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Abstract—This article presents a streamlined, automated classi-
fication method to map land-cover-type local climate zones (LCZs).
Using a two-phase hybrid approach, we first generated training
samples through universal decision rules and subsequently, a ma-
chine learning (ML) algorithm was trained on the generated sam-
ples to classify LCZs. The proposed model harnesses plant height
data, combined with spectral bands and remote sensing indices,
to accurately classify various land-cover types, such as dense for-
est, scattered trees, bush/scrub, low plant/agricultural land, bare
rocks/paved surface and bare soil/sands. Targeting global applica-
bility, we tested our method across six diverse locations spanning
four continents: Fresno (California), Central Michigan, Western
Phoenix (Arizona), Khulna (Bangladesh), Lagos (Nigeria), and
Western Sydney. In each location, after generating training samples
with the decision rules, a random forest algorithm was employed
for LCZ classification. Results showcase that data from sentinels 1
and 2, night-time light, and global ecosystem dynamics investiga-
tion relative height are effective in characterizing land-cover-type
LCZs and decision-rules can be established. The decision-rules
consistently auto-generate training samples, undeterred by varying
geographical and climatic conditions. This automated system has
achieved promising accuracy across all tested sites, suggesting its
potential to map land-cover-type LCZs and vegetation globally with
higher accuracy.

Index Terms—Local climate zones (LCZs), machine learning
(ML), multisource remotely sensed data, vegetation mapping.

I. INTRODUCTION

LOCAL climate zones (LCZs) is a scheme of urban sys-
tems classification that classifies urban areas into dis-

crete LCZs by morphological and land cover characters [1].
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Fig. 1. Built types (1–10) and land-cover types (a)–(g) LCZs defined by
Demuzere et al. [3].

This scheme identifies a total of 17 LCZs [2], [3], [4], [5].
LCZs one through ten are designated for built-up lands, en-
compassing various types of urban development and infrastruc-
ture. Conversely, LCZs A through G predominantly correspond
to land cover types. These zones, characterized by their mi-
croclimatic features, include nonbuilt-up land covers, such as
urban parks, forests, bare soil, and agricultural lands, among
others. While these land cover classes can be found in both
urban and rural settings, they are primarily associated with
areas not dominated by built-up infrastructure (see Fig. 1) [2].
Forests and agricultural lands are both essential components
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of our ecosystem, providing a wide range of benefits to both
the environment and human society. Monitoring forests and
agricultural lands is of paramount importance due to the numer-
ous ecological, social, and economic benefits these landscapes
provide. Regular and systematic monitoring helps to under-
stand changes, identify problems, and make informed decisions
for sustainable management. This study emphasizes mapping
land-cover types, LCZs A-G, as illustrated in Fig. 1. Such
mapping directly supports several United Nations sustainable
development goals (SDGs) outlines by United Nations [6], [7].
It contributes to improved urban living conditions and overall
city sustainability by identifying areas prone to heat stress that
helps planners and decision-makers to promote urban green-
infrastructures and urban parks targeting the selected areas and
mitigate urban heat islands effect [1], [2], [8], [9]. This aligns the
land-cover-type LCZ mapping with SDG 11: Sustainable cities
and communities. By analyzing changes of different LCZ types,
such as LCZ A (i.e., dense forest), LCZ B (i.e., scattered trees),
LCZ C (i.e., bush/scrub), LCZ D (i.e., low plant/agricultural
land), and LCZ F (i.e., bare soil/sand) it is possible to deter-
mine forest loss, loss of agricultural land, desertification and
land degradation. These information helps the policymakers to
adopt policy towards achieving SDG 15: Protect, restore and
promote sustainable use of terrestrial ecosystems, sustainably
manage forests, combat desertification, and halt and reverse land
degradation and halt biodiversity loss. They are also essential
for maintaining healthy ecosystem, biodiversity, climate change
mitigation, disaster prevention, food security, and sustainable
economic growth [8], [10], [11]. Considering the paramount
importance of land-cover-type LCZs mapping, this article seeks
to overcome the current classification limitations and enhance
classification accuracy, specifically targeting those selected
LCZ categories and provide data at a finer 25-meter spatial
resolution.

The current LCZs classification approach are primarily based
pixel-based supervised classification method using multisource
remote sensing (RS) data [3], [4], [12]. Several limitations of
current classification approach can be observed if we attempt
to extend the classification workflow from local to regional or
global level. The major limitation is collecting training samples
manually for supervise classification [3], [12]. Several LCZ
types among selected categories have overlapping spectral char-
acteristics. For example, dense forest (LCZ A), scattered tress
(LCZ B), bush/scrub (LCZ C), and low/plant or agricultural
land (LCZ D) have similar spectral characteristics, and similar
values in normalize difference vegetation index (NDVI). This
spectral similarities, observed among dense forests, scattered
forests, agricultural lands, scrubs/bushes, and others, can lead to
misclassification during mapping [13], [14]. The difficulties for
mapping those land-types requires large training samples, and
the sample requirements, especially for mapping over large re-
gional/global scales demand training sample collections beyond
the costly manual approaches. In addition, an LCZ classification
approach devised for a particular area may be inapplicable to
another area due to differences in physical-geographical char-
acteristics and global weather patterns [15], [16]. For example,

equatorial regions experience a hot and humid climate through-
out the year due to their proximity to the equator, whereas areas
in the northern hemisphere can experience a wide range of tem-
peratures from very cold in the winter to very hot in the summer.
This affects tree-structure, forest cover and vegetation that grow
in these regions, hence, variation of spectral signatures can be
observed [16]. Consequently, the LCZ classification approach
adopted for a specific region cannot be applied to a different
location or on a global scale, as it fails to address these variations.
Moreover, several studies have used commercial satellite/Lidar
derived plant height data to distinguish low/high plant types
which are not cost-effective and efficient solution and may not be
adopted at the region/global scale [17], [18]. Another important
limitation is—previous studies overlooked spatial dependence
property of geospatial data [19], [20]. In other words, previous
studies overlooked Tobler’s first law of geography: “everything
is related to everything else, but near things are more related
than distant things” [21]. LCZs are unique homogeneous local
micro-climate zones distinguished by morphological and land
cover characters. All physical features in each homogeneous
LCZ should exhibit similar morphological and land cover char-
acteristics influenced by spatial dependence. The spatial infor-
mation in terms of spatial coordinate in the machine learning
(ML) model will address this spatial dependence issue. The
goal of this article is to overcome these limitations and propose
a classification workflow that will utilize freely available RS
data and provide cost-effective solution for land-cover-type LCZ
mapping.

RS allows us to monitor global forest cover, agricultural land
and other land covers and provides a cost-effective and efficient
way to map land-cover-type LCZs on a large scale [9], [22], [23],
[24]. Sentinel 2 near-infrared (NIR) (B8), red-edge (B5, B6,
B7) and red (B4) bands are particularly useful for agriculture,
vegetation and, forest-type mapping [25]. Similarly, NIR (B8)
and blue (B2) bands are particularly useful for extracting built-up
features, such as buildings and other man-made infrastructures
[26]. In addition, NIR (B8) region records low reflectance in
the man-made features but high in vegetation, which makes
it useful to separate man-made features from vegetation [26].
Several studies also used only red, green and blue (RGB) bands
combination with deep learning model to classify land-cover
[9], [27]. Therefore, incorporating different spectral bands from
sentinel 2 or Landsat 8/9 is very useful to understand the charac-
teristics of different vegetation types and classify them into dis-
tinct LCZs. Moreover, sentinel 1 synthetic aperture radar (SAR)
image vertical transmit/vertical receive (VV) and vertical trans-
mit/horizontal receive (VH) –bands also exhibit distinct char-
acteristics on man-made surface and different vegetation types
which makes it another important feature for LCZ mapping [28],
[29]. And of course, NDVI is another important radiometric in-
dex for identifying healthy dense vegetation and separating them
from man-made surface [9], [12]. Nighttime light data is also
important to distinguish urban parks and vegetation cover from
nonurban features and it has been widely used for LCZ classifi-
cation [4], [16]. Nighttime light dataset captures artificial light-
ing produced by human settlements, infrastructure, and other
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anthropogenic sources. Incorporating the nighttime light data
in the classification model helps to separate urban parks/green-
infrastructures, human settlements/infrastructures, forest covers
and bare soil/sand. In addition, this article utilized monthly Level
2A processed data products from the global ecosystem dynamics
investigation (GEDI) mission, a space-based laser mission de-
signed to characterize Earth’s ecosystems in three-dimensional
(3-D). The GEDI Raster Canopy Height data contains relative
height (RH) information of physical features. GEDI calculates
RH, which determines the height of the vegetation canopy above
the ground, as opposed to absolute height above sea level. Based
on the RH information along with other spectral bands and
indexes, each LCZs can be characterized, and decision rules
can be established to classify GEDI shots into LCZ classes and
the classified GEDI shots can be used as ground truth data in ML
models.

Apart from factors selection for LCZ classification, select-
ing appropriate ML algorithms is also an important part of
the classification process. Pixel-based LCZ classification using
multisource RS data and ML is the most popular classification
approach [12].Wide variety ML algorithms have been applied
for local and global LCZ mapping including random forest
(RF), support vector machine, neural network, Naïve bayers,
and maximum likelihood classifier over the past years [16], [17],
[30], [31], [32]. However, RF model standout as the most accu-
rate and popular ML model for pixel-level LCZ classification
because of its simplicity and effectiveness [12], [22], [24]. This
article will develop a combined decision-rules and RF-based
hybrid classification workflow for the land-cove- type LCZs
mapping.

The aim of this article is to devise and validate a novel,
automated classification technique that utilizes freely accessi-
ble RS data for mapping land-cover-type LCZs. In response
to the challenges posed by expensive manual training sam-
ple collection and the variability in physical-geographical
characteristics across different regions, we introduce a dual-
phase hybrid classification process that integrates decision
rules with a RF ML algorithm. This document will elaborate
on our methodology, exhibit the outcomes from various test
sites, explore the significance of our results, and propose fu-
ture research directions in the context of LCZ mapping and
its role in promoting sustainable urban development. Ulti-
mately, this article explores how to effectively utilize freely
available RS data for LCZ mapping, overcoming the limita-
tions of expensive manual training and accommodating di-
verse physical-geographical characteristics and global weather
patterns.

II. MATERIALS AND METHODS

The entire workflow of the land-cover-type LCZ classification
was implemented in Google Earth engine (GEE) with several
steps including data preprocessing, combining multiple datasets,
defining decision-rules, generating training samples, ML model
development, and model performance evaluation. Fig. 2 displays

Fig. 2. Fully automated land-cover-type LCZ mapping workflow implemented
in GEE.

the simplified workflow of automated land-cover-type LCZ clas-
sification model development process.

A. Study Area

In this article, six experimental sites were selected across
four continents, representing a diverse range of climatic re-
gions, including temperate, equatorial/tropical, and subtrop-
ical areas. This diverse selection aims to evaluate the per-
formance of the decision-rule based model across various
geographical and climatic zones. The experimental sites in-
clude the north-western part of Fresno city in California,
Central Michigan in Michigan, the western part of Phoenix
city in Arizona, the surrounding region of Lagos city in
Nigeria, part of the southern coastal districts in Khulna,
Bangladesh, and the western part of Sydney city in Australia (see
Fig. 3).

B. Data Collection

In this article, primarily GEDI Level 2A RH data, vertical-
vertical (VV) and vertical-horizontal (VH) polarized bands from
sentinel 1, B2-B8, and B11-12 bands from sentinel 2, visible
infrared imaging radiometer suite (VIIRS) night-time day/night
band (DNB) composite band, and several indices derived from
spectral bands, such as NDVI, enhanced built-up and bareness
index (EBBI) etc., were used. Sentinel 1, 2 and night-time light
images for Fresno, Central Michigan, Phoenix, and Sydney re-
gion were taken from July to September in 2022 and their median
image was calculated. However, for Lagos and Khulna region,
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Fig. 3. Location of six experiment sites and sentinel 2 RGB composite bands.

Fig. 4. GEDI RH profile for land-cover-type LCZ categories (LCZ A-F). LCZ G (i.e., waterbody is excluded from analysis).

the date range was taken in between January and February in
2022 in order to get cloud free images. In addition, waterbody
image was extracted from Dynamic World V1 data from GEE
[27]. All datasets were collected and processed using GEE
platform and Google Colab.

1) GEDI Level 2A Data Product: This article used monthly
level 2A processed data products derived from the GEDI mis-
sion, which is a space-based laser mission that aims to char-
acterize the Earth’s ecosystems in 3-D [33]. GEDI Level 2A
data includes RH data at 25-m spatial resolution. RH data
provides information about the vertical distribution of vege-
tation within the GEDI footprint. It represents the heights of
various objects, such as the forest canopy, understory vege-
tation, and the ground surface, relative to a reference point.
In this article, RH 100 (RH100) data was used. RH100 is a
metric derived from GEDI level 2A data that represents the
height at the 100th percentile of waveform energy relative
to ground elevation. It is also referred to as the “maximum

canopy height,” which is the highest point within the vegetation
canopy.

RH100 is a crucial parameter for characterizing forest struc-
ture and understanding ecosystem dynamics, particularly in
estimating forest biomass and carbon stocks. Fig. 4 shows GEDI
RH profile for land-cover-type LCZs.

While GEDI RH data provides valuable information about
specific features, it is not sufficient on its own to fully un-
derstand the nature of those features and characterize each
homogeneous LCZ. Information about neighboring features is
also crucial for discerning both homogeneous and heterogeneous
patterns, which in turn is essential for generating decision rules
to identify homogeneous features and LCZ. For instance, if
the RH of a GEDI shot in a forest area is 25 m and the
average RH of the surrounding points within a neighborhood
is only 3 m, this discrepancy suggests that the features likely
belong to categories like agricultural land, low vegetation, or
scattered trees. To address this, a 250-m circular neighborhood
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was defined for each point, within which the average and
standard deviation of the RH for all points were calculated.
Additional attributes from GEDI level 2A data, including “urban
proportion,” help distinguish between built-up and nonbuilt-
up areas by measuring the percentage of built-up land within
a specific area around each GEDI shot. This measurement
quantifies the level of urbanization in a given area. Further-
more, the proportion of built-up area and its average within a
250-m circular neighborhood were utilized to develop decision
rules.

2) Sentinel 1 Satellite: Sentinel-1 is a satellite mission de-
veloped by the European Space Agency (ESA) that uses SAR to
capture data about Earth’s surface. Sentinel-1 carries a C-band
SAR sensor, which operates at a wavelength of approximately
5.6 centimeters. The SAR sensor has two polarizations: VV
and VH. The VV polarization refers to the transmission and
reception of radar signals with a vertical orientation. It measures
the backscatter intensity of radar waves that are polarized verti-
cally. It is particularly useful for applications such as land cover
classification, monitoring of agriculture and vegetation, and
detection of changes in the environment. The VH polarization,
on the other hand, refers to the transmission of radar signals
with a vertical orientation and the reception of the backscattered
radar waves with a horizontal orientation. VH polarization is
sensitive to the orientation and characteristics of the surface,
including the presence of man-made structures, buildings, and
infrastructure [28]. It is often used for applications such as urban
monitoring, identification of built-up areas, and detection of
infrastructure changes. In this article, both VV, VH, and VV/VH
bands were used in the decision rule and as input parameter in RF
model.

3) Sentinel 2 Satellite: Sentinel-2 is a satellite mission oper-
ated by the ESA that provides high-resolution optical imagery
of Earth’s surface. The sentinel-2 satellite carries a multispectral
sensor, which captures imagery in several spectral bands, each
sensitive to different parts of the electromagnetic spectrum.
These bands are designed to capture information about land
cover, vegetation health, water quality, and other environmental
parameters [25]. In this article, we selected only the bands with
10-m and 20-m spatial resolutions (e.g., B2, B3, B4, B5, B6,
B7, B8, B11, and B12). These bands were then resampled
to a 25-m resolution to make it consistent with GEDI 25-m
spatial resolution data and used it as input parameters for the RF
model.

4) Night-Time Light Data: The VIIRS Nighttime DNB Com-
posites Version 1 data is a product derived from the VIIRS aboard
the Suomi National Polar-orbiting Partnershipsatellite [34]. This
dataset captures low-light imaging, allowing for observations
of atmospheric features, city lights, and other nocturnal phe-
nomena. The DNB capitalizes on moonlight, airglow, and other
and anthropogenic light sources to produce detailed nighttime
imagery. The night light data is useful to separate man-made
features from features, such as built-up areas and forest cover
or agricultural land [35]. As this article mainly targets mapping
non-built-up land-cover-type LCZs, night-time light data plays
a key role in separating man-made artificial and features and
defining the decision-rules.

5) GEE Dynamic World Data: This article used Dynamic
World dataset from GEE to extract specific land cover classes,
such as built-up area, and waterbody [27]. Dynamic world
provides near-real time global 10-m spatial resolution land-cover
data. The built-up footprint was used to exclude built-up areas
from the satellite image and limit the study areas only in nonur-
ban areas targeting land-cover-type LCZs. The waterbody data
was also extracted to exclude the corresponding pixels from all
satellite data. It was used again with classified LCZs to replace
waterbody pixels (i.e., LCZ F class).

C. Data Processing

1) Normalized Difference Vegetation Index: NDVI is a
widely used vegetation index that quantifies the health and
density of vegetation based on the reflectance of different wave-
lengths of light. It is calculated using the NIR and red (RED)
reflectance bands of RS imagery. It is particularly useful to
separate barren land, soil or sand from vegetation in the decision
rules. The calculation of the NDVI raster employs a specific
formula, denoted as

NDVI =
NIR − RED
NIR + RED

. (1)

Here, NIR=Near-Infrared band, Red=Red band. The NDVI
values are multiplied by 10 to make the scale −10 to 10. In
addition, to remove noise in the NDVI data, the top and bottom
10% of NDVI values were trimmed. This process not only served
as a method to reduce the impact of outliers and noise caused
by clouds and other factors but also functioned as a separate
parameter in decision-making rules. Trimming these extreme
NDVI values is beneficial in diminishing the influence of such
anomalies. Moreover, normalizing the data by eliminating these
extremes leads to greater consistency, particularly when compar-
ing different regions on a global scale. This approach ensures a
more accurate and reliable analysis across diverse geographical
areas.

2) Enhanced Built-Up and Bareness Index (EBBI): The
EBBI is another RS index designed to effectively differentiate
built-up areas from bare land in satellite images [36]. It makes
use of the NIR, thermal infrared (TIR), and shortwave infrared
(SWIR) bands to highlight these differences. The EBBI is espe-
cially useful in urban studies and land cover classification. The
EBBI was calculated using

EBBI =
SWIR − NIR

10×√
(SWIR + TIR)

. (2)

Here, SWIR represents the reflectance in the SWIR band, and
NIR represents the reflectance in the NIR. A higher EBBI value
generally indicates built-up areas, while a lower value indicates
bare land.

3) Defining Decision Rules: Decision rules for classifying
GEDI shots into LCZ types were established by determining
threshold values for each parameter. Several decision rules were
generated for each land-cover-type LCZ category. The threshold
values were manually determined by observing the relationship
between each parameter for a specified LCZ class in the study
areas. Example of decision-rules
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LCZ A (Dense forest): urban_proportion_moving_average
< 1 And nighttime < 10 And rh100_moving_average_in_
250m_neighborhood>5 And NDVI10_90_moving_average>9.

In this decision rule, the “urban_proportion_moving_
average” represents the average urban proportion of all
points within a 250-meter circular neighborhood. The “ur-
ban_proportion_moving_average” values must be less than 1,
indicating that the point is outside the urban area. Similarly,
the “nighttime” value must be less than 10, indicating that the
point is not in a built-up area. The “rh100_moving_average_
in_250m_neighborhood” must be greater than 5, which helps
in separating tall trees from short trees. The parameter
“NDVI10_90_moving_average > 9” represents the average of
normalized NDVI values within a 250-m neighborhood sur-
rounding a point. Setting the threshold at nine ensures that
all neighboring trees are healthy, indicating dense vegetation,
classified as LCZ A. For instance, if there is bare land within this
250-m neighborhood, the average NDVI value will fall below 9.
In such cases, the area is classified as LCZ B, characterized by
scattered trees or another LCZ type, rather than dense vegetation.
Fig. 1 in Appendix section displays the RS parameters and
thresholds values that are used to define the decision-rules.

Decision rules were defined by determining threshold val-
ues for various parameters to characterize each land-cover-type
LCZ. These decision rules were then applied across the study
areas to classify all GEDI shots within them. The main objective
of these decision rules was to accurately classify GEDI shots into
LCZ types and generate as many training samples as possible
automatically as ground truth data for ML models. The classified
GEDI shots were used as ground truth/training label data in
a RF model, while the spectral bands from sentinels 1 and 2
and spectral indices were used as input parameters for training
the LCZ classification model. Subsequently, the trained model
was applied to the entire study area to classify LCZ categories.
Therefore, the proposed classification approach is a two-stage
hybrid approach, wherein the training samples are automati-
cally generated using decision rules, and subsequently, an ML
model is trained on these samples to classify LCZs across the
entire study area. The decision to not develop a specific rule
for classifying waterbodies (LCZ G) in our study was made
because waterbodies represent a common land use and land
cover (land-cover) class type, for which several accurate and
globally available data sources already exist. Consequently, this
article utilized the recently available waterbody layer from the
Dynamic World data, ensuring both accuracy and consistency
in our approach to land-cover classification. This workflow can
be adopted to different geographic locations in order to obtain
global LCZ map.

D. Random Forest Model

RF is a versatile and powerful ML algorithm used for
both regression and classification tasks specially in RS field
[8], [22], [24]. It operates by constructing multiple decision
trees during training and outputs the mode of the classes
(for classification) or mean prediction (for regression) of in-
dividual trees for a given input. Its ensemble nature makes

it resistant to overfitting, as it aggregates the predictions of
numerous trees. RF handles missing values effectively and
can manage large datasets with higher dimensionality. It also
provides insights into feature importance, helping in feature
selection and understanding key drivers for predictions. The
generated training samples of each study area were entirely
used to train a RF model. Finally, the trained RF model was
used to classify the entire study areas in land-cover-type LCZ
zones.

E. Validation of Classified Maps

To validate the accuracy and reliability of the output maps
generated from the LCZ classification model, a rigorous vali-
dation process was implemented for each study site. Initially, a
set of 200 random points was generated for every study area.
These points served as the basis for ground truth data collection,
a critical step in the validation process.

For each of these random points, ground truth data were metic-
ulously collected through manual inspection. This involved
analyzing high-resolution Google satellite imagery and, where
available, cross-referencing with additional sources, such as
sentinel 2 (10-m RGB bands) satellite imagery and Google street
view. The manual inspection process was designed to ensure a
comprehensive and accurate understanding of the actual land
cover at each point.

By comparing the model’s classifications at these points
against the manually collected ground truth data, a clear pic-
ture of the model’s performance was obtained. This compar-
ison allowed for the assessment of the model’s precision and
accuracy in correctly classifying each LCZ type. It also pro-
vided an opportunity to identify and understand any patterns
of misclassification or areas where the model might strug-
gle, such as distinguishing between classes with overlapping
characteristics.

This validation process is crucial as it not only measures the
model’s effectiveness in classifying different LCZ types, but
also ensures that the training and decision-making processes of
the model are robust and reliable across varied geographical and
climatic conditions. The outcome of this validation step is crucial
for confirming the model’s utility and applicability in real-world
scenarios across various study sites. It is also vital for ultimately
generating global LCZ data with a finer spatial resolution of
25 m.

F. Accuracy Assessment Metrics

For validation analysis, the following accuracy assessment
metrics were used to validate the model’s output and the classi-
fied maps-

1) Precision Score: Precision is a measure of the model’s
ability to correctly identify positive samples from the total
predicted positive samples. It quantifies the proportion of true
positives (correctly predicted positive samples) out of all sam-
ples predicted as positive. Precision is useful in scenarios where
the cost of false positives is high, and we want to minimize the
number of false positive predictions. Equation (3) was used to
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TABLE I
GENERATED TRAINING SAMPLES FROM EACH STUDY AREA

calculate precision scores

Precision Score =
TP

TP + FP
. (3)

Here, TP represents true positives and FP represents false
positives.

2) Accuracy Score: Accuracy is a measure of overall cor-
rectness in the model’s predictions. It calculates the proportion
of correctly predicted samples (both true positives and true
negatives) out of the total number of samples. Accuracy provides
an overall assessment of the model’s performance across all
classes. Equation (4) was used to calculate accuracy scores

Accuracy score =
TP + TN

TP + TN + FP + FN
. (4)

Here, TN and FN represent true negatives, and false negatives,
respectively.

3) Recall: Recall, also known as sensitivity or true positive
rate, is a performance metric used in classification tasks to
measure the proportion of actual positives correctly identified
by the model. Equation (5) was used to calculate recall

Recall =
TP

TP + FN
. (5)

4) F1 Score: The F1 score is a harmonic mean of precision
and recall, providing a single metric that balances the tradeoff
between the two. It is especially useful in scenarios where either
false positives or false negatives have significant consequences.
The F1 score ranges from 0 (worst) to 1 (best), with 1 indicating
perfect precision and recall. Equation (6) was used to calculate
F1scores.

F1 = 2× Precision × Recall
Precision + Recall

. (6)

III. RESULT AND DISCUSSION

Predefined decision rules for land-cover-type LCZs (i.e., LCZ
A-F) were employed to classify GEDI points, aiming to auto-
matically gather as many training samples as possible for all
six study areas. Table I given the number of training samples
generated using these decision rules. For Fresno in CA, the
decision rules were able to classify 40% of the shots; for Phoenix,
it was 81%; for Central Michigan, it was 41%; for Khulna,
it was 70%; for Lagos, it was 84%; and for Sydney, it was
60%. The decision rules ensured that the points were correctly
classified, and the ambiguous points, which were difficult to
classify based on the decision rules, were left out. The results
indicate that a substantial quantity of training samples can be
automatically generated via the decision rules. While some noise
emerged during this process, its impact is likely minimal given
the vast number of correctly classified samples. It’s assumed
that the noise is counteracted by the overwhelming volume of
accurately classified samples. To validate the accuracy of these
generated training samples, the classified maps ware compared
with validation data. The validation data was derived manually
from the Sentinel’s 10-mr RGB composite bands and Google
Maps satellite imagery.

Table II gives the number of training samples generated by
decision rules for land-cover-type LCZs in each study site. In
the Fresno area, there were no training samples in LCZ E type
as there is no bare rock. The dominant category is LCZ C,
scrub/bush/sort woody trees. Based on observation of Google
Map Street view imageries in May and October 2023, we found
heavy presence of short woody trees, possibly fruits trees in the
areas. The second most dominant class is dense forest (LCZ A).
The average height of the LCZ A is greater than 3 m [2]. We
have found an abundance of dense and tall fruit trees in the areas
which belong to LCZ A. The classified points for each LCZ type
are visualized in Fig. 5. It can be observed from Fig. 5 that the
decision rules can classify each GEDI point into LCZ types. LCZ
A image patch presents classified GEDI shots primarily for dense
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TABLE II
NUMBER OF TRAINING SAMPLES GENERATED FOR EACH LCZ TYPE IN EACH STUDY STIES BY DECISION-RULES

Fig. 5. Classified GEDI points for each LCZ type by decision-rules. LCZ G (waterbody) excluded.

forest, LCZ B presents classified urban parks, LCZ C presents
bush/scrub/short woody trees, LCZ D presents classified shots
for low plant/agricultural land, LCZ E presents bare rock and
LCZ F present bare soil/sand. While there may be noise in
the generated training samples, the overwhelming number of
correctly generated training samples may suppress the noise in
the ML model. Therefore, it can be concluded that the decision

rules are effective in automatically generating training samples.
These classified GEDI points can be used as ground truth data
in the ML model to classify LCZs for the entire area.

Fig. 6 displays box plot of f1, precision and recall scores for
each LCZ class. It can be seen that in all six study sites, the
average f1, precision, and recall scores for LCZ A, C and F is
above 85%.
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Fig. 6. Box plots of average, 25th and 75th percentile f1, precision and recall scores for each LCZ class. The scores are calculated based on ground truth data.

Fig. 7. Overall accuracy score for each study site.

The scores for LCZ B are the lowest in all six study areas
as large, scattered trees are usually mixed-up with low plant,
vegetation and dense trees. The characteristics of LCZ B are also
similar to LCZ C (i.e., bush/scrub/short woody trees) except for
their height difference (see Fig. 1). Therefore, it is difficult to sep-
arate LCZ B using RS data. Among all six experimental sites, the
LCZ E (bare rock) is only present in Phoenix. Therefore, scores
for this category are represented only for Phoenix. We found that
in the rocky hill, there is presence of bush/scrub (i.e., LCZ C).
Therefore, it is difficult to assign those areas in either LCZ C or
LCZ E.

However, high slope and low NDVI scores helped to accu-
rately identify and classify LCZ E.

Fig. 7 displays overall accuracy scores for the six study sites.
It can be seen that overall accuracy is lowest 78% in Lagos
and highest 93% in Phoenix. Several reasons are behind the
low accuracy in Lagos area including poor image quality and
ambiguous surface features. Besides, it is difficult to acquire

Fig. 8. (a) Classified LCZ map (left) along with (b) corresponding sentinel 2
RGB band composite images (right) for Phoenix, Arizona.

cloud free images over that region and we had to change the
selected months (i.e., May to October) and choose only Jan-
uary and February to acquire cloud free images for Lagos.
Overall, the accuracy scores of all six study areas are above
75% based on validation data which indicates the proposed
method is capable of automatically generating land-cover-type
LCZ map regardless of physical, geographical and climatic
variation.

Fig. 8 displays the classified map for Phoenix, Arizona,
alongside the sentinel 2 RGB band composite. Upon visual
examination, the model appears to have successfully classified
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Fig. 9. (a) Classified LCZ map (left) along with (b) corresponding sentinel 2
RGB band composite images (right) for Central Michigan.

all categories, particularly the agricultural land/low plant (i.e.,
LCZ D), rock/paved surface (LCZ E) and bush/scrub (i.e.,
LCZ F). Some minor misclassifications between bush/scrub
(LCZ F) and bare soil/sand (LCZ G) can be observed. How-
ever, these classes often exhibit overlapping characteristics,
which can lead to such misclassifications (referencing LCZ
C and F in Fig. 1). LCZ B - open setting trees or scattered
trees seems to be correctly classified by the model. Fig. 2 in
Appendix section shows the classified map for the entire study
area.

In Central Michigan (see Fig. 9), there’s a significant presence
of scattered trees (i.e., LCZ B). The dominance of this category
might be attributed to the presence of woody trees or weeds
within the agricultural land. Dense forest cover (i.e., LCZ A)
is another dominant class as we can see the presence of dense
forest cover in the RGB image. In addition, agricultural land
stands out as another dominant class. Overall, the classification
seems to accurately present the LCZ classes in the ground for
that specific time-period. Fig. 3 in Appendix section shows the
classified map for the entire study area.

In Fresno, CA (see Fig. 10), the dominant classes are dense
forest (LCZ A) and scattered trees (LCZ B). As observed in
the Phoenix and Central Michigan regions, the prominence of
short woody trees or weeds within agricultural lands might
account for the prevalence of this category in the Fresno area.
In addition, it appears that some agricultural land (LCZ D)
has been misclassified as dense Tree (LCZ A) or scattered
Trees (LCZ B). This situation is particularly perplexing because,
based on the satellite image, these areas seem to be agricultural
plots with crops. Nevertheless, upon a visual inspection using
Google satellite imagery and Google Street View (street view
image: May, 2023), we have identified a significant presence of

Fig. 10. (a) Classified LCZ map (left) along with (b) corresponding sentinel
2 RGB band composite images (right) for Fresno, CA.

dense and tall fruit trees in the areas, which closely resemble
either dense trees (LCZ A) or scattered trees (LCZ B). Despite
these plants initially appearing to be agricultural crops (LCZ
D) in the satellite image, their actual height exceeds 3 m,
categorizing them as either LCZ A or B (representing dense
or scattered trees with an average height greater than 3 m).
Therefore, these areas have been correctly classified into their
respective LCZ types based on the criteria (see Fig. 1). Fig. 4
in Appendix section shows the classified map for Fresno study
area.

In Khulna (see Fig. 11), satellite images were captured be-
tween January and February in 2022. In contrast, the water-body
imagery from the Google dynamic worldview database was
taken from July to September, a period that aligns with the
rainy season. Consequently, a significant portion of the area
appeared as a waterbody. The predominant classes are low
plant/agricultural Land (i.e., LCZ D) and dense trees (i.e., LCZ
A). In this region, small settlements are enveloped by large
trees, complicating the differentiation of settlements. As a result,
some settlements might have been mistakenly classified under
the dense tree category. Nevertheless, the classification appears
reliable based on visual assessments of satellite imagery. Fig. 5
in Appendix section shows the classified map for Khulna study
area.

Similar to Khulna, the satellite images for the Lagos area
were captured between January and February 2022. However,
the waterbody imagery sourced from the Google dynamic world-
view database dates from July to September, coinciding with the
rainy season. As a result, a substantial portion of the area was
identified as a waterbody (see Fig. 12). Upon closer examination
of the satellite images, we observed an abundance of both
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Fig. 11. (a) Classified LCZ map (left) along with (b) corresponding sentinel
2 RGB band composite images (right) for Khulna.

Fig. 12. (a) Classified LCZ map (left) along with (b) corresponding sentinel
2 RGB band composite images (right) for Lagos.

large and small woody trees that contribute to dominance of
LCZ A & B class. Overall, the classification appears to be
reliable based on a visual assessment of the satellite imagery.
Fig. 6 in Appendix section shows the classified map for Lagos
area.

In the Western Sydney region (see Fig. 13), Dense Trees
(i.e., LCZ A) and Scattered Trees (i.e., LCZ B) are the pre-
dominant classes. A significant portion of the area is covered

Fig. 13. (a) Classified LCZ map (left) along with (b) Corresponding Sentinel
2 RGB band composite images (right) for Sydney.

by settlements, which were excluded from our analysis, but
included at the post classification stage from dynamic world
land-cover data. A detailed examination of the satellite im-
agery reveals an abundance of both large and small woody
trees in this region. Overall, the classification appears accurate
based on a visual assessment of the satellite images. Fig. 7
in Appendix section shows the classified map for Sydney
area.

IV. CONCLUSION

This article introduces an automated mapping approach using
decision rules and ML to identify select LCZ classes, such as
dense tree, scattered tree, bush/scrub/short woody trees, low
plant/agricultural land, bare rock/paved, and bare soil/sand.
Decision rules were formulated by manually selecting thresholds
for various parameters, such as RH and NDVI. After generating
training samples, a RF model was trained to categorize these
chosen LCZ classes. Six experimental sites were selected
spanning both the Northern and Southern hemispheres, as
well as tropical/equatorial regions. The experiments yielded
promising outcomes across the six sites, with an average
accuracy exceeding 75%. A two-stage validation by ground
truth data and visual inspection of high-resolution imageries
affirmed the efficacy of the automated model, demonstrating
its capability to accurately classify detailed vegetation covers
and the chosen LCZ classes. However, sourcing high-quality
satellite images can be challenging in some parts of the
world, which can impact the classification process, leading
to relatively poor results. In the future, this model could
be expanded to classify other LCZ classes and contribute to
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generating global scale 25-m spatial resolution LCZs maps. This
hybrid model, combining automated decision rules with ML,
presents a viable alternative to supervised classification, where
manually collecting training data can be both tedious and error
prone.

APPENDIX

In Fig. 14, the orange lines represent the threshold values se-
lected for various parameters, which are instrumental in defining
the decision rules for categorizing areas into different LCZs.
For example, in the case of LCZ C, which typically includes
bush or scrub in desert areas, night-time light data is utilized
as a crucial parameter. The rationale behind this is that such
areas are expected to be devoid of artificial lights. Conversely,

in LCZ B, which encompasses areas with scattered trees, such as
urban parks, golf courses, and cemeteries, artificial lights may
be present. Therefore, in these zones, night-time light data is not
a primary parameter.

The selection of these threshold values is a meticulous pro-
cess, involving manual examination of various characteristics
observed in different RS bands and indices. This detailed analy-
sis is essential to establish accurate decision rules that effectively
classify GEDI shots into their respective LCZ zones. Each
orange line signifies the specific threshold established for a
parameter, aiding in the differentiation and classification of areas
based on their unique characteristics and RS data. For LCZ A,
there are total three distinct decision-rules that were defined to
accurately detect medium large and dense trees (LCZ A_1), large
trees (LCZ A_2) and large dense trees (LCZ A_3).

Fig. 14. Display the parameters and thresholds used to define the distinct decision-rules for each land-cover-type LCZs. The orange line indicates the threshold
values and the highlighted lime color lines indicates which parameters are used to define the decision-rules for each LCZs. N.B. the parameters are not converted
into common scale. The legend of each figure indicates the type of LCZ.
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Fig. 15. Classified land-cover type-LCZ map of Phoenix, AZ and sentinel 2 RGB composite bands.
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Fig. 16. Classified land-cover type-LCZ map of Central Michigan and sentinel 2 RGB composite bands.
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Fig. 17. Classified land-cover type-LCZ map of Fresno, CA and sentinel 2 RGB composite bands.
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Fig. 18. Classified land-cover-type-LCZ map of Khulna, Bangladesh and sentinel 2 RGB composite bands.
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Fig. 19. Classified land-cover-type-LCZ map of Lagos, Nigeria and sentinel 2 RGB composite bands.
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Fig. 20. Classified land-cover type-LCZ map of Sydney, Australia and sentinel 2 RGB composite bands.
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