory signals can be
set up, as described in Section III-E. In Table VIII, the AP of the
final result is compared using different loss functions. The loss
functions will act on both coarse DCT vectors and iterative DCT
vectors. It can be seen that BCE loss for masks is less effective
for DCTC than that of smooth L1 loss for DCT vectors. We
hypothesize that this is because the mask branch does not act
directly on the final output in the form of binary masks. As the
CDF module takes DCT vectors as input, a supervised signal
acting on DCT vectors directly can assist better for multitask
training.

2) Performance on Different Models: To further demonstrate
the effectiveness of the designed modules, our branch is added
on different contour-based methods, including E2EC and Deep-
Snake. Table IX expresses the experiment details on NWPU
VHR-10 test set. Notice that all the models are tested with two
iteration times. For DeepSnake, the designed branch gains 3.5
AP improvement from 63.4 to 66.9. For E2EC, the designed
branch gains 2.9 AP improvement from 64.8 to 67.7. It can be
seen that our modules dramatically enhance the models’ ability
to segment small objects, since APsmall is vastly improved. In ad-
dition, the modules contribute to the segmentation performance
of objects at other scales to varying degrees. Visualization results
showed in Fig. 5 also demonstrate that DCT branch improves
the mask precision, especially for boundaries.

3) Experiments on Hyperparameters: Since the DCT branch
is parallel to the contour branch, the weight settings of DCT
branch can greatly affect the performance of the model. The
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Fig. 5. Comparison of different contour-based models with/without our branch.

Fig. 6. Visualization results on NWPU VHR-10.
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Fig. 7. Visualization results on SSDD.

TABLE X
EXPERIMENTS ON MODULE HYPERPARAMETERS

TABLE XI
EXPERIMENTS ON HYPERPARAMETERS OF DIFFERENT TASKS

weight of the contour branch is fixed as 1.0, and different weight
settings for IDR and CDF modules are tried from 0.5 to 2.0. For
IDR module, DCTC obtains 67.4, 67.7, and 67.4 AP with weight
of 0.5, 1.0, and 2.0. For CDF module, DCTC obtains 66.4, 67.7,
and 66.9 AP with weight of 0.5, 1.0, and 2.0. Due to their optimal
performance, a weight of 1.0 for the IDR module and 1.0 for the
CDF module is finally chosen. Table X gives more details.

As a multitask model, the weight ratio of different tasks may
also influence the performance of the model. Table XI gives the
experiment result. Different weight ratios for detection task,
polygon regression task, and DCT vector regression task have

been experienced. λ1 : λ2 : λ3 = 1 : 1 : 1 is selected for its best
performance.

E. Visualization

The visualization results of DCTC are presented on NWPU
VHR-10 dataset and SSDD in order to exhibit the performance
advantages of DCTC intuitively. Results show that DCTC ob-
tains better visual effect on both datasets.

1) NWPU VHR-10: Fig. 6 presents the experiment results on
NWPU VHR-10 dataset. Row 1 reveals that other methods tend
to confuse background and real objects, which demonstrates that
RSI has complex scenes. DCTC, on the other hand, do well in
distinguishing the fake object. Rows 2–4 showcase that DCTC
produces better object contours, while other methods perform
bad when handling boundaries. Rows 5 and 6 prove the ability
to handle tense and small targets of DCTC. Comparing across
different columns, DCTC improves mask precision significantly,
and greatly enhances segmentation accuracy of boundaries, es-
pecially for small targets.

2) SSDD: The experiment results on SSDD are presented
in Fig. 7. Visual inspection reveals that most methods perform
well when predicting noncrowded offshore ships. However, due
to the inshore ships are extremely similar to the context, other
methods have higher false alarm rates, as showed in Rows 1–
3. Meanwhile, due to the characteristics of SAR images, other
methods tend to truncate large objects, while DCTC predicts
large objects as a whole. Rows 5 and 6 showcase this situation.
In brief, DCTC has lower false alarm rate and misses less objects,
while segments more complete boundaries.
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F. Discussion

Although DCTC achieves good balance between speed and
accuracy, there are still some mispredictions or missed detec-
tions during inference. Most missed detections are due to the
similarity between targets and background and the ambiguity
of target boundaries. Bad cases of segmentation are generated
mostly because the complex and nonconvex outlines. Besides,
all methods perform unsatisfactory on iSAID dataset, we assume
that it is due to the large number of targets in each image and
large-scale variation of same class, which increase the difficulty
of detection as well as small targets segmentation.

V. CONCLUSION

The primary objective of this work is to design a faster and
more efficient instance segmentation framework for RSI. Start-
ing from the challenges of the RSI, we optimize contour-based
method and design a DCT encoded mask branch including
three modules to enhance the detail learning ability for DCTC.
Numerous experiments have demonstrated that modules we
designed are fit for contour-based method and DCTC performs
well in RSI, since the segmentation performance improved sig-
nificantly, especially for small objects. Meanwhile, DCTC dra-
matically increases the inference speed. The model is validated
on four popular datasets: NWPU VHR-10, iSAID, SSDD, and
HRSID datasets. Quantitative and qualitative analyses prove that
DCTC obtains high segmentation quality as well as high infer-
ence speed. Moreover, experiments showcase that the branch we
designed can be easily added to any contour-based method and
improve segmentation performance. However, the performance
of DCTC on large datasets is not very satisfactory, to solve
this problem, the fusion of features with different scales or the
spacewise attention may be good ideas since they have been used
in some instance segmentation methods for RSI and achieved
good results. Moreover, the enhancement of low-level features
is also important for RSI instance segmentation, because the
scale of target is often small. The fusion strategy of DCT branch
and contour branch can be further designed in DCTC to obtain
better performance. We are confident that this problem will be
solved in the near future.
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