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Abstract—Mesoscale numerical weather prediction models are
frequently utilized for wind speed analysis and forecasting in the
planning and support of wind power generation. However, high
computational costs only allow for routine use up to a kilometer
scale, which is sometimes too coarse to support onshore wind power
generation in areas with complex orography. To address this, an
algorithm was developed in southern Italy to downscale the wind
fields output using the weather research and forecasting (WRF)
model for the first 250 m above ground level. The algorithm is based
on artificial neural networks (ANNs) and uses the WRF model
outputs on a 1.2 km regular grid, and the land surface height and
orientation on a 240 m regular grid to downscale wind fields to a
240 m regular grid. To train the ANNs, a WRF simulation dataset
in large eddy simulation (LES) mode was developed. Particular
attention was paid to defining the ANN architectures and analyzing
inputs to mitigate overfitting risk while maintaining manageable
computation costs. The evaluation of outcomes conducted using
independent test datasets from WRF-LES simulations reveals that
the wind speed root-mean-square difference (RMSD) is 0.5 m/s
over land and 0.2 m/s over the sea surface, respectively, at a spatial
resolution of approximately 800 m. These figures are lower than the
RMSD values of 1.6 m/s over land and 1.0 m/s over the sea surface,
accompanied by a spatial resolution of 1.8 km, which were obtained
through comparison with the spline interpolation method.

Index Terms—Artificial neural network (ANN), downscaling,
remote sensing, resolution enhancement, wind speed, weather
research and forecasting (WRF), weather research and forecasting
large eddy simulation (WRF-LES).

I. INTRODUCTION

W IND energy production has shown continuous growth
over the last few decades and the escalating need to

address climate change and reduce greenhouse gas emissions
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suggests this growth trend will intensify in the upcoming years
[1], [2].

Despite its widespread use and positive prospects, the current
global cumulative power capacity of wind energy is 906 GW,
with new installations accounting for 78 GW in 2022 alone
(Global Wind Energy Council, 2023) [3]. However, the accu-
rate characterization of wind resources is still a considerable
forecasting and analytical challenge, especially in areas with
complex orography, varied surfaces, land-use types, and terrain
roughness. High variability in wind fields significantly impacts
the uncertainty of available wind power as it varies roughly with
the cube of wind speed [4].

Datasets used for statistical analyses to evaluate existing wind
power plants or to support site selection for new installations
have significant limitations [5]. Radiosondes and weather bal-
loons, generally the most accurate measuring instruments, pro-
vide timely information yet lack widespread territorial coverage.
With measurements taken only 2–4 times a day, they fail to
capture the daily cycle of wind fields accurately. The Integrated
Global Radiosonde Archive [6] shows further limitations regard-
ing vertical resolution. Typically, the first two levels are near the
surface, around 10 and 200 m height above ground level (HAGL)
respectively, resulting in a data gap from 40 to 140 m HAGL,
encompassing most onshore wind turbine heights. Satellite-
derived products offer superior spatial coverage but only for
the sea surface at 10 m HAGL as Level 2 OCN ocean wind field
component with a spatial resolution of 1 km and a revisit time
of six days (https://sentinels.copernicus.eu/web/sentinel/ocean-
wind-field-component). These products often have a coarse
spatial resolution, such as the global ocean wind products of
Copernicus Marine Environment Monitoring Service, with a
daily revisit time and spatial resolution of approximately be-
tween 12 and 50 km [7].

The limitations of observational data can often be mitigated
using wind data from the global numerical weather models
(GNWMs). These models analyze the changes in atmospheric
processes by assimilating various types of data, such as in situ
measurements, radiosondes, and satellite observations. Notable
models include the ERA5 by the European Centre for Medium-
Range Weather Forecasts (ECMWF) [8], the Reanalysis 1 by
the National Centers for Environmental Prediction (NCEP) and
National Center for Atmospheric Research (NCAR) [9], and
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the NASA Modern-Era Retrospective analysis for Research and
Applications, version 2 [10]. However, GNWMs typically have
relatively coarse spatial resolutions, around 10 km or more, and
with only two or three vertical levels below 200 m HAGL [11].
Several statistical approaches have been proposed to counter
these limitations by downscaling the horizontal spatial reso-
lution based on a higher resolution dataset or by performing
a vertical interpolation to the desired HAGL [12], [13]. The
increasing availability of computational resources in recent
years has greatly influenced the analysis of wind fields, steer-
ing toward the use of mesoscale numerical weather prediction
models (NWPMs) in reanalysis mode [14]. Similar to GNWMs,
NWPMs simulate the Earth’s atmosphere and its evolution over
time by numerically solving equations that govern atmospheric
processes, albeit at finer spatial scales that can approach 1 km.
These numerical weather prediction (NWP) simulations can be
used directly or downscaled using various methods, contribut-
ing to the development of wind atlases or for specific in situ
analyses [15].

Wind resource forecasting is a critical element in wind power
distribution [16]. Inaccurate forecasts can lead to an imbalance
between energy supply and demand, leading to costs as high
as 10% of the total income from energy sales by wind farm
operators [17]. This issue arises from the day-ahead market
mechanism, where energy producers commit to supplying a
certain amount of energy in the upcoming days. If the actual
supply differs from that agreed, the energy producers have to
pay penalties to offset the costs incurred by transmission system
operators in correcting the imbalances caused by inaccurate
forecasts [18]. To address this issue, it is vital to provide reliable
and accurate forecasts of wind speed at the height of wind
turbines [19]. This need can be met by using statistical or
physical approaches for wind field forecasting or a combination
of both [20], [21].

The physical approach primarily involves NWPMs [22],
while the statistical approach is based on the analysis of his-
torical data using various mathematical methods, such as the
Kalman filter [23], autoregression [24], wavelet transform [25],
artificial neural networks (ANNs) [26], and support vector ma-
chine (SVM) [27]. The statistical approach becomes useful when
high spatial resolution forecasts are needed, from a few hundred
meters up to a specific site, although the time horizon is generally
short-term (from 30 min to 6 h [28]), and consequently, it is
not suitable for day-ahead electricity markets; therefore, the
physical approach is most common for medium-term forecasts,
ranging from 6 h to 72–96 h.

For both wind speed reanalysis and forecasting, the use of
NWPMs is often the most suitable choice, despite the drawback
of grid spacing usually greater than 1 km [29]. In regions with
complex terrain, the unresolved subgrid-scale orography can
lead to sudden speed-ups, slowdowns, or channelings of the wind
flow, or shifts in direction. This results in a deviation between
the forecast grid point and the values at the subgrid scale. While
state-of-the-art NWPMs can operate at subkilometer scale in a
complex terrain [30], the high computational cost makes this ap-
proach expensive for operational use [31]. To address this issue,

various studies have focused on downscaling the wind field of
the NWPM using deterministic or statistical approaches [32]. A
common deterministic method is computational fluid dynamics,
which is generally suitable for a single wind farm or areas of a
few kilometers due to high computational costs [33]. Statistical
approaches primarily employ machine learning algorithms, par-
ticularly ANNs and SVMs, often trained using NWP output as
input and wind resources, typically the power generated by tur-
bines at a specific site, as output [34]. These methodologies are
typically highly accurate yet are often tailored to specific loca-
tions. In areas characterized by a dispersed distribution of wind
energy plants, such as southern Italy—where wind turbines may
be standalone or under different ownerships—appropriate algo-
rithms designed for specific sites may be unavailable. To address
this challenge, our research presents a method for the downscal-
ing of wind field simulations produced by an NWPM over a large
region with complex topography. The novelty of our method lies
in its capacity to bridge between site-specific algorithms and the
more generalized output of NWPMs, enhancing resolution from
the kilometer to the subkilometer scale while keeping computa-
tional demands low. Specifically designed for a region in south-
ern Italy encompassing roughly 150 000 km2, this technique is
capable of downscaling an hour of simulation data in mere min-
utes, thereby offering a practical solution for its routine appli-
cation within the operational forecasting processes of NWPMs.

Specifically, the article outlines the wind field resolution
enhancement (WiFiRE), which is an algorithm based on ANNs
utilizing high-resolution (HRES) surface data to downscale the
wind field output of the weather research and forecasting (WRF)
NWPM, advanced research WRF core, version 4 (hereafter
referred to as WRF) [35]. HRES terrain altitude and orientation
were obtained using the digital elevation model (DEM) from the
shuttle radar topography mission (SRTM) [36] and were used to
drive this downscaling.

The WiFiRE algorithm was designed to operate in southern
Italy, where 96.4% of the country’s total wind power is produced
[37]. Given the region’s geographical characteristics, down-
scaling presents a significant challenge with a peninsular area
dominated by the Apennine Mountain range, featuring uneven
surfaces, diverse land use, and numerous coastal areas where
local thermal and mechanical orographic processes strongly
influence wind fields. Thus, local circulation features are often
triggered, such as slope winds, mountain-valley breezes, land-
sea breezes, and flow splitting by mountains, or channeling in
valleys, with spatial scales reaching the microscale (1 km or
less) [38].

This article is organized into five sections. Section II explains
the fundamental principles of ANNs and associated training
algorithms. Section III details the WRF model and the use
of its outputs for constructing the training dataset. Section IV
introduces the WiFiRE algorithm, along with the selection of
inputs, and the configuration and training of the ANNs. Sec-
tion V outlines the procedure adopted to assess the spatial. Sec-
tions VI and VII show and discuss the results, while Section VIII
summarizes the conclusions and provides suggestions for future
research.
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II. ARTIFICIAL NEURAL NETWORK

ANN is a powerful computing system, inspired by biological
neural networks that can approximate any complex and non-
linear function with a desirable degree of accuracy. This study
utilized a feed-forward fully connected multilayer perceptron
ANN. The operation, use, and key features of this ANN, em-
ployed as a regression model, are extensively outlined in the
literature and will, therefore, not be addressed in this study
[39], [40].

The ANN’s weights and biases were determined using a su-
pervised training process applied to a training dataset consisting
of input–output pairs. This process relied on the error back-
propagation algorithm, which iteratively adjusts the weights and
biases to minimize a suitable cost function—in this study, the
mean square error (MSE). Two distinct training algorithms were
chosen: the Resilient Backpropagation [41] and the Levenberg–
Marquardt [42], [43]. While both algorithms are efficient [44],
the Resilient Backpropagation is a first-order method with low
computational costs [45]. Conversely, the Levenberg–Marquardt
is a second-order method, requiring higher computational costs
but generally yielding more precise results [46]. Due to its low
computational cost, the Resilient Backpropagation algorithm
was used to define the number of nodes using a grid search
approach. This required the training of numerous ANNs, neces-
sitating an efficient and quick algorithm (see Section IV-C). The
Levenberg–Marquardt algorithm was used for input selections
(see Section IV-D) and final training (see Section IV-E) to
achieve the best-performing ANNs possible.

Appendix A provides detailed information on the operation
of the two training algorithms, helping to define the choice of
some parameters required for their use, although not critical.

III. WEATHER RESEARCH AND FORECASTING MODEL

The WRF is an atmospheric modeling system, a collaborative
effort from various research institutes under the coordination of
the NCAR. It is designed for a broad range of applications, from
meters to global scale. The system solves the fully compressible,
nonhydrostatic Euler equations, using terrain-following hybrid
σ-pressure vertical coordinates, with Arakawa C-grid stagger-
ing. It is based on time-split integration, using a second- or
third-order Runge–Kutta scheme [47].

The WRF was configured and run with three one-way
nesting domains at 3.6 km, 1.2 km, and 240 m grid spac-
ings, referred to as D01, D02, and D03, respectively.
There were 40 vertical σ-levels, of which 8 were within
the initial 250 m HAGL. The weather analysis was con-
ducted using the ECMWF HRES model, which can be
found at https://confluence.ecmwf.int/display/FUG/HRES+-
+High-Resolution+Forecast (accessed on 04/06/2023). This
model features a grid spacing of 0.125° by 0.125° in latitude
and longitude, approximately 14 km by 11 km in southern Italy,
and 12.5 km on average across both dimensions. The model also
boasts a temporal resolution of 6 h, which was utilized for setting
the initial and boundary conditions. The model ran in reanalysis
mode, using only the weather analysis of the ECMWF HRES,
to generate as realistic atmospheric simulations as possible. The

terrestrial data used forD01 andD02 domains were based on the
land use/land cover (LULC) and Global Multiresolution Terrain
Elevation Data 2010, both with a nominal spatial resolution of
30 arc-seconds (approximately 900 m), provided by the U.S.
Geological Survey [48]. TheD03 domain, on the other hand, was
based on the LULC of the Coordination of Information on the
Environment Program with a spatial resolution of 3 arc-seconds
(about 90 m) [49] and the DEM of the SRTM with the nominal
spatial resolution of 1 arc-second (about 30 m). The primary
model settings were as follows:

1) Thompson aerosol-aware microphysics;
2) rapid radiative transfer model for global circulation mod-

els short-wave and long-wave radiative schemes;
3) nonlocal Yonsei University scheme for the planetary

boundary layer (PBL);
4) Noah land surface model [35], [50], [51].
The D03 was configured in the large eddy simulation (LES)

mode [52], [53] to explicitly resolve large turbulence processes
within the PBL.

The size and grid spacing of the three domains were chosen to
tradeoff computational cost, domain extensions, and the WRF’s
3:1 or 5:1 ratio constraint between the grid spacing of parent and
child domains. In detail was necessary to maintain, as much as
possible, the edge of the so-called “terra incognita” or “gray
zone.” This refers to the range where grid spacing becomes
comparable to the length scale of the most energetic, turbulent
eddies. In this range, both 1-D PBL mesoscale schemes and
3-D LES microscale formulations may not accurately resolve
turbulent features [54]. The range limit is not clearly defined
but could be roughly set between about 1 km and 100 m [55].
The adopted solution was to avoid the gray zone [56], using
respectively 1.2 km and 240 m for D02 and D03 (ratio 5:1),
thus preventing unrealistic wind speed oscillations [57].

In the context of the grid size ratio between the global model
employed for initialization and boundary conditions and the
mother domain of the WRF model, explicit constraints are not
defined. However, based on empirical evidence, it is advisable to
adhere to the recommended ratios between child and parent do-
mains within the WRF framework, ideally maintaining a 1:3 to a
maximum of 1:5 ratio. In our research, the ratio is approximately
1:3.5, aligning with other studies employing the WRF model.
For instance, the ECMWF HRES analyses utilized in our study
have also been applied in similar contexts, such as in the work
by Zhang et al. [58], which featured a mother WRF domain with
a 3 km grid spacing (resulting in a ratio of about 1:4.2), and by
Arnault et al. [59], where the WRF domain was set at 2.8 km
(yielding a ratio of approximately 1:4.5). In the study by Jiménez
et al. [60], the global ECMWF Reanalysis - Interim (ERA-
Interim) model, with a grid spacing of about 79 km [61], was
integrated with a WRF domain of 27 km (achieving a ratio of
around 1:2.9). Furthermore, the NCAR, the main contributor to
the development of the WRF model, employs the NCEP global
forecast system model for operational forecasts. This model, ac-
cessible at https://www.nco.ncep.noaa.gov/pmb/products/gfs/
(accessed on 14/02/2024), features a grid spacing of 0.5° in
latitude and longitude, roughly equivalent to 50 km. It is cou-
pled with a WRF domain of 15 km, maintaining a grid size

https://confluence.ecmwf.int/display/FUG/HRESprotect $elax +$-protect $elax +$High-Resolutionprotect $elax +$Forecast
https://confluence.ecmwf.int/display/FUG/HRESprotect $elax +$-protect $elax +$High-Resolutionprotect $elax +$Forecast
https://www.nco.ncep.noaa.gov/pmb/products/gfs/
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TABLE I
DATES SELECTED FOR BUILDING THE LEARNING DATASET

Fig. 1. Domains used in this study—D01 at 3.6 km spatial grid (black square),
D02 at 1.2 km spatial grid (blue), and D03 at 240 m (red).

ratio of about 1:3.3, as detailed at https://www2.mmm.ucar.
edu/projects/wrf-model/plots/realtime_main.php (accessed on
14/02/2024).

In detail, 12 WRF simulations were executed, one day per
month, as listed in Table I. Each lasted 30 h with an output every
hour, discarding the first six hours for model spin-up, yielding a
total of 288 (12 days × 24 h) simulated scenarios. The days were
chosen somewhat randomly but excluding days with similar
wind. Fig. 1 presents the three configured domains, with theD01
domain consisting of (309 × 259) grid points corresponding to
approximately (1108 × 928) km, the D02 domain consisting
of (489 × 399) grid points corresponding to roughly (586 ×
478) km, and the D03 domain consisting of (1930 × 1420) grid
points corresponding to about (463 × 343) km.

A. Spatial Resolution Analysis of the WRF Output

The key concept behind the development of the WiFiRE algo-
rithm was the training of separate ANNs for different σ-levels.
The idea was to use the input–output pairs from the WRF outputs
in D02 and D03 domains as a training dataset. In this way, for
routine use, the ANNs can be then applied to the WRF output in
the D02 domain at 1.2 km grid spacing to generate wind fields
at 240 m grid spacing. The outputs from the WRF model in
the D02 and D03 domains are derived from terrestrial data with
nominal spatial resolutions of 30 arc-seconds and 3 arc-seconds,
respectively. Therefore, a variation in spatial resolution between
these two domains is anticipated. As a result, the outputs from
the ANN are also expected to exhibit a higher spatial resolution
compared to their inputs. However, the degree of difference in
spatial resolution is unlikely to match the disparity observed be-
tween the terrestrial datasets utilized to construct these domains.

However, for the proposed method to work, a strong corre-
spondence is required between the input and output meteoro-
logical fields, albeit with different grid model spacing and/or
with a different spatial resolution. The former refers to spatial
sampling, while the latter pertains to “the scale or size of the
smallest unit within an image that is capable of differentiating
objects.” [62]. Despite these expectations, the analysis of the
WRF output revealed a lack of such correspondence.

Take U and V horizontal wind components as examples: U is
directed along the model grid’s X-axis from left to right and V
along the Y-axis from bottom to top. They are similar—although
not identical—to the customary zonal and meridional wind
components along parallels and meridians. Fig. 2 depicts these
fields for the third σ-level (around 60 m HAGL) for the WRF
simulation of 20-01-2022, 07:00 UTC.

Fig. 2(a) and (b) represents the D02 domain, while panels
(c) and (d) illustrate the D03 domain. Fig. 2(e) and (f) displays
the differences in wind components between D02 and D03 do-
mains sampled at 1.2 km (D031.2km), obtained via a decimation
process. This process entails extracting one pixel every (5 × 5)
and selecting the one closest to the D02 domain’s grid points.
Despite a general alignment between the wind components of
D02 and D03 (panels (a)–(c) and (b)–(d) look very alike),
Fig. 2(e) and (f) reveals that D02 values cannot be considered
the same as those inD031.2km. This indicates that the wind fields
of D02 and D03 cannot be seen as the same fields with differing
spatial sampling.

Reducing the spatial resolution of D03 wind fields yielded
similar results. This was accomplished by smoothing, using a
simple average over an area of (1.2 × 1.2) km2, i.e., (5 × 5)
pixel box at 240 m, followed by a decimation process at 1.2 km
(D031.2km). Fig. 2 does not show this comparison as the images
would appear too similar to those of panels (e) and (f). Overall,
these results indicate thatU andV at 240 m cannot be considered
the same as those at 1.2 km, regardless of the greater spatial
sampling or increased spatial resolution.

The differences in U and V wind components between the
two domains are not confined to the wind fields but generally
extend to all meteorological fields of the WRF model. Table II
quantifies this analysis not only for atmospheric variables U

https://www2.mmm.ucar.edu/projects/wrf-model/plots/realtime_main.php
https://www2.mmm.ucar.edu/projects/wrf-model/plots/realtime_main.php
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Fig. 2. Comparison of the U and V wind components between D02 and D03 domains for the third σ-level ( 60 m HAGL) for the 20-01-2017, 07:00 UTC
WRF simulation. The lower-left inset in each panel shows a detail zoom to better evaluate the differences between the wind fields in the two domains.

and V but also for other meteorological fields used as inputs for
the ANNs. These fields are the vertical wind component (W ),
temperature (T ), pressure (P ), water vapor mixing ratio (Q),
geopotential height (H), and friction velocity (U ∗).

By using all the 288 simulated scenarios, the root-mean-
square difference (RMSD) was calculated for each meteorolog-
ical field, comparing its value on the D02 domain with those on
the D03 domain sampled at 1.2 km (D031.2km, second column),
and compared with the standard deviation calculated on theD02

domain (fourth column). This could be seen as representative of
the within-field variability.

The last two columns report the standard deviation at the
kilometer scale, calculated for all the (3 × 3) and (5 × 5)
pixel boxes of the D02 domain, corresponding respectively
to (3.6 × 3.6) km and (6 × 6) km. Generally, the D02 -
D031.2km RMSD is less than the standard deviation calcu-
lated on the D02 domain. This suggests an agreement between
the atmospheric variables of the two domains. However, it is
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TABLE II
COMPARISONS OF RMSDS WITH THE STANDARD DEVIATIONS FOR SELECTED ATMOSPHERIC VARIABLES

comparable with the local standard deviations calculated on
(3 × 3) and (5 × 5) pixel boxes at 1.2 km. This indicates a
lack of agreement between the meteorological fields at kilometer
scales.

For the W wind component, the alignment is the worst as the
RMSD is greater than all the standard deviations, indicating
no agreement either on the whole domain or on the kilometric
scales. Similar results were observed when analyzing the third
column of Table II, showing the RMSD calculated between the
variables on the D02 domain and those on the D03 domain after
smoothing and sampling (D031.2km). The results in Table II
are averages over all the first eight σ-levels, with minimal
differences between the various levels.

These discrepancies at the kilometer scale could be attributed
both to the differing spatial resolution of LULC and DEM used
for the two domains and to the functioning mechanisms of the
WRF model. Even though the D02 domain output serves as the
lateral boundary conditions for theD03 domain, the simulations
on the two domains run separately and evolve slightly differently
due to different terrestrial data, grid spacing, and the scheme
used for the large eddies simulation (3-D LES on D03 versus
1-D PBL scheme on D02).

These differences in the key atmospheric variables between
the two domains at the kilometric scale, not solely attributable to
variations in spatial resolution or spatial sampling, necessitated
a change in approach. Specifically, the atmospheric variables
from the D02 domain could not be effectively used as input
for training the ANNs intended to produce outputs for the D03
domain.

B. Constructing the Learning Dataset at 1.2 km

Owing to the significant variances in crucial atmospheric
variables between the D02 and D03 domains, as outlined in
Section III-A, the inputs for the ANN training process cannot
be based on the WRF simulations in the D02 domain (hereafter
referred to as true fields). As such, it is imperative to repro-
duce them using the WRF simulations in the D03 domain by
downgrading their spatial resolution and sampling them at the
D02 grid points (hereinafter referred to as synthetic fields).
This approach yielded synthetic fields with the same spatial
characteristics to those of the true fields in the D02 domain but
in full coherence with those in the D03 domain. To calculate the
synthetic fields, which involves the smoothing and sampling of
the WRF outputs of theD03 domain, a convolution process with

a two-dimensional Gaussian filter was performed. This process
was subsequently followed by sampling the results on a 1.2 km
grid

x̄1.2km (x, y) = [x240m (x, y) ∗ gσ (x, y)]1.2km (1)

where ∗ denotes the convolution operator, [·]1.2km denotes the
decimation process needed to reduce the sampling to 1.2 km.
x240m is the generic WRF output on the D03 domain, x̄1.2km is
the resulting smoothed and sampled value,x and y are the spatial
coordinates, and gσ is the sampled Gaussian kernel based on the
radially symmetric Gaussian function fσ with zero mean and
identical standard deviation σx = σy = σ on the two axes [63]

fσ =
1

2πσ
e−

x2+y2

2σ2 . (2)

The kernel gσ is a square matrix with an odd number of values
in both dimensions, obtained by sampling fσ at 240 m and
truncating along the x and y axes to 3σ, followed by normalizing
the sum of its values to 1.

The full-width at half-maximum (FWHM) of gσ relates to the
standard deviation according to Sobrino and Jiménez-Muñoz
[64]

FWHM = 2
√
2ln2 σ ∼= 2.355 σ. (3)

Similarly to instrumental observations, the FWHM can serve
as a measure to characterize the spatial resolution of the
smoothed image [65]. The convolution of (1) can be resolved
using the discrete Fourier transform (DFT) of each term, which
transforms this operation into a simple product [66]

x240m (x, y) ∗ gσ (x, y) = DFT−1 [X240m (u, v) ·Gσ (u, v)] .
(4)

The inverse operation of the DFT is indicated by DFT−1, u
and v are the spatial frequency coordinates, andX240m(u, v) and
Gσ(u, v) are the Fourier transforms ofx240m(x, y) and gσ(x, y),
respectively, calculated using the fast Fourier transform
algorithm [67].

A one-dimensional grid search approach was used to iden-
tify the optimal width of the Gaussian kernel gσ , which func-
tions as a low-pass filter to align the spatial resolutions of the
smoothed and sampled WRF outputs in the D03 domain with
those in the D02 domain as closely as possible. The FWHM
was varied from 0 to 5000 m in 10 m increments. For each
FWHM value, the resulting field x̄1.2km(x, y) was computed,
and its DFT X̄HW

1.2km(u, v) was compared with the correspond-
ing DFT XHW

1.2km(u, v) in D02 domain. The superscript HW
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Fig. 3. Left panels display the mean and standard deviation of the MSE of the DFT amplitude against the FWHM for the first σ-levels; right panels show the
mean and standard deviation of the minimum FWHM for the different σ-levels.

denotes the windowing of the considered fields x̄1.2km and
x1.2km applied before the DFT calculation. This was done using
the Hanning window to minimize spectral leakage to higher
frequencies due to the rectangular domain [68]. In detail, the
windowing operation was performed by weighting each element
of the matrices x̄1.2km andx1.2km with the corresponding element
of the matrix calculated using the following matrix multiplica-
tion (row-by-column multiplication):

HW = hwx−axis · hwy−axis (5)

where row hwx−axis and column hwy−axis are both defined as the
one-dimensional Hanning window

hw (t) =

{
0.5 + 0.5 cos

(
2πt
T−1

)
, if 0 ≤ t ≤ T − 1

0, otherwise
(6)

where t is the index along the x-axis or y-axis, and T is the
corresponding number of grid points. The comparison between
X̄HW

1.2km and XHW
1.2km was performed in terms of the natural loga-

rithm of the amplitudes A(u, v) [69]

A (u, v) =

√
R(u, v)2 + I(u, v)2 (7)

where R(u, v) and I(u, v) are the real and imaginary parts of
the considered DFTs.

The amplitudes AX̄1.2km
(u, v) and AX1.2km(u, v) of

X̄1.2km(u, v) and X1.2km(u, v) were used to calculate the
MSE

MSE =
1

N ·M
N∑

u=1

M∑
v=1

{
ln
[(
AX̄1.2km

(u, v)
)]

− ln [AX1.2km (u, v)]}2 . (8)

Finally, the FWHM that minimizes the MSE of (8) was
selected to perform the smoothing and subsequent sampling

of the WRF output on the D03 domain. This procedure was
performed for each of the 288 simulated scenarios, and all
the WRF fields deemed inputs or outputs for the ANNs, as
elaborated in Section IV-A. These consist of U , V , W , P , Q, T ,
H, and U ∗.

The left panels of Fig. 3 summarize this procedure for the
aforementioned fields for the first σ-level (except U ∗ which is
a surface variable). They illustrate the trend of the mean and
standard deviation of the MSE of (8) calculated on the 288
simulated scenarios against the FWHM, while the right panels
display the mean and standard deviation of the minimum FWHM
for each σ-level. The mean values and the standard deviation of
FWHMs for the different fields calculated on the 288 simulated
scenarios and averaged across the first 8σ-levels are also listed in
Table III. For fieldsU ,V ,W ,Q, and T , the mean FWHM values
range in approximately [1.6–1.9] km with standard deviations
ranging from about [0.1–0.3] km. For H and P , the mean value
reaches about 3.7 km with a negligible standard deviation. For
U ∗, the mean and standard deviation are about 0.64 km and
0.18 km, respectively.

Fig. 4 presents an example of the true U wind component first
σ-level for D03 and D02 domains, for the simulated scenario
of February 21, 2017, at 21:00 UTC, and the corresponding
DFT log-amplitudes. The spatial frequencies increase outward
from the center, starting from the zero-frequency corresponding
to the mean value, and ascending to the maximum values at
the edges that match the highest spatial resolution [70]. Fig.
4(a) demonstrates a higher spatial resolution and sampling than
panel (c), and correspondingly, the DFT log-amplitude for the
D03 domain; panel (b) displays not only a higher limit value for
its spatial frequency (approximately 2.1 km−1) than panel (d) for
the D02 domain (0.4 km−1) but also greater magnitudes for the
same spatial frequencies. Fig. 5 shows three distinct smoothings
of the U wind field (synthetic field), calculated by applying
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TABLE III
MEAN AND STANDARD DEVIATION CALCULATED ACROSS EACH SIMULATED SCENARIO AND AVERAGED ACROSS ALL σ-LEVELS OF THE FWHMS OF THE

GAUSSIAN FILTERS USED FOR SMOOTHING THE WRF OUTPUTS

Fig. 4. Example analysis of the U wind component for the first σ-level for the simulated scenario of February 21, 2017, at 21:00 UTC. Panels (a) and (c) depict
the U wind component for D03 and D02 domains, respectively, while panels (b) and (d) display the log-amplitudes of the corresponding DFTs.

three gσ kernels with FWHM equal to 0.50 km, 1.91 km, and
3.0 km to the true U wind component at 240 m [see Fig. 5(a)]
and the corresponding DFT log-amplitudes. The intermediate
smoothing was chosen using the previously described procedure,
with its value aligning with the minimum value of the red line in
Fig. 3. The other two values were chosen for comparison. The
DFT log-amplitudes in Fig. 5(b), (d), and (e) reveal a progressive
reduction of their values at high spatial frequencies, with that
relating to FWHM = 1.91 km [see Fig. 5(d)] being the most
similar among the three to that corresponding to the true U wind
component at 1.2 km [see Fig. 4(d)]. This conclusion aligns
with a more accurate resemblance in terms of spatial resolutions
demonstrated in the lower left insets between Figs. 4(c) and
5(c), compared to Fig. 5(a) or (d). As a result of this analysis,
the smoothed field depicted in Fig. 5(c), obtained with FWHM=
1.91 km, was used to construct the ANN training dataset. This
was performed alongside other inputs, smoothed in the same
manner, and coupled to the HRES outputs as in Fig. 4(a).

IV. WIFIRE ALGORITHM

The WiFiRE algorithm was designed to downscale U and V
horizontal wind components. Its foundation includes 16 ANNs,
8 for each of the two wind components, for all 8 verticalσ-levels.
The mean HAGL, from the average of the 12 WRF simulations
on the WRF domain D03, is approximately 11, 35, 60, 87,
115, 145, 176, and 235 m, henceforth known as the nominal
HAGL. This upper limit was selected considering the increasing
global trend in onshore turbine height [71]. As detailed in the
next section, each ANN calculates the downscaled principal
components (PCs) [72] of U and V at (7 × 7) grid points at
240 m, centered around each grid point at 1.2 km, as shown by
the left panel of Fig. 6 which also shows the input for each ANN
consisting of the PCs of some meteorological fields at (5 × 5)
and (3 × 3) grids at 1.2 m. The input also includes the PCs of
some static surface fields computed on the same (7 × 7) box at
240 m used for the output.
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Fig. 5. Example analysis of the U wind component for the first σ-level for the simulated scenario of 21-02-2017, 21:00 UTC. Panels (a) and (c) depict the U
wind component for D03 and D02 domains, respectively, while panels (b) and (d) display the log-amplitudes of the corresponding DFTs.

Despite the (5 × 5) box for the output might seem more
consistent due to the ratio between the twoD02 andD03 domain
grid spacings being 5 [1.2 km–240 m], the larger (7 × 7) box
was favored. This approach allows two or four ANN output
overlapping between adjacent boxes, thus avoiding the boxy
artifact [73]. As a result, the WiFiRE algorithm’s final output
at the edge of each (5 × 5) box can be obtained by merging
2 or 4 overlapping outputs. This is achieved using coefficients

computed with the inverse weighted distance from the grid point
at 240 m and the central one at 1.2 km

ap =
bp∑P
p=1 bp

(9)

whereP is the number of overlapping ANN outputs (2 or 4), p is
the index ranging from 1 toP , bp is the inverse distance between
the grid point at 240 m and the central one at 1.2 km related to
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Fig. 6. Left: A geometric scheme of grid points for the D02 domain at 1.2 km (marked by red cross markers, both empty and filled) and the D03 domain at
240 m (indicated by black circle markers, both empty and filled). The periodic alternation of light and dark gray boxes underscores the correspondence between
the (5 × 5) grid points at 240 m and the central 1.2 km grid point within these boxes. Right: the WiFiRE output reconstruction process. For grid points marked
with black “1” flags, the algorithm’s output comes from a single ANN output. In overlapping areas marked by green “2” flags, the algorithm output utilizes the
IDW mean of the two nearest ANN outputs, with pairs of green arrows representing distances. For the grid points at overlapping corners flagged with blue “4,” the
algorithm output is achieved using the IDW mean of the four closest ANN outputs, with the four blue arrows indicating distances.

two or four outputs, and ap is the coefficient used to calculate the
combination of the outputs. The right panel of Fig. 6 illustrates
the distances grid and the overlapping ANN outputs.

When the WiFiRE algorithm gets in input the WRF outputs
on the D02 domain at 1.2 km and the surface static fields on
the D03 domain at 240 m, it delivers U and V downscaled to
the same grid of the D03 domain at 240 m for the first eight
σ-levels.

A. Input and Output Definitions

The learning dataset for each ANN was assembled by cou-
pling certain input and output vectors, most of which were from
the principal component analysis (PCA) of a particular field
computed on a specific spatial scheme. In all PCAs, the selected
components are those explaining 99.9% of the variance of the
relative field.

The ANN output consists of the PCs computed on the (7 × 7)
grid points at 240 m of the variable to be downscaled, i.e., U
and V separately (represented by the filled black circle marker
in the left panel of Fig. 6). To calculate the PCs, 49 values of the
(7 × 7) box were arranged from left to right and from bottom to
top, as depicted in Fig. 7.

The selection of the ANNs’ inputs, the so-called features,
was carried out in two stages. The first stage, detailed in this
section, considered the PCs of a few variables that may correlate
with the ANNs output or that could help characterize both the
atmospheric conditions and the Earth’s surface. The second
stage, detailed in Section IV-D, discarded less important or
irrelevant features.

Fig. 7. Rearrangement order of the ANNs output in the (7 × 7) box for PCA.

The preliminary input for U and V downscaling consists of
four variable sets.

1) Three sets of PCs of the U , V , and H fields corresponding
to the (5 × 5) grid points at 1.2 km, as illustrated in the
left panel of Fig. 6 with both empty and filled red cross
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markers. The PCs were performed by arranging the (5× 5)
values from left to right, and from bottom to top, similar
to the output.

2) Seven sets of PCs of meteorological fields corresponding
to the (3 × 3) grid points at 1.2 km, as shown in the left
panel of Fig. 6 with filled red cross markers, rearranged
from left to right, and from bottom to top. The selected
fields included the horizontal wind speed (WS) due to
its close correlation with U and V output, W , P , T , Q,
and air density (D), offering additional information on
atmospheric conditions, and U ∗, useful for characterizing
wind shear at the boundary [74].

3) Six sets of PCs of static fields related to the Earth’s
surface, corresponding to the same (7 × 7) grid points
at 240 m used to define the output. These static fields
include surface altitude (HGT ), surface roughness length
(SRL), land fraction (LF ), and the three components of
the versor normal to the Earth’s surface (V N and V E
parallel to the D02 model grid, northward and eastward
respectively, and V Z orthogonal to both V N and V E and
directed toward increasing altitudes). These inputs were
used due to the close relationship between the wind field
and the orography to introduce information at 240 m, and
thereby to guide the downscaling process. Although the
algorithm was designed for downscaling over land surface,
LF input was considered to evaluate potential land/sea
surface interactions with the downscaling, due to the large
coastal areas of the Italian peninsula, and to develop an
algorithm that can also work on the sea surface.

4) Three single values for Latitude (LAT ), Longitude
(LON ), and the cosine of the solar zenith angle (SZA)
corresponding to the central position of the (7 × 7) box,
as shown in the left panel of Fig. 6, where the filled black
circle marker overlays the filled red cross marker.

The first two input sets were chosen at the same level as the
output variable, except for U ∗, which is single level, while the
last two sets were constant for all ANNs, irrespective of the
σ-level of the output to be downscaled. The input areas in the
first two sets, corresponding to the (5 × 5) and (3 × 3) grid
points at 1.2 km, were selected based on their relevance to the
outputs. The largest area was chosen for U and V input features
as they were considered most correlated with the U or V outputs
at 240 m, and for H to explore the importance of altitude as
an input while the smallest area was chosen for less important
features. U and V downscaling was prioritized over direct WS
downscaling to leverage the relationships between them and the
surface geometry, which can both guide and impede the two
components.

The PCAs of U , V , H, W , P , T , Q, WS and D, used for
both input and output, was conducted separately at each σ-level.
This was done using all (7 × 7) boxes at 240 m, or all (5 × 5) or
(3 × 3) grid boxes at 1.2 km across the 288 simulated scenarios.
Likewise, the PCA for U ∗ used all (3 × 3) grid points at 1.2 km
from all the simulated scenarios. The PCAs for the static fields
related to Earth’s surface used all (7 × 7) grid point boxes at
240 m within the D03 domain.

The WS input was obtained by applying the static WRF
outputs COSALPHA and SINALPHA to convert the horizontal
wind components from grid-relative (U and V ) to Earth-relative
(Û and V̂ ) [75], given

Û = U · COSALPHA−V · SINALPHA (10)

V̂ = V · COSALPHA+U · SINALPHA (11)

WS =

√
Û2 + V̂ 2 . (12)

The D input was derived as

PWV =
P ·Q
ε+Q

(13)

PAD = P − PWV (14)

D =
PAD

RAD · T +
PWV

RWV · T (15)

with PWV as the water vapor pressure, ε = 621.97 as the
ratio of molecular weights of water and dry air, PAD as the
air-dry pressure, RAD = 287.05 J·kg−1·K−1 and RWV =
461.495 J·kg−1·K−1 as the gas constants for dry air and water
vapor and (15) contain the sum of the universal gas laws for
dry air and water vapor [76], [77]. Even though WS and D are
derived from other fields already provided as inputs, they can
enhance the ANN performance when used as additional inputs.
This is because feature engineering can significantly contribute
to machine learning [78].

The WRF preprocessing system tool [79] directly provides
the static fields HGT and SRL. The parameters V N , V E,
and V Z are calculated based on the terrain slope (SL) and
aspect (AS) [80]. SL represents the degree of incline of the
earth’s surface, with a zero-value indicating flat terrain, while
AS is the horizontal orientation, measured clockwise in de-
grees from 0 to 360°. Calculations for SL and AS involve the
use of HGT gradients along the y and x axes of the D03 domain
grid. This process also represents feature engineering, such as
that used for WS and D. As shown in Fig. 8, using the HGT
values in the (3 × 3) grid spacing at 240 m as the z-axis, the
two gradients δz/δy and δz/δx at the central point (x, y) were
calculated by using its eight neighbors [81] with

δz
δy

=
(zx+1,y+1 + 2zx,y+1 + zx−1,y+1)

+− (zx+1,y−1 + 2zx,y−1 + zx−1,y−1)

8Δy
(16)

δz
δx

=
(zx+1,y+1 + 2zx+1,y + zx+1,y−1)

8Δx

+− (zx−1,y+1 + 2zx−1,y + zx−1,y−1)

8Δx
(17)

where Δx = Δy = 240 m. The gradient δz/δy was calcu-
lated by weighing twice the vertical gradient passing through
the central point, i.e., (x, y + 1) → (x, y) → (x, y − 1) and
once each of the two vertical gradients adjacent. Similarly, the
gradient δz/δx is obtained by weighing twice the horizontal
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Fig. 8. Layout of the HGT values in the (3 × 3) grid spacing at 240 m, used
for calculating slope and aspect.

gradient (x+ 1, y) → (x, y) → (x− 1, y), and once each the
two adjacent horizontal gradients. SL and AS were obtained as
a function of the two gradients, by means of

SL = atan

⎛
⎝
√(

δz
δx

)2

+

(
δz
δy

)2
⎞
⎠ (18)

AS =

⎧⎪⎪⎨
⎪⎪⎩
90◦ − 180◦

π atan

(
δz
δy
δz
δx

)
, if δz

δx
< 0

270◦ − 180◦
π atan

(
δz
δy
δz
δx

)
, otherwise

. (19)

Finally, the three componentsV Z,V N , andV E of the versor,
normal to the terrain surface, are calculated as follows:

V Z = cos (SL) (20)

V N = sin (SL) · cos (AS) (21)

V E = sin (SL) · sin (AS) . (22)

Table IV provides a summary of the size of the physical
parameters chosen for the preliminary inputs and the outputs
of the ANNs, and their down-size downstream of the PCs that
reduced the number of the inputs and outputs by about 30% and
50%, respectively, for both U and V downscaling.

B. Reducing the Learning Dataset

The learning dataset comprises simulations from the WRF
model, spanning 12 days at 24-h intervals, resulting in 288
distinct scenarios. For each scenario, the dataset for training the
ANNs consisted of input–output pairs from a grid of 386 by 284

points, each with a spatial resolution of 1.2 km. This configura-
tion yielded a total of over 30 million input–output pairs across
the entire dataset for each of the eight σ-levels, collectively
referred to as the Learning dataset. Due to the extensive number
of training patterns, combined with the size of the initial inputs
and outputs, the computational burden of training 16 ANNs was
nearly overwhelming. As a result, it was necessary to scale down
the full Learning dataset to manage the computational demands.
Two different reductions were performed for each of the 16
ANNs. The first, comprising approximately N = 105 samples
(hereafter DB100k), was used to design the ANNs, defining their
architectures and reducing the input features. The second, with
roughlyN = 106 samples (hereafter DB1M), was used to refine
the weights and biases calculated in the design phase.

To reduce the dataset, a similar approach to the one described
by Di Paola et al. [82] was adopted. This involved building an
M-dimensional histogram, with one dimension for each variable,
and grouping the full dataset into several bins with each bin
containing samples with similar characteristics. The reduced
dataset was then created by randomly selecting a single sample
from each bin. Specifically, M = 9 was set, with M variables
including the date (DATE) of the WRF simulation (see Table I),
the mean values of variables LAT , LON , SZA, HGT , U, and
V , and the standard deviations of U and V in the (7 × 7) grid
points at 240 m. This selection ensured the reduced dataset of the
entire area (LAT , LON ), time of day (SZA), ground elevation
(HGT ), time of year (DATA), and wind speeds and directions,
along with their local variability.

To build the 16 small datasets DB100ks, two datasets for
U and V for each of the eight σ-levels, DATE was divided
into ki = 4 equal intervals, one for each season, the mean
values of LAT , LON , SZA, HGT were divided into gi = 5
equal intervals. The number of xi intervals for the means and
standard deviations of U and V was determined through an
iterative approach, starting from xi = 1. With each iteration,
the corresponding M-dimensional histogram was developed, and
the reduced dataset was then constructed by randomly picking
one sample from each bin. If the number of samples N was
less than 105, xi was incremented by 1 and a new iteration was
performed. For the small U and V datasets, nine iterations were
conducted for each vertical level, thereby setting xi = 9. This
resulted in slightly more than N = 105 samples for each small
dataset and each σ-level. Although the number of bins exceeds
105 (ki · gi4 · xi4 ∼= 1.6× 107), only a small fraction (0.1%) of
the total number of bins was populated.

For the 16 large datasets DB1Ms, the parameters were ki =
12 (one interval for each simulated date, Table I), gi = 10 for
the intervals of LAT , LON , SZA, and HGT . Consequently,
following the iterative process, xi = 11 was achieved for
the resulting number of intervals for the means and standard
deviations of U and V , accounting for a total of 1.8 × 109

bins. Just over N = 106 of these were populated with at least
one sample. With this dataset building method, approximately
10% of DB100ks and DB1Ms were located over sea, and the
remaining 90% over land. The DB1Ms and DB100ks datasets
were randomly divided into three distinct datasets: Training,
Validation, and Test, distributed in a ratio of 60:20:20. The
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TABLE IV
NUMBER OF INPUTS AND OUTPUTS USED FOR EACH ANN FOR U AND V DOWNSCALING

Training dataset served to calculate weights and biases using the
two algorithms mentioned earlier. The Validation dataset facili-
tated the fine-tuning of ANN parameters, including the number
of nodes and the number of epochs during the training phase.
The Test dataset is used in the development phase, enabling the
evaluation of various options and conducting initial tests.

C. Architecture of the ANNs

Defining the architecture of the ANNs entailed the determi-
nation of the number of hidden layers, the number of nodes in
each hidden layer, and the transfer functions for both the hidden
and output layers. Aside from heuristic approaches reliant on
expert experiences or rules of thumb, the trial-and-error method
is a common approach for designing the ANN architecture [83],
[84]. However, this method is time-consuming as it involves de-
signing, training, and testing multiple ANNs, varying the num-
ber of hidden layers and nodes, and the transfer functions, and
finally choosing the most fitting architecture. This exhaustive
approach must be repeated for each of the 16 different ANNs,
which makes it impractical. To mitigate the computational cost,
certain simplifications were necessary.

The first simplification concerned the transfer functions,
which were set as pure lines for the output layer and hyperbolic
tangent for the hidden layer

tanh (x) =
ex − e−x

ex + e−x
. (23)

This usually yields the best results among other sigmoid
functions [85]. This is possible as any feedforward ANN with at
least one hidden layer containing a sufficient number of nodes,
with an arbitrary bounded, nonconstant activation function in

the hidden layer, such as the hyperbolic tangent, and a pure
line activation function in the output layer, can approximate
continuous functions under very general conditions [86], [87].
Consequently, the choice of transfer functions is not crucial
and can be predetermined as indicated, excluding it from the
trial-and-error search.

Moreover, based on these considerations, the number of hid-
den layers can be preset to one. However, two hidden layers are
usually preferred as they provide benefits such as fewer total
nodes, higher efficiency of the training algorithms, and better
generalization ability than a single hidden layer [88]. There is
no theoretical reason to use more than two hidden layers for this
study [89]. Given these considerations, the number of hidden
layers was set to two, therefore eliminating the selection of this
parameter from the trial-and-error search.

The trial-and-error method was used to determine the number
of nodes on the two hidden layers. Using the Resilient Backprop-
agation algorithm with the reduced datasets DB100k, an initial
architecture with just one node on both hidden layers was trained.
This was followed by the comparison of two different ANN
architectures using an iterative procedure, each was obtained
by incrementing the number of nodes by one unit, separately
on the first and second hidden layers. The configuration that
produced the minimum MSE calculated on the Validation dataset
was chosen for each iteration. Five ANNs were trained for
each configuration, using five different random initializations
of weights and biases. The best-performing configuration was
chosen each time. The iterative procedure concluded when the
progressive addition of nodes on the two hidden layers led to
ten consecutive increases in the three-point moving average of
the MSE evaluated on the Validation dataset, indicating that
further increasing the nodes would not significantly enhance
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Fig. 9. Procedure for defining the number of nodes of the ANN, for the U wind component, first σ-level. Top: separate node growth on the two hidden layers.
Circular filled markers represent the selected configurations, while the empty ones indicate the discarded configurations. The color represents the MSE calculated
on the validation dataset. Bottom: trend of the MSE and its gradient as a function of the total number of nodes. The left y-axis in blue refers to the MSE, while the
right y-axis in orange refers to the gradient of the MSE. The x-axis represents the total number of nodes on the two hidden layers.

performance. Fig. 9 exemplifies this procedure for the U wind
component for the first σ-level, using the MSE calculated on
the reconstructed values on the (7 × 7) box @240 m, in turn
calculated with the inverse transformation of the PCA obtained
from the ANN output. The iterative procedure ceased when the
total number of nodes reached 47, with 31 and 16 in the first
and second hidden layers, respectively. Although choosing the
configuration corresponding to the minimum value of the MSE,
around 30 total nodes, may seem plausible, the more complex
ANN with the highest number of nodes was favored, risking a
minor possibility of overfitting instead of underfitting. This is
because in the following steps, some inputs will be eliminated,
reducing the complexity of the ANNs and consequently the risk

of overfitting. Finally, the larger training dataset DB1Ms will be
employed, further reducing the risk of overfitting.

For both U and V across all σ-levels, the total number of
nodes configured for each ANN ranges from 39 to 51, with
20–33 nodes on the first hidden layer and 15–24 nodes on the
second hidden layer.

D. ANNs Input Selection and Training

The input variables identified in Section IV-A and subse-
quently reduced through PCA were chosen due to their potential
to contain valuable information for the training of ANNs. This
choice stems from either a direct correlation with the outputs or
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Fig. 10. Input removal procedure for the U wind component, first σ-level. The green box highlights the area around MSE = 0.9 m2/s2, magnifying it. The
removal of 229 out of the initial 300 inputs considered defines a final ANN configuration with 71 inputs.

their ability to characterize atmospheric conditions and surface
characteristics. Nevertheless, some inputs may provide negligi-
ble or even counterproductive contributions to the ANNs, in-
creasing both the computational costs of the final ANN training
and the risk of overfitting. As a result, an iterative procedure
was implemented to evaluate each input’s contribution and, if
necessary, eliminate it. This process initially requires a thor-
oughly trained ANN; hence, using the ANN defined and trained
as described in Section IV-C. Its training was enhanced by con-
ducting further training epochs using the Levenberg–Marquardt
algorithm. Subsequently, in the first iteration, the significance
of each input was evaluated by eliminating them one by one
to identify the least important input—the one that, after its
elimination and subsequent update of the ANN weights, resulted
in the lowest MSE value calculated on the Validation dataset.
Once the least significant input of the ANN was identified, it
was permanently removed.

The ANN’s weight update was considered definitive, and the
iterative process continued with subsequent iterations, removing
one input at a time until reaching the minimum MSE value on the
Validation set within a 5% tolerance. Ideally, additional training
epochs should be conducted to update the ANN weights at each
iteration but this method would be computationally intensive
and nearly impractical. To address this, the weight updates
were performed using a procedure akin to the one developed
by Castellano and Fanelli [90], as detailed in Appendix B. This
procedure redistributed the weights of the removed input among
the other weights of the remaining inputs using the conjugate
gradient (CG) method [91], [92]. This redistribution aimed to
maintain, as much as possible, the input values of each node of
the first hidden layer, eliminating the need to retrain the network.

Fig. 10 summarizes, as an example, the ANN input removal
procedure for the U wind component for the first σ-level. The
MSE trend calculated on the Validation Dataset (red solid line

with a filled circle) as a function of the number of removed
inputs initially remains almost constant and approximately equal
to the minimum value of 0.88 m2/s2 obtained when 41 inputs
were removed (red cross marker). After the removal of around
150 inputs, the MSE starts to increase by a few percentage
points, reaching about 0.92 m2/s2, which corresponds to the
chosen 5% threshold of the minimum value (red dashed line).
Beyond this point (red wheel marker), corresponding to 229
removed inputs, the MSE increases more rapidly, and no further
inputs are removed. In addition, the initial difference between
the MSE calculated on the Validation dataset and that calculated
on the Training dataset (black solid line with a filled circle),
approximately 0.03 m2/s2, indicates a small initial overfitting.
The input removal procedure has significantly reduced this over-
fitting, bringing this difference to about 0.004m2/s2, confirming
that reducing the number of inputs helps lower the risk of
overfitting.

Once the negligible inputs were removed, the ANNs weights
and biases were updated to their final versions. Additional
training epochs were performed using the Levenberg–Marquardt
training algorithm applied to the DB1M datasets described in
Section IV-B. Fig. 11 illustrates a flowchart of the process of
developing and using the WiFiRE algorithm.

V. SPATIAL RESOLUTION ANALYSIS

Spatial resolution can be described as “the size of the smallest
distinguishable feature” [93]. It is measured in units of length
(e.g., kilometer) and can theoretically be determined as the
inverse of the maximum spatial frequency specifically related
to the signal, which is expressed in units of inverse length
(e.g., km−1). When an image is sampled at constantΔS intervals
in both directions, the Nyquist limit (NL) dictates that the
highest spatial frequency present in the image is NL = 2ΔS−1 .
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Fig. 11. WiFiRE algorithm flowchart: development (top) and use (bottom).

Consequently, the maximum theoretical spatial resolution is
2ΔS. This leads to one of the common definitions of spatial
resolution, defined as “a measure of how close to each other
two objects can be located such that they can be distinguished”
[94]. However, determining the spatial frequency, and thereby
the spatial resolution, lacks a universal method. This complexity

arises as the highest frequencies may correspond to noise rather
than the actual information content of the image, and the Fourier
transformation can include all frequencies from zero to NL

seamlessly.
To address this challenge, an analogy can be drawn from real-

world observations using radiometers or lenses, where spatial
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resolution can be inferred from the FWHM of the point spread
function (PSF). The PSF acts as a low-pass filter, cutting off
higher frequencies beyond its width, allowing the spatial reso-
lution of an image to be gauged by the instrument’s “capacity to
resolve high spatial frequencies” [95]. Assuming a Gaussian-
shaped PSF (2), the approach proposed by Mizutani et al. [96]
can be used. This method involves plotting the logarithm of the
average squared amplitudes of the DFT (A2) against the square
of the spatial frequency distance from the origin (d2) for each 5
× 5 pixel block. The standard deviation σg of the Gaussian PSF
is determined from the slope ϕ of the linear regression applied
to the data points on the left side of the distribution

σg =

√
ϕ

2π
. (24)

From σg, the FWHM of the PSF (3) can also be computed,
serving as an estimate of the spatial resolution of the whole im-
age. However, Mizutani et al.’s [96] approach requires manually
selecting a threshold value d2thr on the d2-axis to determine the
subset of points within the range [0− d2thr] for linear regression.
To avoid manual selection, an iterative procedure was adopted,
initially considering the 5% of points nearest the d2-axis origin
and gradually expanding the interval for linear regression with
1% increments toward higherd2 values. Each iteration calculates
a new linear regression and its Pearson correlation coefficient
(PCC), with d2thr chosen at the peak PCC value. The application
of this method to the wind fields examined in this study lacks
rigor, as it relies on analogy with observed data. However,
employing a PSF with circular symmetry, which is inherently
general, provides a rough estimation facilitating the comparison
of spatial resolutions across various wind fields.

Since high spatial frequency signals may be related to noise
rather than to actual high-frequency information content, as-
sessing noise becomes essential, especially as spatial resolution
enhancement methods can sometimes introduce random noise
artifacts [97], [98], [99]. Consequently, the method proposed by
Immerkaer [100], which assumes additive noise with zero mean,
was adopted. This method uses a spatial filter L obtained from
the differences between two Laplacian kernels L1 and L2

L1 =

∣∣∣∣∣∣
0 1 0
1 −4 1
0 1 0

∣∣∣∣∣∣ L2 =

∣∣∣∣∣∣
1 0 1
0 −4 0
1 0 1

∣∣∣∣∣∣ (25)

L = L2− 2 L1 =

∣∣∣∣∣∣
1 −2 1
−2 4 −2
1 −2 1

∣∣∣∣∣∣ . (26)

Applying the spatial filter L to an image strips off structural
features, such as edges or textures, enabling noise estimation as
the standard deviation σn of the filtered image

σn =

√
π

2

1

6 (W − 2) (H − 2)

∑
|I ∗ L| (27)

where W and H represent the image dimensions, I represents
the image, | · | denotes the absolute value, ∗ is the convolution
operator, and the summation is performed on all the elements of
the convolution product.

Fig. 12. Number of DoFs and inputs of the ANNs for the different σ-levels.

VI. RESULTS

Fig. 12 displays the number of inputs, varying from 52 to 77,
and the degrees of freedom (DoFs)—i.e., the total number of
weights and biases—for U and V across the different σ-levels.
Both the number of inputs and DoF, which vary from 52 to 75
and approximately 1800 to 3600 respectively, show a decreasing
trend with increasingσ-levels. Fig. 13 provides a summary of the
number of inputs and outputs used for the ANNs of the different
σ-levels. As expected, among the dynamic inputs made up of the
1.2 km WRF outputs, the most crucial variable for downscaling
the wind component U (V ) is the same wind component U (V )
at 1.2 km with an average of 18 (19) PCs. This is followed by the
other horizontal wind component V (U ) with 7 (6) PCs, wind
speed WS with 6 (5) PCs, vertical wind component W with 6
(5) PCs, and friction velocity U ∗ with 5 (5) PCs, all of similar
importance. Pressure P , humidity Q, and density D contribute
on average with 1 PC, while temperature (T ) is somewhat more
significant, contributing on average with 3 (2) PCs. Among the
240 m static variables, the surface altitude HGT is the most
important, with about 8 (8) PCs, followed by the V E (V N )
component of the normal versor to the earth’s surface, parallel
to the wind component U (V ) with 4 (5) PCs, and the upward-
directed component V Z with 2 (3) PCs. The remaining input
variables are almost negligible or absent. Of the 49 output PCs,
an average of 26 PCs was considered for both U and V .

This study focuses primarily on providing a detailed exami-
nation of the WiFiRE algorithm and assessing its effectiveness
in downscaling wind speed as simulated by the WRF model.
The study does not aim to analyze the reliability of these sim-
ulations. Consequently, the algorithm’s performance was not
assessed by comparing the downscaled field with measured data
using anemometers or wind profilers. Such a comparison would
inherently depend on the performance of the WRF model, which
is influenced by a wide range of physical options, parameters,
and configurations. The resulting assessment would, therefore,
be related to the WRF model, not the WiFiRE algorithm. To
evaluate the algorithm’s performance, its outputs were compared
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Fig. 13. Summary of the number of inputs and outputs of the different ANNs. Each color represents the inputs/outputs selected for a specific σ-level, while the
black line under each group of variables indicates the total number of inputs/outputs initially considered.

to those from the WRF-LES model using an independent dataset.
This dataset was also generated using the WRF-LES, using the
same settings and configurations outlined in Section III-B. It
comprises 24-h simulated scenarios for four specific dates in
2017: 15-03-2017, 10-06-2017, 23-09-2017, and 25-12-2017,
one for each season, resulting in approximately 107 patterns for
each of the eight σ-levels (hereinafter Evaluation dataset).

Since the WiFiRE algorithm operates similarly to bidimen-
sional spatial interpolations—i.e., bringing from a coarser reg-
ular grid (1.2 km) to a finer one (240 m)—the algorithm’s
performance was evaluated against two common interpolation
methods, Linear and Spline interpolation.

Due to the subtle variations in the structure of the WRF
fields between the D02 and D03 domains, as discussed in
Section III-A, two distinct evaluations were conducted. The
initial assessment involved a point-by-point analysis, where the
WiFiRE algorithm was applied to synthetic fields at a 1.2 km
resolution. These downscaled fields were then compared with
the WRF-LES fields at a 240 m resolution to assess the algo-
rithm’s capability in reconstructing field structures. The second
evaluation applied the WiFiRE algorithm to the true fields at a
1.2 km resolution and involved comparing the DFT amplitudes
of the downscaled fields with those of the WRF-LES fields at
240 m. While the DFT amplitude analysis loses details on the

field’s structure, it effectively maintains information regarding
spatial resolution. This approach enables a comparison of the
spatial resolutions of the fields, despite minor structural differ-
ences between them.

A. Assessment of the Structures of the Downscaled Fields

Fig. 14 shows the average vertical profiles of U , V, and
WS, separately for land and sea surfaces, corresponding to the
nominal HAGL of the eight σ-levels. The WiFiRE algorithm’s
output is compared to the WRF-LES output—used as reference
data—and to the downscaled values computed using the two
interpolation methods. Overall, all the profiles follow a trend
qualitatively similar to the logarithmic wind profile law [101]. In
general, all profiles exhibit a trend that qualitatively aligns with
the logarithmic wind profile law [101]. A comparative analysis
indicates that the vertical profiles generated by the WiFiRE
algorithm bear a closer resemblance to those from the WRF
model than those produced by the two interpolation methods.
On land, the deviations between the WiFiRE algorithm and the
interpolation methods average around 0.1 m/s for U and V ,
and 0.3 m/s for WS across all vertical levels. Over the sea,
the mean discrepancies across all levels are nearly negligible,
less than 0.1 m/s for U , V , and WS. However, for U and
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Fig. 14. Mean values (solid lines) and standard deviations (dashed lines) of the U, V, and WS across different σ-levels and separately for land and sea surface.

V , the interpolation methods tend to underestimate the WRF
model at lower altitudes and overestimate it at higher ones. In
contrast, for WS, the pattern is reversed, with underestimation
occurring below approximately 80 m HAGL and overestimation
above. The WiFiRE algorithm, however, produces profiles that
are closely aligned with those from the WRF model. Fig. 14
also presents the average standard deviations for U , V , and
WS. To compute the average standard deviation, individual

standard deviations were calculated for each of the 96 hourly
scenarios (spanning 24 h across 4 days), both on land and sea,
and then averaged. Subsequently, the average of these standard
deviations across the vertical levels was computed as the mean
of the average standard deviations (hereafter referred to simply
as the standard deviation) for the eight σ-levels. Even in terms
of standard deviations, the vertical profiles from the WiFiRE
algorithm more closely mirror those from the WRF model than
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do those from the interpolation methods. The most accurate
results are observed over the sea, where the WiFiRE algorithm’s
profiles nearly perfectly match those from the WRF model,
while the interpolation methods underestimate U , V , and WS
by approximately 0.1 m/s. To enhance the assessment of the
algorithm’s effectiveness, three key metrics were utilized: mean
bias difference (MBD), RMSD, and PCC

MBD =
1

N

N∑
i=1

YD,i − YW,i (28)

RMSD =

√√√√ 1

N

N∑
i=1

(YD,i − YW,i)
2 (29)

PCC =

∑N
i=1

(
YD,j − YD,i

) (
YW,i − YW,i

)
√∑N

i=1

(
YD,i − YD,i

)2√∑N
i=1

(
YW,i − YW,i

)2
(30)

where N is the number of samples, YD,i are the wind values (U ,
V , or WS) downscaled by the WiFiRE algorithm or by the two
proposed interpolation methods, YW,i are the wind values of the
WRF model, and the notation X̄ indicates the mean value of X .

The MBD should ideally be minimal in absolute terms and
close to zero. It is deemed acceptable if it is at least an order of
magnitude smaller than the mean value calculated from the WRF
model, which serves as the benchmark. Similarly, the RMSD
should be as low as possible, ideally nearing zero. A maximum
acceptable limit for RMSD is the standard deviation of the
reference variable. Values exceeding this threshold suggest that
the downscaling process’s accuracy is inferior to simply using
the mean value of the WRF model’s field as the downscaled
field. The PCC ranges from −1 to 1. Higher values indicate
a stronger correlation between the downscaled fields and the
WRF model fields. A PCC value above approximately 0.3 is
considered moderately acceptable. However, for the algorithm
to be deemed successful, it must not only meet these thresholds
but also surpass the corresponding metrics achieved by the two
interpolation methods.

Fig. 15 illustrates that the MBDs are consistently at least an
order of magnitude smaller than the mean values depicted in
Fig. 14. The MBE calculated with WiFiRE are almost always
negligible, with absolute values ranging from 10−2 to 10−3, both
on land and sea, and separately or averaged over all vertical
levels. In contrast, the two interpolation methods exhibit larger
MBDs in absolute values. Over land, their mean values reach
about 0.3 m/s for WS. Over the sea, while mean values are
generally negligible, they peak at 0.4 m/s at lower levels and
−0.2 m/s at higher levels. Fig. 15 also shows the average RMSD,
calculated as the mean of the RMSDs for each scenario and level.
All values are less than those of the corresponding standard
deviations of the WRF model, which is used as the threshold.
Notably, the WiFiRE algorithm achieves the most favorable
outcomes, with an average RMSD of approximately 0.5 m/s
over land for U , V , and WS, in stark contrast to the 1.6–1.7 m/s
RMSD obtained with the two interpolation methods. Over the
sea, the WiFiRE algorithm continues to improve recording an

RMSD of 0.2 m/s compared to the 1.0–1.2 m/s RMSD associated
with the interpolation methods. Fig. 16 compares the three
downscaling methods in terms of the average PCC, calculated as
the mean of the PCCs for each scenario and level. All PCC values
exceed 0.6, marking them as acceptable. However, the WiFiRE
algorithm surpasses the interpolation methods here as well, with
PCC values approximately between 0.96 and 0.98 on land and
0.99 and 1.00 on sea, compared to the 0.71–0.79 and 0.82–0.89
ranges, respectively, for the interpolations. Figs. 17–22 show
a binned analysis performed separately for each σ-level for
WS, a critical variable for wind power generation. This analysis
segments the WS data from the WRF model into 1 m/s bins,
ranging up to 15 m/s over land and 12 m/s over the sea. Fig. 17
shows the trend of MBD over land for the WiFiRE algorithm,
showing values close to zero for low WS values and a decrease
to a minimum of −1.5 m/s for higher WS values. Conversely,
the interpolation methods exhibit larger MBD absolute values,
starting around 1.5 m/s for low WS values and escalating to
over −4 m/s at WS values around 15 m/s. These trends are more
pronounced at lower σ-levels and diminish at higher levels. On
average, the WiFiRE algorithm’s MBD ranges from −0.5 to
−0.1 m/s, whereas the interpolation methods range from −0.3
to −1.3 m/s. Fig. 18 depicts the MBD trend over the sea, with
dynamics similar to those over land but with less pronounced
variations. At lower σ-levels, the WiFiRE algorithm’s MBD
varies between approximately 0 and −0.5 m/s, while the in-
terpolations range from about 1 to −2 m/s. Averaging across
all σ-levels, the WiFiRE algorithm’s MBD lies between −0.2
and −0.01 m/s, while for the interpolation methods, it varies
between −0.2 and −0.4 m/s.

Fig. 19 presents the RMSD analysis over land. For the first
σ-level, it reveals that the WiFiRE algorithm’s RMSD starts at
approximately 0.5 m/s for lowWS values and ascends to around
1 m/s for higher WS values. The RMSD for the interpolation
methods begins at roughly 2 m/s for low WS values, dips to
a minimum of 1.2 m/s for WS in the 3–5 m/s range, and then
climbs to over 4 m/s at higher WS values. In the other vertical
levels, the trends are similar; more marked at lower σ-levels
and become less pronounced with increasing σ-levels. Across
all σ-levels, the WiFiRE algorithm’s RMSD ranges from 0.6 to
0.9 m/s, whereas the interpolations show an RMSD between 1.9
and 2.3 m/s. Similar to the land analysis, Fig. 20 shows that the
sea RMSD trends for the WiFiRE algorithm are less distinct,
with the maximum increase in WS causing a variation of about
0.2–0.6 m/s, while for the interpolations, it is approximately
1–2 m/s. The averages across all WS and σ-levels range from
0.2 to 0.4 m/s for the WiFiRE algorithm and from 1.2 to 1.6 m/s
for the interpolations.

Fig. 21 analyzes the PCC on land, indicating that the WiFiRE
algorithm consistently outperforms the interpolation methods,
achieving PCCs higher than those obtained through the two
interpolations. Typically, the WiFiRE algorithm’s PCC starts
at around 0.3 for low WS values and quickly rises to about
0.5 for WS values around 2–3 m/s, then either decreases with
increasing WS at lower σ-levels or remains steady at higher
σ-levels. The interpolations exhibit a similar trend but with lower
PCC values around 0.2–0.3. Over the sea, as depicted in Fig. 22,
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Fig. 15. Comparative analysis of the MBDs (solid lines) and RMSDs (dashed lines) among the outputs generated by the WiFiRE algorithm and those calculated
by the two proposed interpolation methods across different σ-levels and separately for land and sea surface.

the trend is qualitatively similar but with higher PCC values. The
average PCC across all WS for the WiFiRE algorithm ranges
from 0.64 to 0.77, whereas for the interpolations, it spans from
0.17 to 0.23. The lower PCC values observed in Figs. 21 and
22, compared to those shown in Fig. 15, result from the binned
analysis. By restricting the analysis toWS values of the WRF at

0.1 m/s intervals, the numerator in the PCC equation decreases
more than the denominator, leading to lower PCC values.

Fig. 23 displays the linear regression ofWS across all vertical
levels, comparing the outcomes of the three downscaling meth-
ods with the reference values from the WRF model. The WiFiRE
method demonstrates a more concentrated distribution of data
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Fig. 16. Comparative analysis of the PCCs among the outputs generated by the WiFiRE algorithm and those calculated by the two proposed interpolation methods
across different σ-levels and separately for land and sea surface.

points around the diagonal bisector of the plot, indicating less
scatter compared to the interpolation methods. This observation
is supported by the coefficient of determination (R2), which
stands at 0.96 for the WiFiRE algorithm, significantly higher
than the 0.68–0.69 range for the interpolation methods over
land, and 0.99 for WiFiRE versus 0.84 for the interpolations
over the sea. Fig. 24’s WS density plot further illustrates these

trends. Over land, the distribution curves of the WRF model
and the WiFiRE algorithm are closely aligned, as evidenced by
their similar skewness values of 1.06 and 1.05, respectively. In
contrast, the distributions from the interpolation methods are
shifted toward higher WS values and exhibit a broader spread,
with both methods showing a skewness of 1.00. Over the sea,
the distribution curves for the model and the WiFiRE algorithm
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Fig. 17. Comparative binned analysis of the MBD for WS among the outputs generated by the WiFiRE algorithm and those calculated by the two proposed
interpolation methods across different σ-levels over land surface.

also closely resemble each other, whereas the curves for the
interpolations are slightly shifted toward lower WS values. In
terms of skewness, the WRF model and the WiFiRE algorithm
show more comparable values of 0.92 and 0.90, respectively, as
opposed to 0.86 for the interpolations.

Fig. 25 shows an example of WS downscaling for the third
σ-level on March 15, 2017, at 06:00 UTC.

B. Evaluation of the Spatial Resolution of the Downscaled
Fields

Fig. 26 illustrates the DFT log-amplitudes of WS, providing
a comparison among the WRF output at 240 m, the results ob-
tained from the Spline interpolation, and those from the WiFiRE
algorithm. The intensities of the DFT log-amplitudes and the rate
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Fig. 18. Comparative binned analysis of the MBD for WS among the outputs generated by the WiFiRE algorithm and those calculated by the two proposed
interpolation methods across different σ-levels over sea surface.

at which they decline from the center outward represent spatial
resolution, with a faster drop and lower intensity indicating lower
resolution. At the center of the DFT log-amplitude, denoted
by coordinates (0, 0) km−1, the intensity of the background
spatial component, known as the DC continuous component,
is depicted.

As spatial frequencies increase, progressing toward the DFT
log-amplitude’s edge, the intensities of progressively smaller
spatial components are depicted. At the maximum spatial fre-
quencies, corresponding to half of the sampling frequency
(1/480 m−1) as per the Nyquist limit, the intensities of spatial
components at the smallest scale (480 m), such as step signals,
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Fig. 19. Comparative binned analysis of the RMSD for WS among the outputs generated by the WiFiRE algorithm and those calculated by the two proposed
interpolation methods across different σ-levels over land surface.

are represented. Consequently, the Spline interpolation in Fig. 26
exhibits the lowest spatial resolution, followed by that associated
with the WiFiRE algorithm, and finally, the highest spatial
resolution among the three is observed in the WRF output at
240 m. While it is evident that images possess different spatial
frequency content, it is not straightforward to determine the
highest frequency actually correlated with a signal, thus defining

the spatial resolution. Hence, the procedure outlined in Section V
was employed to address this limit.

To achieve this, all examined scenarios underwent prelim-
inary preprocessing with the Hanning window, as detailed in
Section III-B, before being subjected to Mizutani’s method for
analysis. Fig. 27 provides an illustration of the spatial resolution
assessment procedure applied to the same dataset depicted in



9164 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 20. Comparative binned analysis of the RMSD for WS among the outputs generated by the WiFiRE algorithm and those calculated by the two proposed
interpolation methods across different σ-levels over land sea.

Fig. 26. The resulting spatial resolution ofWS is approximately
0.68 km for the WRF model output, 1.69 km for the Spline
interpolation, and 0.76 km for the WiFiRE algorithm. Fig. 28
displays the profiles of mean values and standard deviations of
spatial resolutions calculated across all 96 scenarios of the Eval-
uation dataset. Overall, minimal variation is observed along the
vertical profile. The averaged values over eight σ-levels indicate

a spatial resolution of 0.6–0.7 km for the WRF model, 0.8 km for
WiFiRE, 1.8–1.9 km for Spline interpolation, and 2.0–2.4 km
for linear interpolation. The standard deviations remain less than
0.2 km across the board. Fig. 29 summarizes the results of the
noise assessment using Immerkaer’s method, presenting vertical
profiles of mean and standard deviation calculated across 96
scenarios of the Evaluation dataset. The mean value of the noise
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Fig. 21. Comparative binned analysis of the PCC for WS among the outputs generated by the WiFiRE algorithm and those calculated by the two proposed
interpolation methods across different σ-levels over land surface.

is maximum for the WRF model, approximately 2 × 10−2 m/s
across all σ-levels in average. For the WiFiRE output, the
estimated noise is 1 × 10−2 m/s, while for the two interpolation
methods, values are one or two orders of magnitude smaller.
Generally, the standard deviations are one order of magnitude
smaller than the mean values.

VII. DISCUSSION

The analysis of the number of DoFs reveals that the ANNs
were trained with a sufficiently small number of inputs and
nodes to mitigate the risk of overfitting. Generally, the number
of DoFs indicates the complexity of the ANN; the higher it is,
the more capable the ANN is of fitting the training dataset, but
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Fig. 22. Comparative binned analysis of the PCC for WS among the outputs generated by the WiFiRE algorithm and those calculated by the two proposed
interpolation methods across different σ-levels over sea surface.

there is also a higher risk of overfitting. The DoFs value for
the ANNs trained for the WiFiRE algorithm is approximately
3 × 103, which is two orders of magnitude smaller than the
size of the training dataset (around 6 × 105), and three orders
of magnitude smaller than the number of training equations.
The latter was calculated by multiplying the size of the train-
ing dataset by the number of outputs, ranging from 22 to 32

(see Table IV). These large differences mitigate the risk of
overfitting and validate the method adopted for defining the
ANN architectures [102]. As expected, the number of inputs
and DoFs decreases with increasing HAGL. This is because
the wind fields nearest to the surface exhibit greater spatial
variability and thus require more information and complexity for
downscaling.
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Fig. 23. WS linear regression for the output of the WiFiRE algorithm, spline,
and linear interpolation against the target value of the WRF-LES model. To
enhance the readability of the graph, only one data point per every 500 points is
displayed.

The analysis of inputs and outputs confirms our expecta-
tions, highlighting the horizontal wind component as the most
influential input in the downscaled process. In addition, other
crucial inputs from the WRF model include the vertical wind
component and the friction velocity. Although of lesser signifi-
cance, variables such as temperature, pressure, humidity, and air
density also play a role in characterizing atmospheric conditions.
Among the static variables, surface altitude emerges as the most
influential, followed closely by the component of the normal
versor to the earth’s surface, particularly in alignment with the
downscaled wind component. Conversely, variables, such as
land fraction, exhibit minimal impact, likely due to redundancy
with surface roughness, which itself is of low importance due to
the redundancy of friction velocity. Geopotential height, despite
its wide variation within a σ-level, appears negligible, possibly

Fig. 24. WS density plot for the output of the WiFiRE algorithm, the spline
and linear interpolation, and the WRF-LES model.

because it redundantly conveys information already captured
by ground height combined with the near-constant value over
the entire σ-level. Overall, a diminishing trend in the number
of PCs with HAGL is evident, affecting both the outputs and
several inputs. As the σ-level lowers, the number of selected
PCs increases, a result of the enhanced spatial variability brought
about by wind interactions with the ground surface.

A comparison between the outcomes of the WiFiRE algorithm
and those of the interpolations underscores the WiFiRE’s supe-
rior ability to capture the high spatial variability of WS with a
level of detail that the interpolation methods lack. In contrast, the
interpolations tend to smooth out the WS, reducing the range
between the minimum and maximum values observed at 1.2 km
grid spacing. This flattening effect is attributed to the coarser
resolution and sampling inherent in the interpolations compared
to the finer resolution achieved with the WiFiRE algorithm. As a
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Fig. 25. Example of downscaling results for the third σ-level (60 m HAGL) for the WRF simulation at 06:00 UTC on 15-03-2017.

result, the interpolation method falls short in accurately captur-
ing the dynamics of the values, often truncating the extremes.
This is well highlighted in the binned analyses, which shows
an overestimation of low wind speeds and an underestimation
of higher ones. In contrast, the WiFiRE algorithm improves in
reconstructing field dynamics, yielding values closer to those
of the WRF model at 240 m. The density plots confirm these
results, with distributions more similar to each other for the
outputs of the WRF model and the WiFiRE algorithm than those
of the interpolations. This result is also evident in the analysis
of vertical profiles, where the WiFiRE profiles closely mirror
those of the WRF model, while the interpolations exhibit greater
deviation. Furthermore, the PCC analysis highlights the WiFiRE
algorithm’s superior performance in accurately reconstructing
wind field structures, including extremes, outperforming the
interpolations.

Overall, the WiFiRE algorithm’s downscaled fields demon-
strate a closer alignment with the WRF output at 240 m com-
pared to the interpolations, which produce notably similar results
to each other.

The MBD of the vertical profiles consistently hovers around
zero for the WiFiRE algorithm, yet is nonnegligible for the inter-
polation methods. Specifically, when assessing WS over land,

the WiFiRE algorithm outperforms the interpolation methods,
exhibiting an average improvement of approximately 0.3 m/s
for MBD and 1.1 m/s for RMSD across all levels. In particular,
for the third and fourth σ-levels over land, corresponding to
approximately 60 m and 87 m HAGL—most significant levels
for wind turbines in the South of Italy—the disparities between
the WiFiRE algorithm and the interpolations amount to approx-
imately 0.4 m/s for MBD and 1.5 m/s for RMSD. The overall
improvement achievable using the WiFiRE algorithm compared
to the interpolation methods is significant. An error less than
1 m/s in WS estimation can equate to millions of dollars in
annual revenue loss [4]. With the wind power proportional to
the cube of WS, the power error (PE) between estimated power
P̂ and actual power P can be defined as

PE =

[
1−

(
P̂

P

)]
· 100 (31)

PE =

[
1−

(
WS + error

WS

)3
]

· 100. (32)

Using the cut-in speed of 3 m/s as an example for WS, which
indicates the threshold at which a turbine starts generating power
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Fig. 26. Comparison of the DFT log-amplitudes of the WS output at 240 m
against the downscaled true WS using both spline interpolation and the WiFiRE
algorithm. WRF simulation at 06:00 UTC on 15-03-2017.

[103], and considering the MBD as the error metric, the PE
for the Spline interpolation at 60 m HAGL (MBD −0.2 m/s)
is approximately −21%, whereas the WiFiRE algorithm shows
virtually no error (MBD about 0). For a typical rated-speed of
10 m/s, representing the speed at which the turbine achieves
its maximum rated power, the PEs for the Spline interpolation

(MBD about −1 m/s) and the WiFiRE algorithm (MBD about
−0.1 m/s) are 27% and 3%, respectively. This indicates a differ-
ence of 24% at the maximum production. If the RMSDs were
utilized as the error metric, these differences would be further
magnified.

Although downscaling other meteorological fields than wind
components can support wind energy forecasts, they were not
considered in this study due to their secondary importance. In
fact, the available wind power Pav of the e free-air stream that
flows through a rotor cross-sectional area Ar can be written
as [104]

Pav =
1

2
ArDairWS3 (33)

where Dair is the air density. Since Dair depends on air tempera-
ture, pressure, and humidity, it might be useful to downscale
these variables as well, or more simply Dair. However, WS
remains the most crucial variable due to its cubic dependence
and greater spatial variability compared to Dair.

For instance, in the Evaluation dataset, the (mean ± standard
deviation) within the (5 × 5) box at 240 m for the fourth σ-
level yields approximately (4.0 ± 0.3) m/s and (1.179 ± 0.002)
kg/m3 for WS and Dair, respectively. The magnitude difference
between mean and standard deviation is one order for WS and
three orders for Dair.

The analysis of spatial resolution, although carried out under
simplified assumptions, is consistent with the results previously
obtained. In particular, the analysis performed in Section III-A,
where a Gaussian low-pass filter had to be applied prior to
sampling, revealed differences in both sampling and spatial
resolution between the wind fields in the D02 and D03 domains.
Consequently, WiFiRE algorithm’s capability of reconstructing
the wind field akin to the WRF model suggests an enhance-
ment in spatial resolution consistent with the high level of
detail that can be observed in downscaled fields. The calculated
spatial resolutions show reasonable values overall and meet
the Nyquist limit of 1/480 m−1. Indeed, the highest spatial
resolution, estimated at 600 m, corresponds to the output of the
WRF model. This resolution translates to a value of (1/600) m−1

spatial frequency, which falls below the Nyquist limit. The same
limit applies to the downscaled fields, resulting from the spatial
resampling process alone from 1.2 km to 240 m. However, linear
interpolation only marginally increases the maximum spatial
frequency present in the signal. For the wind components U
and V —those downscaled, as WS is their sum—the maximum
spatial frequency is 1/2.4 km−1. It is noteworthy that this value
matches the Nyquist limit of the nondownscaled wind field at
1.2 km. This indicates that linear interpolation allowed for the
highest spatial frequency theoretically present in nondownscaled
fields but failed to surpass it. The spline interpolation, being
a cubic interpolation allowed for slightly better results, by in-
troducing higher spatial frequencies, estimated at 1/1.8 km−1

for the U and V components but considerably lower than that
obtained with the WiFiRE algorithm (1/0.8 km−1). The standard
deviation is contained within 17% of the estimated resolution
at most, showing reasonable fluctuations overall. The noise
assessment shows a maximum value of 10−2 m/s for the WRF
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Fig. 27. Spatial resolution assessment of the WS for the output of the WRF at 240 m (red), spline interpolation (blue), and the WiFiRE algorithm (green) for
the third σ-level (˜61 m HAGL) for the WRF simulation at 06:00 UTC on 15-03-2017. The point clouds and regression lines refer to the left y-axis, while dashed
lines with PCCs values are relative to the right y-axis. The linear fit is calculated for each cloud points from zero up to the d2thr identified by the cross marker
corresponding to the maximum values of the dash line (max PCC). To make the graph more readable, only 1 point per 10 is shown.

Fig. 28. Vertical profiles of the mean (solid lines) and standard deviation (dashed lines) of the estimated spatial resolution for the WRF output, WiFiRE algorithm
output, and the two proposed interpolation methods across different σ-levels.
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Fig. 29. Vertical profiles of mean (solid lines) and standard deviation (dashed lines) of the estimated noise for the WRF output, WiFiRE algorithm output, and
the two proposed interpolation method across different σ-levels.

model. This could be attributed either to a numerical effect of
the model or to an imperfect removal of structures operated by
the filter L of (26). However, the values obtained are very low
and thus deemed negligible.

Overall, the developed algorithm enables the downscaling of
wind fields at a superior spatial resolution and with fewer errors
compared to the two proposed interpolation methods.

Although the results obtained by the WiFiRE algorithm do not
perfectly match those from the WRF-LES at 240 m, the com-
putational cost is significantly reduced. For instance, employing
the WRF model with three domains at 3.6 km, 1.2 km, and
240 m grid spacing over the study area in southern Italy demands
approximately 20 h of computation time per hour of output on a
server equipped with 56 cores running at 2.6 GHz and 256 GB of
RAM. Conversely, utilizing the model with only two domains at
3.6 and 1.2 km, combined with the WiFiRE algorithm, requires
only about 20 min—15 min for WRF simulation and 5 min for
applying the WiFiRE algorithm.

VIII. CONCLUSION

The study has detailed an ANN-based algorithm, WiFiRE,
developed for downscaling the WS from the WRF model at
1.2 km grid spacing to a finer spacing at 240 m. This process
involves the first 8 σ-levels within the first 250 m HAGL for
wind power generation. The input analysis revealed that the
PCs of wind’s horizontal and vertical components, horizontal
speed, and friction velocity are of utmost importance among
the values calculated by the WRF model at 1.2 km. Pressure,
humidity, air density, and temperature PCs also contribute, al-
though to a lesser extent, yet support the characterization of
atmospheric conditions. For the surface static variables at 240 m
used in the downscaling, the PCs of ground height and the two
components of the surface normal versor directed eastward and
northward were found to be particularly relevant. The upward-
directed component offered a lesser contribution, while surface
roughness, geopotential height, land fraction, and geographical
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coordinates were considered to have minor or almost negligible
importance. The comparison with the WRF output at 240 m
demonstrates that the WiFiRE algorithm outperforms both lin-
ear and spline interpolations, which serve as the baseline for
evaluation, across various metrics including MBD, RMSD, and
PCC, observed over both land and sea. In addition, in terms of
spatial resolution, the algorithm yields superior results compared
to interpolations, without introducing a notable increase in noise.
Future studies will concentrate on validating the algorithm using
real measurements. This validation will include assessing its
performance alongside that of the WRF model across various
configurations. In addition, the study will investigate the effects
of downscaling other meteorological variables on wind turbine
power curves. Furthermore, optimal methods for vertical spatial
resolution will be explored to enhance the output of the WiFiRE
algorithm. The approach proposed in this study could extend to
other domains requiring HRES meteorological variable reanal-
ysis or forecasting and could assist in evaluating solar irradiance
to optimize photovoltaic system energy production or for surface
agro-meteorological variables to support precision agriculture.

APPENDIX A
ANN TRAINING ALGORITHMS

The supervised training algorithm functions as an iterative
process based on the error backpropagation algorithm, a method
applied to a Training dataset to discover optimal values for
weights and biases which starts from random weights and
biases. The algorithm calculates the output for each iteration,
comparing it to the output of the training dataset and calculates
a suitable cost function C, often equal to the MSE. The weights
and biases are subsequently adjusted by minimizing the cost
function, a process that involves calculating its partial derivatives
∂C/∂w and ∂C/∂b with respect to each weight w and bias b.
This method helps converge, iteration by iteration, toward a local
minimum. The term “backpropagation” refers to the technique
used to calculate the partial derivatives, starting from the output
nodes and proceeds backward through the hidden layers to the
input layer [105]. The iterative process ceases when the cost
function C hits its minimum or when the iterations no longer
lead to an acceptable improvement.

A. Resilient Backpropagation

The Resilient Backpropagation algorithm hinges on an adap-
tive learning scheme. For each iteration—or epoch—the weights
are adjusted by adding a corrective term Δwij based on the
squared error cost function E, with positive sign if ∂E/∂wij

is positive and negative sign, otherwise. The value of Δwij is
initially set equal to a starting value Δ0. If the sign of ∂E/∂wij

has not changed from the previous epoch, it is multiplied by
η+, or η−, otherwise. The update of the corrective term Δwij

is confined in the range between Δmin and Δmax. The param-
eters are not particularly critical and are commonly chosen
as suggested by Riedmiller and Braun [41]. These include
Δ0 = 0.1,Δmin = 1e− 6, Δmax = 50, η+ = 1.2 ed η− = 0.5
[106], [107].

B. Levenberg–Marquardt

The Levenberg–Marquardt algorithm also relies on an adap-
tive learning scheme. Unlike the previous one, it uses both the
first and second derivatives of the squared error with respect to
the weights to converge faster to a local minimum. The vector
of all the N weights and biases wn at the tth epoch is defined as
w(t). Its update is calculated using

w(t) = w(t−1) − [JTJ + μI
]−1

JT e (A1)

where e is the vector of the errors ekp, obtained as the difference
between the kth output node of the pth training pattern and the
corresponding training target. J is the Jacobian matrix, which
contains the first-order partial derivatives of the errors ekp with
respect to the weights and biases wn. I is the identity matrix,
and μ is a dynamically adjusted learning parameter during the
training process to control the algorithm’s behavior.

The product of JT e is the gradient of the squared error, and
the product of JTJ is used to approximate the Hessian matrix
made up of the second-order partial derivatives of ekp with
respect to wn. This approximation is valid as the cost function
consists of a sum of squared terms, i.e., the sum of squared errors.
In the first training epoch, the learning parameter μ is set equal
to an initial value μini and the weights and biases are initialized
with random values. In subsequent epochs, the weights and
biases are updated according to (A1), and the squared error
is evaluated. If it results less than that of the previous epoch,
the weight and bias update is accepted, and the parameter μ
is updated by dividing it by a factor β. Otherwise, the update
is rejected, μ is updated by multiplying it by the same factor
β, and the weight and biases update is calculated using (A1)
again, accepting or rejecting the new update according to the
same scheme. The configuration parameters are not particularly
critical and are assumed to be equal to the values widely used in
literature: μini = 10−3 e β = 10 [108], [109].

APPENDIX B
– REMOVAL OF ANN INPUTS AND UPDATING OF WEIGHTS

The input removal procedure and the subsequent weight ad-
justment were calculated using the corrective term δnm, which
needed to be added to the weights wnm. These weights exist
between the nth input and the mth node of the first hidden layer

N∑
n=1

wnmh(d)
n =

N−1∑
n=1

(wnm + δnm)h(d)
n (B1)

where N represents the number of the ANN’s inputs and h
(d)
n

is the nth input of the dth training pattern. The left member
represents the input to the mth node of the first hidden layer due
to the dth training pattern, taking into account allN inputs of the
ANN. The right member illustrates the adjusted value following
the input removal, achieved through the addition of the corrective
terms δnm. If r is defined as the index of the removed input, (B1)
can be rephrased as
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N−1∑
n=1

δnmh(d)
n = wrm h(d)

r . (B2)

This equation, when applied to all D patterns, can be depicted
in matrix form as

h∼r δm = wrm hr (B3)

where h∼r is the matrix of D rows and N − 1 columns contain-
ing all training patterns and all inputs, excluding the removed
one. δm is the column-vector of N − 1 elements containing the
corrective terms for updating the connection weights between
the unremoved inputs and the mth node of the first hidden
layer, while hr is the column vector of D elements containing
the removed input for all training patterns. The transposition
operation is represented by (·)T , and by multiplying both sides
of (B3) by the transpose of h∼r , it can be rewritten as

hT
∼r h∼r δm = hT

∼r wrmhr (B4)

which can be depicted as

A δm = b (B5)

withA = hT
∼r h∼r and b = hT

∼r wrmhr . Defining ‖ · ‖ as the
Euclidean norm, it is possible to find a pseudosolution of (B5)
minimizing the quadratic error ρ

ρ = ‖Aδm − b‖2 (B6)

by using the CG method, given that A, as defined, is an
(N − 1)× (N − 1) square matrix, symmetric and positive def-
inite. The CG method is a well-known iterative procedure,
which requires a low computational cost, and which allowed in
about 102 iterations to solve the proposed problem, by reducing
the relative residual error ρrel below the tolerance threshold,
arbitrarily chosen equal to 10−8

ρrel =
‖Aδm − b‖2

‖b‖2 (B7)

Equation (B7) needs to be solved for all M nodes of the first
hidden layer, and the resulting ANN from the corresponding
weight update does not require any additional training steps.
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