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Masked Feature Modeling for Generative
Self-Supervised Representation Learning of
High-Resolution Remote Sensing Images

Shiyan Pang , Hanchun Hu , Zhiqi Zuo , Jia Chen , and Xiangyun Hu

Abstract—Intelligent interpretation of remote sensing images
using deep learning is heavily reliant on large datasets, and models
trained in one domain often struggle with crossdomain application.
Pretraining the backbone network via masked image modeling
can effectively diminish this reliance on extensive sample data,
thereby reducing crossdomain transfer obstacles. However, current
masked image models typically employ a pure Transformer archi-
tecture, which may not fully capitalize on low-level features. To
address these issues, this article proposes masked feature modeling
(MFM), a methodology for the generative self-supervised learning
of high-resolution remote sensing images that combines convo-
lutional neural network (CNN) and Transformer architectures.
This methodology has several advantages: 1) The hybrid CNN +
Transformer architecture not only retains the advantages of the
local feature representation of the CNN architecture but also has
the full-text information modeling capabilities of the Transformer
architecture; 2) the feature extraction network outputs multiscale
features, and it is easier to add upsampling and a skip connection to
improve the accuracy of the downstream dense prediction task; and
3) the pretrained MFM can be applied to various downstream tasks
through fine-tuning with limited samples. The publicly available
WHU and Massachusetts Building Datasets are used to verify the
effectiveness of the proposed method. Extensive experiments in-
volving main properties of the MFM for generative self-supervised
learning, fine-tuning the MFM on the downstream semantic seg-
mentation task, and comparisons with the other state-of-the-art
generative self-supervised learning algorithms show that, through
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the combined advantages of the CNN and Transformer architec-
tures, the proposed method has better feature extraction capability
and higher accuracy on downstream tasks such as semantic seg-
mentation.

Index Terms—Generative self-supervised learning (SSL), mas-
ked feature modeling (MFM), remote sensing, semantic segmenta-
tion, transformer.

I. INTRODUCTION

W ITH the continuous development of remote sensing tech-
nology, the number of remote sensing images captured

by high-resolution satellites has surged. Optimal interpretation
of these high-resolution remote sensing images has become a
hotspot of research. In recent years, intelligent interpretation
technology for remote sensing images has developed rapidly
due to in-depth research on deep learning. In various deep
learning-based tasks, the backbone network is used for feature
extraction, and the extracted features are then sent to downstream
tasks, such as image classification, target detection, and image
semantic segmentation. In this process, due to the high number
of parameters of the backbone network and the high training
difficulty, it is usually necessary to load pretraining parameters.
These pretraining parameters are obtained by training with larger
datasets (such as ImageNet) and have strong feature represen-
tation capabilities, which greatly reduces the training difficulty
of the network. In the field of remote-sensing image processing,
when faced with new tasks without sufficient ground-truth in-
formation, it is necessary to obtain the pretraining parameters of
the backbone network through self-supervised learning (SSL)
to improve the feature extraction capability of the backbone
network.

SSL has become a popular research topic in deep learning.
Unlike supervised learning, SSL does not require ground-truth
information. Its supervision information comes from itself or
its representation characteristics, and the feature extraction ca-
pability of the model is improved by designing auxiliary tasks.
In computer vision, early examples of SSL have been achieved
through contrastive learning, in which data is first augmented
to obtain positive and negative samples and then compared
with positive and negative samples in the latent feature space.
A contrastive loss function is set to reduce the distance from
positive samples and extend the distance from negative samples,
so that the model learns the feature representation of the data. In
natural language processing (NLP), generative SSL methods, of
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which masked language modeling in BERT is a representative
example, have achieved great success. These methods allow
the model to learn to predict the specific content of random
masked words. This approach has now become the standard
pretraining paradigm in NLP. Inspired by BERT, this simpler
and more efficient method of generative SSL has also become
the focus of current SSL research in computer vision. Currently,
many masked image models that follow the mask-reconstruction
paradigm have been proposed, such as masked autoencoder
(MAE) and BEiT. These methods divide the image into blocks,
mask some of them, and then use the encoded unmasked blocks
to predict the masked ones, which enhances the model’s feature
extraction capability.

However, current masked image modeling methods are pri-
marily based on the Vision Transformer (ViT) architecture.
Compared with convolutional neural networks (CNNs), a pre-
trained ViT model often has weaker local feature extraction
capabilities in downstream tasks and is prone to losing image
details during the global modeling process. Currently, an in-
creasing number of studies have demonstrated that combining
CNNs with Transformer architecture not only preserves the
inherent locality of convolution but also addresses the issue that
convolution-based networks struggle with effectively modeling
long-range relationships. This combined approach has shown
promising results in dense prediction tasks such as semantic
segmentation.

To pretrain the parameters of a hybrid CNN-Transformer
model, in this study, we introduce masked feature modeling
(MFM), a generative SSL method suitable for remote sensing
images. MFM masks the high-order features extracted by the
CNN and predicts the low-level features of the image. The
contributions of this work are summarized as follows.

1) We propose a MFM for generative SSL based on a hybrid
architecture of CNN and Transformer. The architecture
fully combines the advantages of CNN’s local feature
representation and Transformer’s global modeling, and
has stronger feature extraction capabilities. In contrast
with previous methods of masked image modeling, the
proposed method directly masks some of the features
extracted by the CNN and predicts the original image
from the unmasked features. This masking method is more
suitable for the hybrid CNN + Transformer architecture,
and it more easily obtains high-order features with good
representation.

2) The hybrid CNN + Transformer architecture outputs mul-
tiscale image features, and it is easier to add upsampling
and “skip connection” modules to build a U-Net [1] archi-
tecture network that is suitable for dense prediction tasks
and improves the accuracy of the downstream semantic
segmentation of remote sensing images.

3) The proposed method is more accurate than other gen-
erative SSL methods on two publicly available datasets,
namely, the WHU and Massachusetts Building datasets.

The rest of this article is organized as follows. Section II
describes the related work of SSL. Section III gives the details
of our proposed method. The experimental results and analysis
are given in Section IV. Finally, Section V concludes this article.

II. RELATED WORK

SSL can effectively alleviate the high dependence on anno-
tated samples and has become a research hotspot in the field
of remote sensing. SSL is widely used in remote-sensing scene
classification [2], [3], [4], [5], [6], [7], [8], [9], image classifica-
tion [10], [11], [12], [13], [14], [15], [16], [17], [18], semantic
segmentation [19], [20], [21], [22], change detection [23], and
target recognition [24], [25]. At present, there are two main
representative SSL schemes, namely, contrastive and generative
SSL methods.

A. Contrastive SSL Methods

In contrastive SSL methods, multiple augmented views of the
same sample are first obtained through data augmentation. Here,
different views of the same sample are taken as similar pairs,
while views of different samples are taken as dissimilar pairs. A
contrastive loss function is then constructed to keep similar pairs
close in the latent feature space and dissimilar pairs far apart in
the latent space. This enables the learning of effective image
high-order feature representations from unlabeled samples. For
the scene classification task, Kang et al. [2] proposed a new
unsupervised deep metric learning model called the spatially
augmented momentum contrast model, or SauMoCo, to char-
acterize unlabeled remote sensing scenes. Jung et al. [3] intro-
duced a remote-sensing contrastive SSL method with smoothed
representation based on the SimCLR framework, which uses
multiple input images and averages their representations. Li
et al. [4] introduced the end-to-end self-supervised contrastive
learning-based metric learning network, or SCL-MLNet, for
few-shot remote-sensing scene classification. Wang et al. [5]
proposed a few-shot remote-sensing scene classification named
the class-shared sparsePCA classifier, or CSSPCA, to train a
feature extractor in the case of few training samples. Xiao
et al. [6] proposed a simple and effective SSL algorithm,
named Lite-SRL, for the scene classification task, designing a
lightweight contrastive learning structure and adopting the stop-
gradient operation to reduce the calculation cost. For synthetic
aperture radar (SAR) and optical images, Stojnić and Risojević
[8] adopted contrastive multiview coding for self-supervised
pretraining to obtain the remote-sensing scene representation
and obtained better results on the downstream classification task
for remote sensing images than for natural scenes. In addressing
the problem of limited and small hyperspectral samples, various
researchers [10], [11], [12], [13], [14], [15] have used different
augmentation methods to construct pairs of augmented views
from a hyperspectral sample, conducted contrastive learning
in the pretraining stage, and finally used the learned features
for hyperspectral image classification. Furthermore, Guan and
Lam [16] studied a crossdomain contrastive learning framework
to extract domain-invariant information in a crossdomain dis-
crimination task. In terms of SAR and optical data fusion, Chen
and Bruzzone [17] proposed a self-supervised framework for
SAR–optical data fusion and land-cover mapping tasks. In this
framework, a multiview contrastive loss at image level and super
pixel level was first used to fuse the SAR and optical images, and
each pixel was then assigned a land-cover class by the joint use of
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pretrained features and spectral information of the image itself.
For PolSAR image classification, Zhang et al. [18] explored the
learning of transferrable representations from unlabeled PolSAR
data through CNN. In terms of high-resolution image semantic
segmentation, Li et al. [19] proposed a global style and local
matching contrastive learning network, named GLCNet, for the
semantic segmentation of remote sensing images. Gao et al. [20]
proposed an unsupervised domain adaptation framework for the
semantic segmentation of remote sensing images, which is based
on the consistency principle. Cha et al. [22] proposed a mul-
timodal algorithm for SAR semantic segmentation, leveraging
both electro-optical imagery and SAR imagery alongside a label
mask. In terms of change detection, Saha et al. [23] focused
on the combination of images acquired by optical and SAR
sensors and proposed a multisensor change detection method.
This method used only unlabeled bitemporal images of objects,
adopting deep clustering and contrastive learning methods to
train the network in a self-supervised manner. In terms of target
detection, the authors in [24], [25], and [26] have effectively
reduced the number of labeled samples required for target de-
tection through contrastive SSL. In addition, Manas et al. [27]
introduced seasonal contrast, a method that enhanced contrastive
learning by treating images of the same location at different
times as similar pairs. This approach led to superior performance
over ImageNet pretraining and other self-supervised methods in
multiple downstream tasks.

B. Generative SSL Methods

The generation models mainly consist of flow-based models,
autoregressive (AR) models, and masked image models.

Flow-based models estimate complex high-dimensional den-
sities from data by transforming simple base distributions
through the use of invertible transformations with a deterministic
mapping. This allows them to learn a sequence of transforma-
tions that gradually convert a simple distribution, such as a stan-
dard Gaussian, into a complex target distribution that matches
the data. For example, NICE [28] designs affine transformations
to parameterize the data distribution.

AR models can predict new data based on previous data,
which can model context dependence well. PixelRNN [29]
and PixelCNN [30] model images pixel by pixel using RNNs
and CNNs, respectively. These models assume that there is a
dependency between pixels, and that the current pixel value
is related to the previous pixel value in the process of gen-
erating the image, which is expressed in the form of an AR
model.

The current mainstream generative SSL is the masked image
model (MIM), which this article primarily investigates. MIM
realizes feature learning by reconstructing the original data
from the corrupted input. BEiT [31], which adopted the ViT
architecture as the backbone network, was the first MIM used in
computer vision. In this model, the image was first represented
as a sequence of discrete tokens, a fraction of image patches
were then masked randomly, and the visual tokens of the masked
image patches were predicted through masked image modeling.

Subsequently, the algorithm of MAE proposed by He et al. [32]
achieved some success in computer vision. This algorithm has
three notable characteristics. First, the algorithm adopts the ViT
architecture to directly mask and position the original image, in-
stead of converting the image blocks into discrete tokens, which
is simpler and more effective. Second, the strategy of randomly
masking most image blocks reduces information redundancy,
resulting in a challenging self-supervision task, such that the
trained model goes beyond low-level image statistics. Third, the
algorithm has an asymmetric encoder–decoder structure, which
only performs encoder operations on visible image blocks (i.e.,
blocks without masks) and, thus, reduces the time and mem-
ory costs. Subsequently, Cong et al. [33] proposed SatMAE,
a pretraining framework for temporal or multispectral satellite
imagery based on MAE. SatMAE includes a temporal embed-
ding along with independently masking image patches across
time, and encoding multispectral data as groups of bands with
distinct spectral positional encodings. On the basis of the MAE
algorithm, Xue et al. [34] proposed a self-supervised feature
learning architecture for multimodal remote sensing imagery,
which extracts meaningful high-level feature representations
from multiview data and combines the learned features with the
corresponding spectral information for land-cover classification.
The SimMIM algorithm [35] uses the same masking strategy,
the differences being that the block to be masked is replaced
by a learnable vector, the encoder processes all blocks, and the
decoder uses simple linear layers; this algorithm also performs
well. The subsequently developed MaskFeat algorithm [36] uses
the histogram of oriented gradient features of the image as the
prediction target and has been shown to be more accurate than
the MAE and SimMIM algorithms on the ImageNet dataset.
This demonstrates that some handcrafted features may be more
helpful for machines to understand the image information. The
context autoencoder (CAE) [37] strictly separates the represen-
tation learning (encoding) role from the pretext task completion
role, such that the encoder is only responsible for learning
image features in the process of SSL and the generalization
ability of the model on downstream tasks is improved. Due
to the abundance of small targets in remote sensing images,
Sun et al. [38] introduced a masking strategy that reserves
random pixels within masked regions to preserve small target
information. Liu et al. [39], on the other hand, proposed a
self-supervised multilevel feature fusion method that enhances
low-frequency semantic information capture by using shallow,
low-level features to aid pixel reconstruction.

The above MIMs learn meaningful high-level feature repre-
sentations from images, reducing the use of annotated samples
on downstream tasks. However, the current MIMs are basically
pure Transformer frameworks, and Transformers are born with
a global self-attention mechanism, but due to insufficient low-
level features, resulting in limited local localization capabilities.
This article, therefore, presents the design of MFM for the gener-
ative SSL of high-resolution remote sensing images based on the
fusion of CNN and Transformer architecture. This method fully
combines the advantages of CNN’s local feature representation
and Transformer’s global modeling, and obtains better results.
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Fig. 1. Network structure of the proposed MFM for the generative SSL of high-resolution remote sensing images.

III. METHODOLOGY

This article proposes an MFM for the generative SSL of
high-resolution remote sensing imagery. The proposed method
comprises six parts. Among them, Parts A–D are the components
of network structure of the proposed MFM, as shown in Fig. 1,
Part E is the loss function, and Part F is the model evaluation,
which is realized by the fine-tuning of the MFM on the down-
stream task. Each part is described as follows.

A. CNN-Based Feature Extraction

The aim of the convolution feature extraction module is to
obtain small-size, high-dimensional convolutional features from
the original image. In this specific implementation, we use the
classic ResNet50 as a feature extraction module, and we use
the hierarchical structure of convolution kernels to learn local
spatial context information of varying complexity, such as infor-
mation from simple low-level edges and textures to high-level
semantic patterns. This multilevel local feature helps the model
to understand the image and plays an important role in pixelwise
prediction tasks such as semantic segmentation.

In our method, a slight change is made to the structure of
ResNet50, such that the size of the feature map output by
ResNet50 is increased from the original size of 7× 7 to 14× 14.
Dividing the 14 × 14 feature map into patches yields the same
number of patches (e.g., 196) as in the ViT architecture, and the
use of finer patches avoids the loss of too much local information.
Here, we let x be the input original image. Its height (e.g.,
224) and width (e.g., 224) are denoted W and H , respectively,
and it has three channels. The height (e.g., 14), width (e.g.,
14), and number of channels of the feature map obtained after
feature extraction through ResNet50 are denoted H/16,W/16,
and C, respectively. Here, the feature map is denoted g(x). The

Fig. 2. ResNet50 with different structures. (a) Original ResNet50 struc-
ture [40]. (b) ResNet50 structure used in this study.

relationship between g(x) and x is then expressed as follows:

g(x) = Resnet50(x) (1)

where x ∈ RH×W×3, g(x) ∈ RH/16×W/16×C , and ResNet50 is
the CNN-based feature extraction module. The detailed structure
is shown in Fig. 2.

B. Feature Masking

Unlike other generative SSL methods that directly mask the
original image, our method masks the high-order convolutional
features of the image. For the 14 × 14 feature map extracted
by the above CNN, the feature map is first divided into patches
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and flattened into a sequence of feature vectors with a length
of 196, and the feature vectors in the sequence correspond
one-to-one with the patches divided by the feature map. Our
masking method follows the masking strategy of the MAE
algorithm in that sequences of length 196 are randomly sampled
according to a certain mask ratio. The sampled feature vectors
are masked (e.g., deleted), and the unsampled remaining feature
vectors form an unmasked sequence, which is considered the
unmasked part of the feature map. In this masking method,
in the Transformer-based feature encoding stage, the encoder
only processes the unmasked blocks, which greatly accelerates
the training and reduces the computational cost. In addition,
because the Transformer block in the encoder only performs
feature encoding, the task of predicting the original image is
completed by the decoder. Separating the representation learning
of feature extraction from the pretext task of predicting pixels
improves the feature extraction capability of the encoder.

The flattened feature sequence P is calculated as follows:

P = flatten (Conv1×1 (g(x))) (2)

where Conv1×1 represents a convolution with a convolution
kernel size of 1 × 1 and a stride of 1, and flatten converts the
2-D 14 × 14 feature map to a 1-D sequence of length 196.
The flattened feature sequence P = {p1, p2, p3, . . ., pn, n =
H/16×W/16} ∈ Rn×C . After P is acquired, the generated
mask matrix is used for feature masking. The masked feature
sequence P ′ is calculated as follows:

P ′ = P ×MT (3)

M =

{
m1,m2,m3, . . .,mn, n =

H

16
× W

16

}
,m ∈ {0, 1}

(4)

whereM is the mask matrix, which is a 1-D matrix with elements
of 0 and 1 representing masked patches and unmasked patches,
respectively. The numbers of zeroes and ones are calculated
using the mask ratio, and the positions of these values in the mask
matrix are randomly assigned. The final unmasked sequence P ′′

is calculated as follows:

P ′′ = {pi1, pi2, pi3, . . . , pik} , pi ∈ P ′ ∩ pi �= 0 (5)

where any element pi in {pi1, pi2, pi3, . . . , pik} corresponds to
one of the patches divided by the feature map, and k in the
subscript ik is the number of unmasked patches in the feature
map.

C. Transformer-Based Encoder

The Transformer-based encoder is the same as the standard
ViT and comprises a series of stacked Transformer blocks. This
Transformer block only processes unmasked sequences. After
adding position embedding, the unmasked sequences are then
encoded to further extract more important high-order features
with full-text information. Due to the large mask ratio in the
experiment, this is a challenging task for the encoder. After suf-
ficient training, the encoder develops a strong feature extraction
ability.

Fig. 3. Structure of the decoder.

The Transformer block used in this study is the standard
Transformer block from the ViT architecture, which comprises
two LayerNorm layers, a multihead attention mechanism, and a
multilayer perceptron (MLP) layer. The input and output feature
sizes of each Transformer block are the same. The Transformer-
based encoder comprises a series of stacked Transformer blocks.
The calculation of each Transformer block is as follows:

Z1 = P ′′ + MultiHead (LayerNorm (P ′′)) (6)

Z2 = Z1 + MLP (LayerNorm (Z1)) (7)

where MultiHead represents the multihead attention mechanism,
LayerNorm is a function that normalizes the data of the tensor,
MLP is a multilayer perceptron, Z1 is the result calculated
through the Transformer attention mechanism, and Z2 is the
output of the Transformer block. P ′′ is the unmasked sequence
obtained in Part B, P ′′ is only used as input to the first Trans-
former block, and the input of the remaining Transformer blocks
is the output of the previous block. The calculation of MultiHead
is as follows:

MultiHead(p) = Concat (head1(p), . . . , headh(p)) (8)

where Concat represents feature concatenation, headi is a single
attention head, MultiHead is the multihead attention obtained by
concatenating multiple attention heads, and p is the input vector
of the multihead attention. Here, headi is calculated as follows:

headi(p) = Attention (Qi,Ki, Vi)

= Attention
(
pWQ

i , pW k
i , pW

V
i

)
(9)

where Attention is the attention calculation function;WQ
i ,WK

i ,
and WV

i are weight matrices; and vectors Qi, Ki, and Vi are
calculated from the input vector P and the three weight matrices
WQ

i , WK
i , and WV

i . The calculation of Attention is as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (10)

where softmax is the column-by-column normalization function,
Q is the query vector, K is the vector of the correlation between
the queried information and other information, V is the vector
of the queried information, and dk is the dimensionality of K.

D. Decoder

The decoder used in this study is a hybrid network of the
Transformer-based decoder and CNN-based upsampling (TR-
CNNs) and is shown in Fig. 3. The decoder reconstructs the
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original image information through the unmasked feature se-
quence with full-text information, including a Transformer-
based decoder module and a CNN-based upsampling module.
The Transformer-based decoder module recovers the masked
feature sequence, whereas the CNN-based upsampling module
generates the predicted image.

In the previous section, Z2 was the encoded sequence, con-
taining only the unmasked patches. Before entering the decoder,
the masked patches are filled with zeroes to form a complete
sequence. Here, let Z3 be the complete sequence after filling.
The detailed calculation of the overall decoder is as follows:

Z4 = Conv3×3 (reshape (TR (Z3))) (11)

Z5 = Conv3×3 (Conv3×3 (Upsample (Z4))) (12)

Z6 = Conv3×3 (Conv3×3 (Upsample (Z5))) (13)

Z7 = Conv3×3 (Conv3×3 (Upsample (Z6))) (14)

Z8 = Conv1×1 (Conv3×3 (Conv3×3 (Upsample (Z7)))) (15)

where Upsample is the upsampling function, Conv represents the
convolutional layer, reshape refers to readjusting the number of
rows, columns, and dimensions of the matrix, TR represents six-
layer stacked Transformer blocks, and the calculation process of
the Transformer blocks is presented in Part C. TR reconstructs
the masked feature sequence based on the unmasked feature
sequence with full-text information, and Z4 denotes the de-
coded features. The image features decoded by the Transformer
architecture are upsampled to reconstruct the original image
through four stages of convolution and upsampling blocks. The
feature maps obtained in the four stages are Z5, Z6, Z7, and
Z8, and Z8 is the predicted image that is the output of the
model.

E. Loss Function

In current mainstream generative SSL methods, the masked
content is usually consistent with the prediction. For example,
the MAE algorithm masks the original color image, and the
final prediction of its model is also the pixel value of the masked
patch. In our method, the masked content is the high-order image
features obtained by the CNN, but the prediction is image pixels.
This SSL method of masking high-level features and predicting
low-level features was shown to be effective in our experiments.
In the back-propagation of the loss calculation, the two modules
of the CNN-based feature extraction and Transformer-based
encoder are optimized simultaneously.

Our method considers only the masked patches when calcu-
lating the loss function. We need to process the mask matrix
M by reshaping M from a 1-D sequence of h/16× w/16 to a
2-D matrix of [h/16, w/16] and then enlarging the size of the
2-D matrix to the original size [h,w] to obtain the mask matrix
M0 corresponding to the original image. The loss function
calculation based on the mask matrix M0 is as follows:

Loss =

∑n
i=1 |f (xi)− xi| · (N −M0)

Sum (N −M0)
(16)

Fig. 4. Network structure of the downstream semantic segmentation task.

where N is a 2-D matrix having the same size as M0, all values
in the matrix are 1,N −M0 is a 2-D matrix with masked regions
of 1, · represents matrix dot multiplication, Sum is the sum
operation of matrix elements, xi is the original image of the
input, and f(xi) is the predicted image, which is consistent with
the meaning of Z8 in (15).

F. Model Evaluation

The aim of our method is to improve the representation
learning ability of the pretrained MFM model, and we thus
directly evaluate the accuracy of the fine-tuned MFM model on
the downstream semantic segmentation task. We use the same
dataset in the MFM for SSL and the downstream task, i.e., we
adopt a “self-pretraining” strategy. In the MFM for SSL, only
original images are used for training, and the model obtained
from self-supervised training is used as a pretrained model for
the downstream task. The performance of the pretrained model is
evaluated through few-shot fine-tuning on the downstream task.
To verify the effectiveness of the proposed MFM for SSL in this
study, we design a downstream task of semantic segmentation.
Inspired by the work of He et al. [32], using the two modules
of the CNN-based feature extraction and transformer-based en-
coder, CNN-based upsampling and skip connections are added
to obtain a complete semantic segmentation network, and the
structure is consistent with the TransUnet network [41]. Fig. 4
shows the network structure, which mainly comprises CNN-
based feature extraction, the Transformer-based encoder, and
CNN-based upsampling. Among them, the CNN-based feature
extraction and Transformer-based encoder use the modules and
parameters of the MFM, and these parameters are fixed on
the downstream semantic segmentation task. Skip connections
between the two modules of CNN-based feature extraction and
CNN-based upsampling are added to fuse multiscale features
and, thus, reduce the loss of spatial information due to down-
sampling and improve the pixelwise prediction of the semantic
segmentation task.
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Fig. 5. Examples of the WHU and Massachusetts Building Datasets.

IV. EXPERIMENTS AND ANALYSIS

A. Datasets

In this study, two publicly available datasets, namely the
WHU and Massachusetts Building Datasets, are used to validate
the proposed method. The datasets contain original images and
corresponding building labels and are described as follows.

1) WHU Building Dataset: The original aerial images of the
WHU Building Dataset were obtained from the New Zealand
Land Information Service website. The spatial resolution of
the original images is 0.3 m.The dataset contains 8188 images
of 512 × 512 pixels with the corresponding ground truth. To
approximate the size of the images in the ViT architecture, we
crop each 512 × 512 image into four nonoverlapping images
of 256 × 256 pixels. In the downstream task of semantic seg-
mentation, the numbers of training / validation/test data are
18 940/4140/9660, respectively. Examples of this dataset are
shown in the upper part of Fig. 5.

2) Massachusetts Building Dataset: The Massachusetts
Building Dataset comprises 151 aerial images of the Boston area,
each having a size of 1500× 1500 pixels and an area of 2.25 km2.
Therefore, the entire dataset covers approximately 340 km2. The
original dataset is randomly divided into a training set of 137
images, a test set of 10 images, and a validation set of four
images. We further crop the training set, validation set, and test
set into images of 256 × 256 pixels. In the downstream task of
semantic segmentation, the numbers of training/validation/test
data are 4420/230/560, respectively. Examples of this dataset
are shown in the lower part of Fig. 5.

B. Training Details

The hardware environment used in the experiment is an
Intel CoreI9-10900 K CPU@3.70GHZ, 64 GB memory, and
a NVIDIA Tesla V100 32 GB graphics card. The code is written

using Pytorch in the Ubuntu environment. The implementation
of our method can be divided into two stages, namely, MFM
for SSL and the fine-tuning of the MFM on the downstream
semantic segmentation task. The training details of the two
networks are as follows.

1) MFM for SSL: During training, the CNN-based feature
extraction and the Transformer-based encoder are initialized
with the parameters of the model pretrained on the ImageNet21k
dataset. For all the SSL experiments, the number of training
epochs is 800 and the number of batch size is 96. The AdamW
optimizer is used, which has β1=0.9 and β2=0.999, the initial
learning rate is1× 10−3, and the weight decay is1e−8. The input
image size is scaled to 224×224×3, and the output image also
has dimensions of 224×224×3. During data loading, the dataset
is augmented through random crop scaling, random horizontal
flipping, and color dithering. After training, we save only the
network parameters of the CNN-based feature extraction and
the Transformer-based encoder modules of the pretrained model
and load the parameters of these two modules on the downstream
task.

2) Fine-Tuning of the MFM on the Downstream Semantic
Segmentation Task: The aim of fine-tuning is to verify the
effectiveness of the SSL pretrained model on the downstream
task. During training, the parameters of the CNN-based feature
extraction and the Transformer-based encoder are obtained from
the corresponding weights of the pretrained model, and the
parameters of the decoder are initialized randomly. In addi-
tion, to verify the representational ability of our SSL method,
the parameters of the CNN-based feature extraction and the
Transformer-based encoder are fixed during training, and only
the parameters of the decoder are updated. For all fine-tuning
MFM tasks on the downstream semantic segmentation task, the
number of training epochs is 200 and the number of batch size
is 196. The Adam optimizer is used, which has β1=0.9 and
β2=0.999, the initial learning rate is 1× 10−3, and the weight
decay is 1e−8. The input image size is scaled to 224×224×3,
and the output image is a binarized image of dimensions of
224×224×1.

C. Metrics

Five metrics, namely, intersection over union (IoU), OA,
precision, recall, and F1, are used to evaluate the results of the
downstream semantic segmentation task as follows:

IoU = TP/ (TP+FP+FN) (17)

OA = TP+TN/ (TP++TN+FP+FN) (18)

Precision = TP/ (TP+FP) (19)

RecallTP/ (TP+FN) (20)

F1 = 2× (Precision × Recall) / (Precision + Recall) (21)

where TP, TN, FP, and FN are the numbers of true positives, true
negatives, false positives, and false negatives, respectively.
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TABLE I
COMPARISON OF SEMANTIC SEGMENTATION RESULTS OF DIFFERENT MASKING STRATEGIES ON THE WHU BUILDING DATASET (UNIT:%)

TABLE II
COMPARISON OF SEMANTIC SEGMENTATION RESULTS OF THE THREE DIFFERENT DECODERS ON THE WHU BUILDING DATASET (UNIT:%)

TABLE III
COMPARISON OF THE SEMANTIC SEGMENTATION RESULTS ON THE WHU BUILDING DATASET FOR DIFFERENT SAMPLE AMOUNTS (UNIT:%)

TABLE IV
COMPARISON OF SEMANTIC SEGMENTATION RESULTS OF THE DIFFERENT METHODS ON THE WHU BUILDING DATASET AND THE MASSACHUSETTS BUILDING

DATASET FOR DIFFERENT SAMPLE AMOUNTS (UNIT:%)

D. Main Properties

The WHU Building Dataset is used to evaluate the main
properties (i.e., the optimal mask ratio, the optimal decoder,
and comparisons between MFM pretraining and supervised
training with different sample amounts) of our method. In the
self-supervised pretraining MFM, we use all the original images
(i.e., the images in the training, validation, and test sets) of
the WHU Building Dataset as training data. The ground truth
is not used, and there is, thus, no information leakage of the
downstream task. In the fine-tuning MFM on the downstream
task, we load the parameters of the CNN-based feature extrac-
tion and Transformer-based encoder of the pretrained MFM
to perform semantic segmentation experiments on the WHU
Building Dataset. During the training of the downstream se-
mantic segmentation network, we fix the parameters of the
CNN-based feature extraction and Transformer-based encoder
and only update the parameters of the decoder of the network,

so as to evaluate the representation learning ability of the MFM
model for different masking strategies and different decoders.

1) Different Mask Ratios: To compare the SSL effects of
the different masking strategies, we conduct experiments on
building extraction, a downstream semantic segmentation task.
We use three fixed mask ratios of 25%, 50%, and 75%, and
a random mask ratio ranging from 25% to 80% on the WHU
Building Dataset in experiments. The TRCNNs decoder is used.
To ensure a fair evaluation, the training parameters of the MFM
for SSL and the fine-tuning MFM on the downstream semantic
segmentation task for these four masking strategies are con-
sistent with the training details in Part B. Table I compares
semantic segmentation results of different mask strategies on
the WHU Building Dataset. Table I shows that the pretrained
models obtained by the MFM with the fixed mask ratios of 25%,
50%, and 75% have similar performances on the downstream
task. However, when the MFM has a higher mask ratio, the
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Fig. 6. Comparison of visual semantic segmentation results of different methods on the WHU Building Dataset, with white showing true positives, black true
negatives, red false positives, and green false negatives.

transformer-based encoder module used in this study needs
to process fewer features, and the MFM with a higher mask
ratio is thus less computationally expensive and takes less time.
In addition, the MFM with a random proportion mask ratio
provides the best results. One possible explanation is that the
MFM with a random proportion mask ratio creates more diverse
reconstruction tasks for the network, which is beneficial for the
network to better understand the image information.

2) Different Decoders: In addition to the TRCNNs decoder
introduced in Section III, two other decoders, namely, the CNN-
based upsampling and the Transformer-based decoders, are de-
signed for ablation studies. All three decoders are lightweight,
with parameters much smaller than those of the encoder. The
decoders are described as follows.

1) CNN-based upsampling (CNNs decoder): This decoder
aims to generate predictions in a 2-D image space, and
we thus need to reshape the complete sequence after
filling, from the 2-D shape of (H ×W )/256× C to the
standard 3-D feature map of (H/16×W/16)× C. Next,
we gradually reconstruct the original image using four

stages of convolution and upsampling blocks, each of
which comprises an upsample layer with a scale factor
of 2 and two convolutional layers with a kernel size of 3 ×
3. In the last convolution layer of this decoder, the number
of channels is adjusted to three, i.e., the original image
with three channels (e.g., RGB channels) is predicted;

2) Transformer-based decoder (TR decoder): This decoder
uses only the Transformer architecture for feature decod-
ing, with a small number of Transformer blocks (six blocks
or fewer) applied to the complete sequence after filling;

3) Hybrid decoder (TRCNNs decoder): The TRCNNs
decoder combines the CNN-based upsampling and
Transformer-based decoders. It first uses a small number
of Transformer blocks for feature decoding, followed
by lightweight convolutional upsampling layers to
reconstruct the original image. Details are presented in
Section III.

Semantic segmentation results of the three decoders on the
WHU Building Dataset are compared in Table II. Table II shows
that all metrics are lowest for the TR decoder, which uses only
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Fig. 7. Comparison of visual semantic segmentation results of the different methods on the Massachusetts Building Dataset, with white indicating true positives,
black true negatives, red false positives, and green false negatives.

the Transformer architecture for decoding. The IoU metric of
the CNNs decoder, which uses only convolutional upsampling,
is 1.38 percentage points higher than that of the TR decoder.
This indicates that in our task of predicting original images, the
finer local information reconstructed by convolutional upsam-
pling makes a greater contribution to the model’s effectiveness.
Among the three decoders, the TRCNNs decoder performs the
best, having the highest metrics during fine-tuning. The IoU
metric for the TRCNNs decoder is 2.21 and 0.83 percentage
points higher than the values for the TR and CNNs decoders,
respectively. The TRCNNs decoder combines the advantages
of the Transformer’s excellent global modeling ability and the
CNN’s effective local feature representation. The experiments
show that the TRCNNs decoder outperforms the other two de-
coders and better optimizes the MFM representation capability
during self-supervised pretraining.

3) Comparisons Between MFM Pretraining and Supervised
Training With Different Sample Amounts: To verify the effect
of high-order features generated in the proposed MFM, we

randomly select training samples of building semantic segmen-
tation in different amounts according to the proportions of 5%,
10%, 20%, 40%, 60%, and 100%. This is done to obtain the
accuracy of the proposed MFM on the downstream task with
different sample amounts. The baseline of the experiment is
obtained using the fully supervised TransUnet network. Our re-
sults are obtained by loading the pretrained MFM model with the
random mask ratio strategy and the TRCNNs decoder. During
the model training, the fully supervised TransUnet network loads
the pretrained model of R50-ViT-B_16 on ImageNet21k as the
initialization parameters. It does not fix the parameters of the
encoder and decoder and conducts fully supervised training. As
a comparison, we use the TransUnet network again, but this time
we load the self-supervised pretrained MFM model as initializa-
tion parameters. We fix the parameters of the CNN-based feature
extraction and Transformer-based encoder, and only update the
parameters of the decoder. Taking IoU as the metric, we compare
the semantic segmentation results on the WHU Building Dataset
for different sample amounts in Table III. Table III shows that



8444 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 8. Comparison of visual semantic segmentation results of the Massachusetts Building Dataset obtained using the WHU pretrained model.

the network loaded with our self-supervised pretrained MFM
model achieves higher accuracy than the network loaded with the
model pretrained on ImageNet21k when the number of samples
is limited. Our method still achieves good accuracy with few
samples, e.g., 5% of the sample size. In further experiments, we
fix the CNN-based feature extraction and Transformer-based
encoder and only update the decoder when training the network
loaded with the self-supervised pretrained MFM model. We find
that the accuracy of the network improves if the CNN-based
feature extraction and Transformer-based encoder are not fixed
during training and all of the parameters of the network are
optimized as a whole. Detailed results with all parameters up-
dated together are not shown as this is beyond the scope of the
article. The performance of our method at a 100% sample size
is poorer than that of directly using the TransUnet network for
fully supervised training. There are two reasons. First, due to the
lack of computing power, we do not use a large-scale dataset for
training the MFM. In self-supervised pretraining, the MFM does
not have sufficient representation capability. Second, to verify
the quality of self-supervised pretraining, we fix the parameters
of the CNN-based feature extraction and Transformer-based
encoder of the downstream semantic segmentation network, and
only train the decoder of the network.

E. Comparisons on the WHU Building Dataset

Comparative experiments are conducted on the WHU Build-
ing Dataset to verify the effectiveness of the proposed method
against current mainstream SSL algorithms: BEiT [31], Sim-
MIM [35], MAE [32], and CAE [37]. BEiT, the first MIM in
computer vision, serves as the baseline and is used by many SSL
methods for comparison. To allow a more objective evaluation,
the Transformer blocks in the encoders of the SSL methods
adopt the settings of ViT-B in the literature [42], and load
the parameters of the model pretrained on ImageNet21k. We
adopt the best settings for data augmentation and mask ratios
as recommended by the authors. For all comparative methods,

we use STER-PUP, commonly used in the ViT architecture as
the decoder, and the same decoders based on convolutional up-
sampling on the downstream task for a fair comparison. During
downstream training, the encoder parameters remain fixed.

We conduct comparative experiments on the WHU Building
Dataset. We first use all the original images of the dataset includ-
ing the training set, validation set, and test set for self-supervised
pretraining, and we then use the training set with different sample
amounts for fine-tuning, followed by accuracy statistics. Taking
the IoU metric as the statistical accuracy, the semantic segmen-
tation results of the different methods on the WHU Building
Dataset for different sample amounts are compared in Table IV.
The last column in Table IV is the time cost of pretraining 800
batches of the SSL network in upstream tasks.

Our algorithm demonstrates superior accuracy compared with
four other generative SSL algorithms across varying sample
sizes of the WHU Building Dataset. For instance, with a mere
5% subset of the dataset, the IoU metric of our algorithm
reaches 75.39%, which is 9.16 percentage points higher than
BEiT’s IoU metric of 66.23%, 3.77 percentage points higher
than SimMIM’s IoU metric of 71.62%, 3.55 percentage points
higher than MAE’s IoU metric of 71.84%, and 2.38 percentage
points higher than CAE’s IoU metric of 73.01%. On the 100%
dataset, the IoU metric of our algorithm is 5.57, 4.3, 2.59,
and 1.73 percentage points higher than the IoU metrics of the
BEiT, SimMIM, MAE, and CAE algorithms, respectively. Our
method outperforms the other four methods in fine-tuning with
different sample amounts. The proposed MFM for SSL fuses
the CNN and Transformer architectures, benefiting from the
multiscale features extracted by the CNN architecture and the
global modeling ability of the Transformer architecture, and
performs better in the remote-sensing image semantic segmenta-
tion task. The accuracy of the MAE method in fine-tuning with
different sample amounts is higher than that of the SimMIM
method, which is also based on the ViT architecture, which
indicates that the masking strategy of the MAE method is
better than that of the SimMIM method on downstream tasks.
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In the MAE method, the encoder only processes unmasked
patches, whereas in the SimMIM method, masked patches are
replaced by learnable vectors, and the SimMIM’s encoder thus
processes all patches. The CAE method is better than MAE
under different sample amounts. This shows that the CAE strictly
separates the representation learning (encoding) from the pretext
task is effective. In terms of efficiency, the image in the BEiT
method was represented as a sequence of discrete tokens, and
the training is faster than that of the other four methods. In our
method, more patches are processed during training, and the
training time is longer than that of the MAE method due to
the random mask ratio used in training, whereas the SimMIM
method has the longest training time due to the processing of all
patches.

Visual semantic segmentation results of the different methods
on the WHU Building Dataset with 5% and 100% sample
amounts are compared in Fig. 6. Fig. 6 shows that when fine-
tuning the network with 5% of the training dataset for semantic
segmentation, the other four methods have many false positives
and false negatives, whereas our method is better able to extract
buildings with few training data and has obviously fewer false
positives and false negatives. Moreover, the edges of buildings
extracted using our method are sharper and closer to the ground
truth, indicating that our generative SSL method of combining
the CNN and Transformer architectures is more effective in local
detail prediction. When using the 100% training dataset, the
accuracy greatly improves for all five methods, but our method
remains the best among the five methods.

F. Comparisons on the Massachusetts Building Dataset

To further verify the effectiveness of the proposed method,
we conduct comparative experiments using the Massachusetts
Building Dataset. We first use all of the dataset’s original images
for self-supervised pretraining and then use the dataset’s training
set with different sample amounts for fine-tuning, followed
by accuracy statistics. On the Massachusetts Building Dataset,
the encoder and decoder for all SSL methods, we adopted
the same settings as those of the WHU Building Dataset. The
semantic segmentation results of the different methods for the
Massachusetts Building Dataset with different sample sizes are
compared in Table IV.

Our method outperforms the other four methods on the
Massachusetts Building Dataset. For example, on the dataset
with 100% of the sample, the IoU metric of our method is
53.48%, which is 5.55 percentage points higher than that of the
BEiT method, 9.19 percentage points higher than that of the
SimMIM method, 5.52 percentage points higher than that of the
MAE method, and 2.57 percentage points higher than that of
the CAE method. For 5% of the sample dataset, similar results
can be obtained. Our method performs better on datasets with a
small sample size, low-definition images, and small targets, such
as the Massachusetts Building Dataset. It is worth noting that
none of the five methods has the best feature extraction ability
of the encoder on the Massachusetts Building Dataset due to the
limited images.

Comparisons of the visual semantic segmentation results of
different methods on the Massachusetts Building Dataset with
5% and 100% sample amounts are shown in Fig. 7.

Fig. 7. shows that when using 5% of the training dataset
for semantic segmentation, due to the low-definition images
and the small building targets in the Massachusetts Building
Dataset, the BEiT, SimMIM, and MAE methods have many false
negatives and false positives. In the case of the BEiT method,
large nonbuilding areas are misdetected as buildings. In the case
of the SimMIM method, most buildings in the image are missed.
The prediction results of our method are better than those of the
other methods. Our method has better adaptability than the other
methods for the 5% sample dataset with poor image quality. With
the use of the complete 100% training dataset, the detection
accuracy of all five methods improves significantly. However,
the SimMIM method still suffers from a severe issue of false
negatives (e.g., small buildings being incorrectly predicted as
background) and false positives (e.g., spaces between buildings
being predicted as building areas).

Due to the limited number of images in the Massachusetts
Building Dataset, which can adversely affect the quality of
representation learning, we adopted a consistent approach for all
five algorithms (BEiT, SimMIM, MAE, CAE, and our proposed
method). To mitigate the impact of the dataset size, we em-
ployed self-supervised pretraining models from Section E that
underwent 800 epochs of training on the WHU building dataset.
Subsequently, these models were fine-tuned for 200 epochs us-
ing the entire training set of the Massachusetts Building Dataset.
During the fine-tuning process for downstream tasks, we loaded
the pretrained encoder parameters and utilized the same de-
coder (STER-PUP) for all pretraining models. The semantic
segmentation results of the Massachusetts Building Dataset
obtained using the WHU-pretrained model are compared in
Table V.

Table V shows that even if the self-supervised pretraining
model derived using the WHU Building Dataset is used, and
only the sample data of the Massachusetts Building Dataset
are used to fine-tune the obtained self-supervised pretrained
model, the IoU metrics are higher than those when using only
the Massachusetts Building Dataset. Among the results, the
IoU metric of the BEiT method reaches 49.03%, which is 1.10
percentage points higher than that of the self-supervised pre-
training and fine-tuning using only the Massachusetts Building
Dataset. Similarly, the IoU metric of SimMIM, MAE, and CAE
are 2.83, 3.36, and 1.53 percentage points higher, respectively.
Our method is 2.98 percentage points higher, and all the SSL
methods are of considerable improvements.

Fig. 8 visually compares the fine-tuning semantic segmen-
tation results of the Massachusetts Building Dataset obtained
using the WHU pretrained model. The following conclusions
hold for all five SSL methods. The fine-tuning results of the
model pretrained using the WHU Building Dataset are better
than those of the model pretrained using the Massachusetts
Building Dataset (shown in Fig. 7). Meanwhile, due to the
limitation of computing power and dataset size, none of the
five SSL methods achieve the best results. The performances
of all five generative SSL methods depend on the number of
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TABLE V
COMPARISON OF SEMANTIC SEGMENTATION RESULTS OF THE MASSACHUSETTS BUILDING DATASET OBTAINED USING THE WHU-PRETRAINED MODEL (UNIT:%)

original images. The accuracy will further improve if training is
performed on a larger remote-sensing original image dataset.

Furthermore, we have conducted comparative experiments of
SSL algorithms on a land cover dataset, specifically the Gaofen
Image Dataset (GID). The efficacy of our method has been val-
idated through multiclass semantic segmentation experiments.
Detailed experimental procedures and results can be found in
the Appendix.

V. CONCLUSION

This article introduces a generative SSL framework for high-
resolution remote sensing images, known as MFM, which in-
tegrates CNN and Transformer architectures. The proposed
method leverages MFM to obtain high-level image representa-
tions. The resulting pretrained model significantly enhances the
accuracy of downstream tasks, such as the semantic segmenta-
tion of high-resolution remote sensing images, while reducing
reliance on annotated samples. From an algorithmic perspective,
we have designed an MFM network that merges CNN and Trans-
former architectures, preserving the superior local feature repre-
sentation and convergence performance of CNN, and incorporat-
ing the comprehensive modeling capability of the Transformer
architecture. This hybrid architecture is particularly beneficial
for remote-sensing image datasets with limited samples. In terms
of experimentation, we have assessed the primary attributes
of our method using the WHU Building Dataset, investigated
the impact of masking strategy and decoder selection on the
network, and confirmed the effectiveness of the pretrained model
on the downstream semantic segmentation task. Furthermore,
we have compared our method with four popular generative SSL
methods using the WHU and Massachusetts Building Datasets.
Performance comparisons on the downstream task of semantic
segmentation have demonstrated the superiority of our proposed
method for high-resolution remote-sensing image datasets. Fu-
ture research will incorporate algorithms related to contrastive
learning and large-scale data processing to further explore more
efficient and universal SSL methods for remote sensing images,
thereby addressing the challenges of strong dependence on high-
quality large samples and domain adaptation in high-resolution
remote sensing imagery.

APPENDIX A

In this Appendix, we extend the validation of our method to the
Gaofen Image Dataset (GID). The GID is a substantial dataset
designed for land use and land cover (LULC) classification. It
comprises 150 high-quality Gaofen II (GF-2) images sourced

Fig. 9. Examples of the GID-5 Datasets.

from over 60 different cities across China. The GID dataset
includes two sets of labels: A 5-category semantic segmenta-
tion label and a 15-category semantic segmentation label. In
this article, we utilize the 5-category (i.e., GID-5) label. We
partition the large images into 109 200 smaller images of 256
× 256 pixels, and distribute them into a training set (65 520
images), a validation set (21 840 images), and a test set (21 840
images) in a 6:2:2 ratio. Examples of the GID-5 Dataset are
illustrated in Fig. 9. During the training process, we adhere to the
paradigm outlined in the article: We first perform self-supervised
pretraining using all raw images for 400 epochs, followed by
fine-tuning on the downstream task for 200 epochs. The batch
size is set to 96 for self-supervised pretraining and 196 for
fine-tuning on the downstream task. In the fine-tuning phase
on the downstream task, we load the parameters of the encoder
of the pretrained SSL to execute LULC classification on the
GID-5 Dataset. To verify the feature representation ability of
the self-supervised pretrained model, the loaded parameters of
the encoder are kept constant during fine-tuning. In the GID-5
Dataset, we employ intersection over union (IoU) as the accuracy
metric for semantic segmentation for each category, and mean
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TABLE VI
COMPARISON OF SEMANTIC SEGMENTATION RESULTS OF THE DIFFERENT METHODS ON THE GID-5 DATASET (UNIT:%)

Fig. 10. Comparison of visual semantic segmentation results of the GID-5 Dataset. Mislabeled areas in the ground truth are highlighted with pink boxes. Incorrect
segmentation results are highlighted with orange boxes. Competitive segmentation results are highlighted with purple boxes.

intersection over union (mIoU) is used as the metric for semantic
segmentation accuracy across all categories. The calculation of
mIoU is as follows:

mIoU =
1

k + 1

k∑
i=0

TP
FN + FP + TP

(22)

where TP, TN, FP, and FN represent the numbers of true
positives, true negatives, false positives, and false negatives,
respectively. The variable k denotes the number of all categories
excluding the background, and k + 1 represents the total number
of categories, including the background. The semantic segmen-
tation results of various methods on the GID-5 Dataset are
compared in Table VI. Due to the large sample size of the GID-5
dataset, the gap in mIoU between different methods is smaller
than that observed in other semantic segmentation datasets (i.e.,
WHU Building Dataset and Massachusetts Building Dataset)
when fine-tuning on the downstream task. Our method outper-
forms other SSL methods, achieving the highest mIoU. For
instance, it is 0.72% higher than that of CAE, which has the
second-highest mIoU, and 3.17% higher than that of BEiT,
which has the lowest mIoU. Visual comparisons of different
methods on the GID-5 Dataset are presented in Fig. 10. As
depicted in Fig. 10, our method yields superior results, whereas
other methods tend to produce false positives and false negatives
(e.g., competitive segmentation results in the purple boxes).
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