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Abstract—Ice surface temperature (IST) plays a fundamental
role in the Antarctic ice sheet/shelf study. However, the production
of spatially and temporally continuous Antarctic IST products
remains a challenge. We proposed an instantaneous IST retrieval
framework that can generate the spatially and temporally continu-
ous Antarctic IST using Advanced Microwave Scanning Radiome-
ter 2 data. To generate a temporally continuous IST product, we de-
veloped an innovative scheme, which was based on the acquisition
time difference between input and output data. We considered the
impact of terrain and sensor observation state. The corresponding
parameters were used as the auxiliary variables to improve the
model accuracy. We trained and validated nine machine learning
models using the generated sample set. The Light Gradient Boost-
ing Machine (LightGBM) model presents the best performance,
and the root-mean-square error (RMSE) of the LightGBM model
is only half of that of the typical linear models. The RMSE of
the LightGBM model decreased with the training sample set size
and stabilized at 1.67 K. Further validation using multisource data
showed that the IST retrieved using the LightGBM model has RM-
SEs of 1.39–2.32 K (relative to IST from Landsat-8) and 3.7–5.9 K
(relative to IST from Baseline Surface Radiation Network data).
Compared to the commonly used ERA5 IST data, the retrieved IST
in this study has higher accuracy. We retrieved Antarctic IST from
2013 to 2020. Antarctic IST decreased continuously from 2013 to
2015. After 2015, Antarctic IST increased with large fluctuations.

Index Terms—Antarctic ice surface temperature (IST), light
gradient boosting machine (LightGBM) model, machine learning,
passive microwave (PM).

I. INTRODUCTION

ICE surface temperature (IST) reflects the freeze–thaw state
and the timing and duration of the melting of an ice sheet.
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Therefore, the study of Antarctic IST is important for the un-
derstanding of the surface energy budget and the surface mass
balance of the Antarctic ice sheet [1], [2], [3]. According to
Giovinetto et al. [4], the surface mass balance in Antarctica is
significantly correlated with IST with a correlation coefficient of
0.7–0.8. IST also plays a crucial role in the exchange of energy
between the ice sheet and the atmosphere [5]. Antarctic IST
varies seasonally and regionally. However, these spatiotemporal
variations could change because of rapid climatic changes and
frequent climate extremes [6]. Therefore, spatially and tem-
porally continuous IST products that have high accuracy are
needed to improve our understanding of the surface changes of
the Antarctic ice sheet.

Antarctic IST is commonly monitored using automatic
weather stations (AWSs) and remote sensing imagery [7]. AWSs
provide long and continuous data records with high temporal
resolution (observations every few minutes). However, the ma-
jority of AWSs measure the near-surface air temperature (NST)
rather than IST; the difference between IST and NST can be
substantial, especially under conditions of low wind speed and
solar radiation [8]. In addition, each AWS only collects data at a
specific location. AWSs are sparsely distributed over Antarctica;
consequently, the IST of the entire Antarctic ice sheet cannot
be monitored using only AWSs. It is possible to use thermal
infrared and passive microwave (PM) remote sensing data to
monitor surface temperature over a vast area [9]. Compared with
PM remote sensing, thermal infrared remote sensing data have a
high spatial resolution (30–1000 m) and relatively high accuracy
under clear skies (1.2–2.3 K) [7], [10], [11]. However, thermal
infrared remote sensing cannot penetrate clouds, resulting in
the spatial discontinuity of IST products from thermal infrared
data. [12]. PM remote sensing data have low spatial resolution
(25 km) but can penetrate through clouds to measure surface
information of almost the entire planet in a single day [13].
Consequently, PM data have been used to generate large-scale
datasets. Some researchers have made much effort to generate
spatially or temporally continuous LST data by using PM data.
Song and Zhang [14] combined AMSR-2 and the FY-3B Mi-
crowave Radiation Imager data to enhance coverage of daily land
surface temperature (LST) estimates in low latitudes. Wu et al.
[15] mapped gapless all-weather LST in China using thermal
infrared and PM data. Dowlin et al. [16] generated the spatially
continuous LST through introducing PM data. In view of these
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characteristics, PM data can be very beneficial for the monitoring
of Antarctic IST.

Commonly, PM data have been used to retrieve sea surface
temperature and LST, with root-mean-square errors (RMSEs)
of 0–1 and 2–5 K, respectively [17], [18], [19], [20]. Generally,
physical or empirical models have been used to retrieve LST
from PM data. The physical models are based on the radiation
transmission equation of PM; their accuracy highly relies on
the land surface emissivity. However, because snow emissivity
is sensitive to snow liquid water content, surface roughness,
and snow grain size in the microwave range, snow emissivity
varies both spatially and temporally [21], [22], [23]. It is difficult
to obtain reliable snow emissivity and thus retrievals can have
considerable error, limiting the application of physical models
to IST retrieval [24]. Empirical models, which are based on the
relationship between LST and brightness temperatures and avoid
complex physical parameters, have been used widely to retrieve
LST from PM data [17], [19], [25]. Therefore, in this study, we
retrieved Antarctic IST using empirical models.

In 2017, Microsoft developed the Light Gradient Boosting
Machine (LightGBM) algorithm on the basis of the eXtreme
Gradient Boosting (XGBoost). In this study, we used LightGBM
to develop a framework to retrieve IST from PM data with the
goal of generating spatially continuous Antarctic IST maps with
high temporal resolution. The sample set also plays a fundamen-
tal role in model construction. Its size, representativeness, and
accuracy can affect the robustness and accuracy of the trained
model [26]. The moderate-resolution imaging spectroradiome-
ter (MODIS) IST product has high accuracy and large spatial and
temporal coverages [27], [28]; therefore, we used it as ground
truth for model training and testing. The IST retrieval model
uses PM brightness temperature from the Advanced Microwave
Scanning Radiometer 2 (AMSR2) as the primary input [17],
[19].

We used multisource data to test our IST retrieval frame-
work. The accuracy of different typical linear and nonlinear
models was evaluated by using the testing sample set. IST
retrievals from Landsat-8 thermal infrared band data have a
high accuracy and spatial resolution [7]. We used IST retrieved
from Landsat-8 satellite data and near-surface thermal infrared
radiation data to assess the accuracy of the LightGBM model.
We used the LightGBM model to retrieve IST from AMSR2 data
and examined the variations of the Antarctic IST between 2013
and 2020.

The rest of this article is organized as follows. Section I
introduces the background and significance of the study. The
datasets that were used in the study are introduced in Section II.
Section III presents the LightGBM algorithm and the details
of sample set construction and model training. In Section IV,
we compare the performance of different models and evaluate
the accuracy of the LightGBM model using multisource data.
In Section V, we discuss the error distributions of LightGBM
model on month, IST, and scan time gap (STG). We examine the
role of the near-surface temperature inversion in the Antarctic
and discuss the variations of Antarctic IST between 2013 and
2020. Finally, Section VI concludes this article.

II. DATA

We used multisource data to establish a sample set, train
models, and evaluate model accuracy. Details of the data that
were used in this study are presented in this section.

A. AMSR2 Data

Global Change Observation Mission 1st - Water (GCOM-
W1) satellite was launched by the Japan Aerospace Exploration
Agency in 2012. It is in a sun-synchronous orbit with a satel-
lite inclination angle of 98°. It carries AMSR2, which is the
successor of the Advanced Microwave Scanning Radiometer-
Earth Observing System. The AMSR2 is a multifrequency PM
radiometer. It is enabled to capture approximately 29 swath
granules from the polar regions because of the short revisit period
of GCOM-W1 (approximately 15× per day in Antarctica) [29].
Each granule is defined as a half orbit between the North Pole
and the South Pole.

The AMSR2 has a conical scan mechanism. It measures
microwave radiation from the Earth at 6.9, 7.3, 10.7, 18.7, 23.8,
36.5, and 89 GHz. Each frequency has two PM polarization
modes (H and V). AMSR2 products are categorized according
to the processing level. To capture instantaneous ice surface
information, we used Level 1R swath brightness temperature
data from all channels. We also used associated sensor obser-
vation information, such as latitude, longitude, Earth azimuth,
Earth incidence, sun azimuth, sun elevation, area mean height,
and scan time. We obtained the AMSR2 data from the official
website of the Globe Portal System (https://gportal.jaxa.jp).

We used AMSR2 data covering Antarctica from July 2012 to
June 2020 to generate a sample set. For the 89 GHz channel,
the original sampling interval is 5 km. We aggregated the pixels
into 10-km intervals to match the sampling intervals of the other
channels (6.9, 7.3, 10.7, 18.7, 23.8, and 36.5 GHz).

B. MODIS IST Product

The MODIS instrument is carried by both the Terra and the
Aqua satellites. It views the entire surface of the Earth every 1–2
days [30]. Its detectors collect data in 36 bands in the wavelength
range of 0.4–14.4 μm; these bands include 16 thermal infrared
bands and the atmospheric water vapor retrieval bands. The
main inputs (i.e., atmospheric water vapor content) for IST
retrieval can be estimated using these data. Retrievals of IST
from MODIS data have high accuracy and are not influenced by
intersatellite differences in algorithm inputs.

The National Aeronautics and Space Administration (NASA)
provides swath IST products (MOD/MYD11_L2) with 1-
km resolution, which are generated using the split-windows
method [31]. We obtained the data from https://ladsweb.modaps.
eosdis.nasa.gov/search/. Because remote sensing data from
the thermal infrared band are easily impacted by weather
(e.g., clouds and aerosols), over 60% of the areas covered
by the MOD/MYD11_L2 products are invalid [32]. Fig. 1
shows two randomly mosaicked Antarctic IST maps based on
MOD/MYD11_L2 products for July 3, 2016 (in austral winter)

https://gportal.jaxa.jp
https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
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Fig. 1. Mosaicked Antarctic IST maps from MOD/MYD11_L2 for July 3, 2016 and January 5, 2020.

and Jan. 5, 2020 (in austral summer). Although each map was
mosaicked by using all the swath IST products of the day (30–
40 scenes of MOD/MYD11_L2), Antarctic coverage remains
incomplete in both winter and summer.

We used cloud-free MOD/MYD11_L2 products as ground
truth to train and evaluate the models because they have high
accuracy and large spatial and temporal coverages. According
to Wan [28], there is close agreement between in situ measure-
ments of LST and LST from MOD/MYD11_L2 under clear-sky
conditions, with an RMSE of less than 2 K at most sites and an
RMSE of less than 1 K at two sites in Antarctica. To allow data
from different sources to be colocated in space, we projected
the MOD/MYD11_L2 data to the Antarctic stereographic pro-
jection and resized the pixel size to 10 km.

C. Terrain Data

Because IST varies closely with terrain [2], we used terrain
data as sample inputs for model construction. The Bedrock
Mapping Project (Bedmap) has produced a suite of gridded
products that describe surface elevation and other characteris-
tics of the Antarctic [33]. We used Bedmap2, which includes
more measurements from a variety of sources and has a higher
quality than Bedmap1. We downloaded Bedmap2 data from
https://secure.Antarctica.ac.uk/data/bedmap2/.

To obtain a fuller description of the terrain, we generated slope
and aspect data from the Bedmap2 digital elevation model data,
which have a resolution of 1 km. All the other inputs used in this
study are on 10-km grids. Therefore, we resized the Bedmap2
elevation, slope, and aspect data onto a 10-km grid to ensure
consistency between all inputs.

D. Landsat-8 Data

Landsat-8 was launched by NASA in 2013. It carries two pay-
loads, which are the Operational Land Imager and the Thermal
Infrared Sensor. Both instruments have a swath width of 190
km. The two instruments together cover a total of 11 bands.
The spatial resolutions of the Operational Land Imager and the

Thermal Infrared Sensor data are 15/30 and 100 m, respectively
[34]. The pixel sizes of the Landsat-8 data were downsampled
to match AMSR2 data (10 km) by calculating the average pixel
value in a 10-km window. We obtained Landsat-8 data from
https://earthexplorer.usgs.gov/.

We used an improved single-channel algorithm proposed by
Li et al. [7] to retrieve IST from Landsat-8 data for model
validation. The single-channel algorithm was built specifically
for Polar Regions; accuracy is relatively high and RMSE is
∼1.2 K for clear conditions. In austral winter, Antarctic data
are not available from Landsat-8. Therefore, we used three
Landsat-8 images taken on different days in austral summer
(blue rectangles in Fig. 2).

E. AWS Data

Two types of AWS data are used in this study. We used air
temperature data from the Antarctic Meteorological Research
Center (AMRC) of the United States Antarctic Program to
compare with retrieved IST and analyze near-surface temper-
ature inversion. The AMRC provides real-time and archived
meteorological data and observations and supports a network
of AWSs in Antarctica. The AWSs measure 2-m air temperature
with an accuracy of approximately 0.1 K [35]. There were
approximately 60 AMRC AWSs operational between 2012 and
2022; exact numbers vary because of AWS installation and
retirement. AMRC air temperature data in this study are used
to compare with IST rather than to validate the accuracy of
the IST retrieval models. Fig. 2 shows the locations of the
AMRC AWSs (yellow circles). We obtained AMRC data from
https://amrc.ssec.wisc.edu/.

We also used surface thermal infrared radiation data from
the Baseline Surface Radiation Network (BSRN) to validate the
accuracy of the proposed model. The BSRN is a project of the
Data and Assessments Panel from the Global Energy and Water
Cycle Experiment, which focuses on detecting Earth’s surface
radiation and its effects on climate change. We obtained the
BSRN data from https://www.pangaea.de/. The BSRN stations

https://secure.Antarctica.ac.uk/data/bedmap2/
https://earthexplorer.usgs.gov/
https://amrc.ssec.wisc.edu/
https://www.pangaea.de/
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Fig. 2. Locations of the Landsat-8 images, and the BSRN and AMRC stations
in Antarctica. The blue rectangles indicate the locations of the three Landsat-8
images. The yellow circles indicate the AMRC stations. The stars indicate the
BSRN stations. The hollow stars indicate stations located outside our IST map
(data from these stations were not used); data from the station indicated by the
solid red star (DOM) were used for validation.

measure broadband thermal infrared radiation from the surface
and the air rather than IST or air temperature. Following the
theory of radiative transfer, IST can be retrieved from thermal
infrared radiation as follows [36]:

IST = 4

√
(Lup − Ldown (1− ε))/(σε) (1)

where Lup and Ldown are upwelling and downwelling radiance,
respectively; σ is the Stefan–Boltzmann constant (σ = 5.67
× 10−8 W·m−2·K−4); ε is the snow emissivity of broadband
thermal infrared radiation, which was set to 0.985 according
to Fréville et al. [37]. We used BSRN IST to evaluate model
accuracy. There are four BSRN stations in the Antarctic (stars
in Fig. 2). Only the DOM station (the red star in Fig. 2) lies
inside our IST map. One of them is located at the South Pole,
the GCOM-W1 satellite has an orbital inclination of 98° and
AMSR2 data cannot cover that place. Therefore, we used the
data from the DOM station for model accuracy validation. Be-
cause measurements of radiation can be affected by atmospheric
emissions between the sensor and the snow surface [38], IST
retrieved from BSRN data might deviate from true IST.

F. Reanalysis Data

ERA5 is the fifth-generation atmospheric reanalysis of the
global climate that is provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF). It has been
proven to be reliable and has been used widely in climate and
environmental research [39], [40], [41]. We used ERA5-Land,
which is an enhanced dataset; it is forced by the atmospheric
analysis of ERA5 and has a higher spatial resolution (0.1° ×
0.1°) [42]. Although ERA5 assimilates AWS measurements
and remote sensing data, we took the skin temperature from

Fig. 3. Flowchart of the methodology in this study.

ERA5-Land as IST and compared it with the IST from AMSR2.
In addition, we used the skin temperature from ERA5-Land
to construct the standard Antarctic IST distribution to address
the data imbalance in the sample set. The ERA5-land was
reprojected to the Antarctic stereographic projection and resized
to 10 km.

III. METHODS

This study aims to generate spatial and temporal continuous
IST data in the Antarctic. The PM data are used as the main
input because it covers the Antarctic and is not affected by the
cloud. The STG is used as a model input to make the temporal
continuity of the retrieved IST data. The flowchart of this study
is shown in Fig. 3. The flowchart includes three parts: model
construction, model accuracy validation, and model application.
First, we constructed the sample set before training the machine
learning model. The AMSR2 swath data, auxiliary variables,
and STG are model inputs, and the MODIS IST product is
model output. Second, the testing data were used to validate
the nine machine learning models. The LightGBM model was
chosen from the nine models because of its best performance.
The accuracy of the LightGBM model was also validated by
using multisource data. ERA5 IST was used to compare with IST
from the LightGBM model. In the last part, we have analyzed the
error distribution of the LightGBM model. We have compared
IST data from the LightGBM model with AWS air temperature
and analyzed Antarctic IST spatial-temporal variation.

A. Machine Learning Algorithms

There are linear and nonlinear empirical models. Nonlinear
models are superior in reproducing the relationship between IST
and brightness temperature owing to their more complex con-
struction. According to the PM radiation equation and assuming
constant surface emissivity, the relationship between brightness
temperature and surface temperature is approximately linear
[17]. However, linear models cannot fully express the rela-
tionship between IST and brightness temperature because of
the considerable spatiotemporal variability of snow emissivity.
Among the nonlinear models, ensemble learning exhibits su-
perior performance because this learning model improves the
performance of a single model by training multiple models and
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Fig. 4. Scheme of LightGBM algorithm.

combining their results [43]. RF and XGBoost [44] algorithms
are two types of typical ensemble learning methods that improve
the model accuracy by combining several base estimators. Ac-
cording to Sayed et al. [45], the performance of LightGBM is
superior to that of RF or XGBoost in predicting the need for
mechanical ventilation among patients with acute respiratory
distress syndrome. Moreover, LightGBM requires less computer
memory and has lower time complexity and higher accuracy than
XGBoost [46]. In this study, we used LightGBM to develop a
framework to retrieve IST from PM data to generate spatially
continuous Antarctic IST maps with high temporal resolution.

Fig. 4 presents the scheme of LightGBM algorithm. Light-
GBM algorithm produces the final prediction model by using
ensemble weak prediction models (Decision Trees). LightGBM
algorithm adopts a boosting strategy. The residual from the
previous tree is used as the input of the following tree. The final
output is the sum of the outputs from all the trees. In addition, the
LightGBM algorithm adopts two novel techniques—gradient-
based one-side sampling (GOSS) and exclusive feature bundling
(EFB)—to improve efficiency for cases of large data sizes and
high feature dimensions [46]. The data instances with larger
gradients play a more important role in the computation of
information gain. Therefore, to maintain the accuracy of infor-
mation gain and reduce computational cost, the data instances
downsampling strategy of GOSS keeps the data instances with
larger gradients. The EFB is used to bundle mutually exclusive
features. In this sparse feature space, features rarely take nonzero
values simultaneously. As a result, the number of dimensions is
reduced and efficiency is improved while a high level of accuracy
is maintained.

B. Sample Set Construction

The sample instance generally consists of inputs and an out-
put, which is IST in this study. To avoid errors resulting from
intraday variations of IST, we used swath rather than daily data
for model training. We also added auxiliary inputs to the IST
retrieval model to enhance model accuracy and robustness [47],
[48]. These auxiliary inputs are closely related to the output and
include geographical location (longitude and latitude), terrain
(elevation, slope, and aspect), and sensor observation parameters
(earth azimuth, earth incidence, sun azimuth, sun elevation,
area mean height, and scan time). We defined the difference
between the acquisition time of AMSR2 swath data and that of
MODIS data as the STG and used it as a model input. Ideally, the

Fig. 5. Number and date of AMSR2 and MOD/MYD11_L2 images, which
are used for sample set construction. The insert figure presents the details.

two acquisition times are the same and STG is zero. However,
MODIS IST products are available only for clear-sky condi-
tions. Near-zero STG would limit the representativeness of the
sample set, which will contain no data for cloudy conditions. To
provide complete coverage of Antarctica, several swath images
are required and these images have different acquisition times.
Near-zero STG would generate a spatially continuous product
of Antarctic IST but without temporal continuity. Therefore, we
extended the STG to ±12 h to enhance model robustness and to
obtain a spatially and temporally continuous IST product. For
time t, IST can be generated by adjusting the difference between
t and the acquisition time of AMSR2 swath data.

An instance consists of a group of brightness temperatures
from AMSR2 swath data, auxiliary variables from Bedmap2
and AMSR2, and the IST from MOD/MYD11_L2 products.
All these data have been projected to the Antarctic stereographic
projection and colocated in space. We checked the consistency
of the acquisition time of the data from the different sources.
The STG was set to ±12 h. There are approximately 70 scenes
of MOD/MYD11_L2 data every day and approximately 59 cor-
responding AMSR2 swath granules every 48 h (see Fig. 5). We
selected a day’s MODIS data every ten days from 2012 to 2020.
AMSR2 data are selected according to the MODIS data and
STG. In total, we generated an initial sample set that contained
data from 289 days; these included approximately 20 000 scenes
from MOD/MYD11_L2 and 17 000 swath granules of AMSR2.

The distribution of the sample set is generally uneven. This
data imbalance might reduce the accuracy and reliability of the
trained model [49]. Therefore, we compared the IST distribution
of the generated sample set in this study with a standard IST
distribution. The generated sample set without being adjusted
was called the original sample set and the generated sample
set after adjusting was called the new sample set. We used
hourly ERA5-Land Antarctic IST from 2018 as the standard
IST distribution because it had complete coverage of Antarctica.
The standard IST distribution [see Fig. 6(b)] has a single peak
(at 245 K) and differs from that of the initial sample set, which
has one peak at 210 and another peak at 240 K [see Fig. 6(a)].
Following this comparison, we abandoned a portion of the initial
sample to generate a new sample set [see Fig. 6(c)]. The biggest
density difference between the standard IST distribution and
IST distribution of the original sample set occurs at 247 K.



LIU et al.: NEW SPATIALLY AND TEMPORALLY CONTINUOUS ANTARCTIC ICE-SHEET SURFACE TEMPERATURE RETRIEVAL METHOD 10695

Fig. 6. IST distributions for different sample sets. (a) IST distributions for the
original sample set. (b) Standard IST distribution. (c) IST distribution of the new
sample set.

We used the number of sample instances at 247 K as the
new sample set number at 247 K. Then, we can calculate the
sample instances number of the new sample set and abandon
some sample instances based on the standard IST distribution to
generate a new sample set. The new sample set [see Fig. 6(c)],
with an IST distribution close to that of the new sample set [see
Fig. 6(b)], was used for model training.

C. Model Training

Approximately 80% of 1.3 million randomly selected samples
were used for model construction and the remaining 20% were
used for model testing. In addition to the LightGBM algorithm,
some typical algorithms (including multiple linear regression—
MLR, ridge regression, lasso regression, elastic net regression,
decision tree regression, RF, k-nearest neighbor—KNN, and
Multilayer perceptron—MLP) were also used to produce results
for comparison. These algorithms differ in complexity but were
applied to the same training and testing sets.

The 80% sample set was split into training and validation sets
using a fivefold cross validation. The training and validation
sets were used for model parameter determination and hyper-
parameter optimization, respectively. We used the k-fold cross
validation to optimize model hyperparameters. It is a typical
method that is used to effectively avoid overfitting. Generally,
k exceeds 2 [50] and a high k value (e.g., 10) is used for small
sample sets. We took into consideration the size of the sample set
and computation time and set k to 5. In a fivefold cross validation,
80% of the sample instances for model construction are used for
model training and 20% are used for model validation. For the
model with multiple hyperparameters, we adopted the greedy
strategy to determine the hyperparameters [51]. We used the
testing set to evaluate model accuracy. Because hyperparameters
are absent in the MLR model, validation data were not used for
MLR model training.

IV. RESULTS

We used the testing sample set to evaluate the performance
of the nine machine learning models and compare their perfor-
mances. In addition, we used the LightGBM model to retrieve
hourly IST for the 15th day of every month between 2013 and
2020 and used multisource data to evaluate model accuracy. This
section focuses on the model accuracy evaluation and the spatial
and temporal IST results will be shown in Section V.

TABLE I
ACCURACY OF THE DIFFERENT MODELS

A. Validation Using Testing Data

We evaluated the accuracy of the nine models by using the
same testing sample set (see Table I). The biases of all the models
are close to zero, which indicates the absence of system bias.
Among the linear models, the performance of MLR exceeds
the performance of the Ridge, Lasso, or Elastic Net regression
model. In the Ridge, Lasso, and Elastic Net regression models,
overfitting is avoided by the addition of regularization terms.
However, the addition of regularization terms reduces model
accuracy in the case of underfitting [52]. This indicates that
the expressiveness of the linear models is insufficient to fit the
training set. The performance of the nonlinear models exceeds
that of the linear models. Among the nonlinear models, the
Decision Tree model has the lowest accuracy because it has
a relatively simple structure. The KNN, MLP, and RF models
have similar levels of accuracy; RMSE is approximately 3.8 K.
The performance of LightGBM is superior with an RMSE of
2.96 K and mean absolute error (MAE) of 2.13 K. The KNN
model is easy to use but its sensitivity to noise in the training
set might limit its performance [53]. MLP is a typical feed
forward neural network trained by backpropagation methods; it
is prone to falling into the local optimum rather than the global
optimum [54]. Both RF and LightGBM are ensemble learning
algorithms that use Decision Tree as the base regressor. The
ensemble strategy of RF is bagging and that of LightGBM is
boosting. In addition, LightGBM adopts two novel techniques
(GOSS and EFB), which address the problems of efficiency and
scalability for large data sizes and high feature dimensions [46].
Our results show that the performance of LightGBM is superior
to that of RF; this is in agreement with previous studies [28],
[55]. Because the LightGBM model has the best performance,
we only used the LightGBM model for the remaining analyses.

Training set size is an essential quantitative factor that affects
model accuracy [56]. When the sample set size is small, the
model accuracy increases with the increase of the sample set size.
When there are sufficient sample instances, the sample set size
hardly changes the model accuracy and the sample set quality
dominates the model accuracy. To figure out the appropriate
sample set size for this study, we trained the LightGBM model
using five different training sets and calculated the RMSEs.
The numbers of sample instances for the five sample sets are
2, 4, 6, 8, and 10 million, respectively. The sample instances
in each set were chosen randomly. The corresponding model
accuracies of the five sample sets are 2.17, 1.97, 1.78, 1.67,



10696 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 7. Maps of IST from AMSR2, ERA5-land, and Landsat-8 data. The pixel
size of all maps is 10 km. The different columns denote the IST maps on different
dates. The different rows denote the IST maps from different sources.

and 1.65 K, respectively. Therefore, the number of sample set
instances exceeding 8 million is appropriate and adopted for the
following study.

B. Cross Validation Using Multisource Data

We evaluated the accuracy of the LightGBM model using
IST from Landsat-8 thermal infrared data and IST from BSRN
broadband thermal infrared radiation data. Skin temperature
from ERA5-Land was also used for comparison.

Fig. 7 shows maps of IST from Landsat-8, AMSR2, and
ERA5-Land for three different days. The pixel sizes of the
Landsat-8 and ERA5-Land maps were resized to match those
of the AMSR2 data (10 km). ERA5-Land is forced by the atmo-
spheric analysis of ERA5, which adopts interpolation methods
during data assimilation [57]. The AMSR2 and Landsat-8 maps
were generated pixel by pixel and, therefore, have more random
noise. As a result, the appearance of the ERA5-Land maps
is smoother than that of the other maps. Visual inspection of
the three maps reveals clear agreement between the Landsat-8,
AMSR2, and ERA5-Land maps for December 13, 2017 and
January 5, 2020. However, for September 17, 2014, ERA5-Land
IST is considerably lower than AMSR2 IST and Landsat-8 IST.
We calculated the accuracy of both AMSR2 IST and ERA5-Land
IST in comparison with Landsat-8 IST, which we took as ground
truth (see Table II). The accuracy of AMSR2 IST is higher than
that of ERA5-Land; RMSEs are 1.39–2.32 K.

We evaluated the accuracy of AMSR2 IST and ERA5-Land
IST using data from a BSRN station that is in the inland area
of East Antarctica (DOM in Fig. 2). To match the temporal
resolution of ERA5-Land (1 h), we used the LightGBM model
to retrieve hourly IST for the 15th day of every month between

TABLE II
COMPARISON OF ISTS FROM AMSR2, ERA5-LAND, AND LANDSAT-8

Fig. 8. ISTs from the DOM station of BSRN and (a) AMSR2 and (b) ERA5-
Land; N is the number of data samples; R2 is Pearson’s correlation coefficient;
BIAS is the mean bias; RMSE is the root-mean-square error.

2013 and 2020 from the AMSR2 swath data. This sampling
provides 2304 instances. However, because of missing BSRN
data, we only had 1542 data pairs.

Fig. 8 shows ISTs from BSRN, AMSR2, and ERA5-Land and
the number of data samples (N), Pearson’s correlation coefficient
(R2), mean bias, and RMSE. The ISTs range from 200 to 255
K; ASMR2 IST has a larger R2 and smaller RMSE than ERA5-
Land IST. This indicates that the correlation between ASMR2
IST and BSRN IST is higher than that between ERA5-Land
IST and BSRN IST. The mean bias shows that AMSR2 IST is
lower than BSRN IST and that ERA5-Land IST is higher than
BSRN IST. This indicates that the mean AMSR2 IST is lower
than the mean ERA5-Land IST. We infer that the performance
of AMSR2 IST is higher in cold inland areas.

Fig. 9 shows the accuracy of retrievals of seasonal IST. The
accuracy of AMSR2 IST is the highest in austral autumn (RMSE
of 3.732 K). The accuracy of ERA5-Land IST is the highest in
spring (RMSE of 4.655 K). In spring (Sep., Oct., and Nov.),
summer (Dec., Jan., and Feb), and winter (Jun., Jul., and Aug.),
BSRN IST is higher than AMSR2 IST. In summer, autumn (Mar.,
Apr., and May), and winter, BSRN IST is lower than ERA5-Land
IST. The accuracy of AMSR2 IST is higher than that of ERA5-
Land IST in summer, autumn, and winter. In spring, the accuracy
of ERA5-Land IST is higher than that of AMSR2 IST. There is
little consistency in the seasonal variations of the IST accuracy
of ERA5 and AMSR2.

V. DISCUSSION

A. Error Distributions of the LightGBM Model

We analyzed the error distributions of LightGBM model based
on STG, month, and IST. First, the STG is a novel parameter for
the LightGBM model, and our concern focuses on the magnitude
of the error that might be caused by the STG. Second, the ice
surface features of the Antarctic vary substantially according to
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Fig. 9. ISTs from the DOM station of BSRN, AMSR2, and ERA5-Land for different seasons. Spring is shown in the leftmost column; summer is shown in the
second column to the right; autumn is shown in the third column to the right; winter is shown in the rightmost column. The top row shows BSRN IST and AMSR2
IST. The bottom row shows BSRN IST and ERA5-Land IST.

month, which might induce changes in PM radiance intensity.
This could further impact the accuracy of the model; therefore,
the month is also considered in the discussion. In addition, IST is
also adopted because it is the output of the model. We calculated
the RMSE and mean bias using the testing sample set. Fig. 10
shows the error distributions of the LightGBM model based on
month, IST, and STG.

The performance of the LightGBM model is lower in austral
winter and higher in austral summer [see Fig. 10(a)]. This is
because PM penetration depends on snow characteristics, which
vary with season. In winter, low temperature and relatively dry
snow result in large PM penetration depth [22]. In contrast, the
snow becomes wet and even melts during the summer; as a
result, PM radiation signals from below the surface are weak,
and satellite data contain most information from the surface. In
addition, the LightGBM model presents slightly cold biases in
austral summer and autumn, and warm biases in austral winter
and spring.

Fig. 10(b) shows the error distribution of the LightGBM
model based on IST. The performance of the model is higher
at higher ISTs and lower at lower ISTs; this is consistent with
the variation of model accuracy with month [see Fig. 10(a)]
because there is a strong correlation between IST and month.
Moreover, the mean bias and RMSE of the LightGBM model
are especially high for ISTs of 0–200 and 200–210 K. The warm
bias might be caused by a small number of sample instances
with cloudy conditions in the sample set. For cloudy conditions,
IST in the MOD/MYD11_L2 products is extremely low. The
low accuracy of LightGBM IST for ISTs of 0–200 and 200–
210 K could also be caused by high PM penetration at low IST.
However, the impact of these sample instances at 0–210 K on
the overall LightGBM model accuracy is not obvious because
the number of these sample instances is small [see Fig. 6(c)].
Variations of RMSE with IST [see Fig. 10(b)] are larger than the

Fig. 10. Error distributions of the LightGBM model based on (a) month, (b)
IST, and (c) STG.
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variations of RMSE with month [see Fig. 10(a)]; this indicates
that model accuracy is more sensitive to IST than to month.
We infer that low-temperature areas in inland areas in summer
and high-temperature areas in coastal areas in winter reduce
the intermonth variation in model accuracy and decrease model
sensitivity to month. We suggest that LightGBM model accuracy
may be improved by using sample sets with different IST ranges
for model training. However, this might be difficult to achieve
because of the need to match input data with the correct IST
retrieval model.

Fig. 10(c) shows the error distribution of the LightGBM model
based on STG. On the x-axis, negative values indicate that the
scan time of AMSR2 is before that of MODIS, and positive
values indicate the reverse. Model accuracy is slightly higher
for STG values in the middle range and slightly lower for low
and high STGs. This indicates that the LightGBM model is
insensitive to STG and that the introduction of STG hardly
affects model accuracy. Mean bias varies little with STG and
is near-zero for all STGs.

Overall, model accuracy is the most sensitive to IST and the
least sensitive to STG. The performance of the LightGBM model
is superior for specific IST ranges. Therefore, the accuracy of
retrieved IST may be improved if the models are trained by
sample sets with different IST ranges and the input data are
assigned to the correct retrieval models.

B. Bias Between the IST and the NST

AWSs have been collecting NST in Antarctica for many years.
We used this long-term data to examine the bias between the IST
and the NST. According to Adolph et al. [8], it is not recom-
mended to validate IST retrievals using AWS air temperatures
because of the uncertainty induced by near-surface temperature
inversion, which is controlled mainly by wind speed, solar
radiation, and other factors [58]. In addition, the near-surface
temperature inversion might not fully account for the bias be-
tween the NST and IST because of errors in the retrieved IST,
which are difficult to eliminate. We analyzed the bias between
AMSR2 IST and AWS NST. Hourly AMSR IST on the 15th of
each month from 2013 to 2020 is used.

Fig. 11 shows the spatial distribution of the biases between
NST and AMSR2 IST through the seasons. In austral autumn
and winter, there is a distinct spatial heterogeneity with larger
biases in West Antarctica and smaller biases in East Antarctica.
Spatial heterogeneity is smaller in austral spring and summer and
larger in austral autumn and winter. As mentioned above, the bias
between NST and ASMR2 IST is dominated by the near-surface
inversion and IST error. The LightGBM model has a warm bias
in austral winter and a near-zero bias in austral summer [see
Fig. 10(a)]. The warm bias in ASMR2 IST reduces the bias
between the ASMR2 IST and NST because the IST is generally
lower than NST; a cold bias in ASMR2 IST causes the bias be-
tween the ASMR2 IST and NST to increase. The biases between
IST and NST in austral summer [see Fig. 11(b)] are clearly lower
than those in austral winter [see Fig. 11(d)]. Therefore, we infer
that the near-surface temperature inversion in austral summer is
weaker than that in austral winter. Our results are in agreement

Fig. 11. Mean bias between AWS NST and AMSR2 IST for different seasons.
AWS NST and hourly AMSR2 IST data on the 15th of each month from 2013
to 2020 are used.

Fig. 12. Variations of (a) annual and (b) monthly AMSR2 IST and ERA5-Land
IST. Hourly AMSR IST and ERA5 IST on the 15th of each month from 2013
to 2020 are used.

with those from Summit station in Greenland. According to
Miller et al. [59], near-surface temperature inversions at Summit
station are prevalent in the winter with decreasing values in the
summer months. Similarly, the LightGBM model has a warm
bias in austral spring and a cold bias in austral autumn [see
Fig. 10(a)]. Therefore, the bias between the IST and NST in
austral autumn [see Fig. 11(c)] and spring [see Fig. 11(a)] is
larger and smaller than the near-surface temperature inversion,
respectively.

C. Antarctic IST From 2013 to 2020

We analyzed the variation of hourly AMSR2 IST and ERA5-
Land IST from the 15th day of each month for 2013–2020.
Fig. 12 shows the variations of annual and monthly AMSR2
IST and ERA-5 Land IST. Variations of annual AMSR2 IST
were similar to those of annual ERA5-Land IST. Annual IST
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Fig. 13. IST maps from (top row) AMSR2 and (bottom row) ERA5-Land for (a) and (e) austral summer 2015, (b) and (f) summer 2020, (c) and (g) austral winter
2015, and (d) and (h) winter 2020.

decreased continuously between 2013 and 2015. Between 2015
and 2020, annual IST increased with large fluctuations. Both
ERA5-Land IST and AMSR2 IST were at their minima in 2015.
AMSR2 IST was at its maximum in 2018 and ERA5-Land IST
was at its maximum in 2020. Annual ERA5-Land IST exceeded
annual AMSR2 IST by approximately 3–4 K [see Fig. 12(a)].
Furthermore, variations of mean monthly AMSR2 IST were sim-
ilar to those of mean monthly ERA5-Land IST [see Fig. 12(b)].
Both ERA5-Land IST and AMSR2 IST were at their minima
in the same month; both datasets were also at their maxima
in the same month. There are considerable monthly variations
in the difference between AMSR2 IST and ERA5-Land IST
(ΔTsource). In January, ΔTsource was negligible. It increased
after January and peaked in May. We think two reasons led
to the difference between AMSR2 IST and ERA5-Land IST.
According to Fréville et al. [37], there is a warm bias in the IST
from ERA-Interim reanalysis in Antarctica, which is mainly
caused by the overestimation of the surface turbulent fluxes
under very stable conditions. Cao et al. [57] also reported a
warm bias in ERA5-Land soil temperature in permafrost regions,
especially in winter. Therefore, we infer that there is a warm bias
in ERA5-Land skin temperature, especially in austral winter. In
addition, the cold bias in MODIS IST products may cause the
cold bias in AMSR2 IST. Our results indicate consistent annual
and monthly IST variations, which prove the reliability of the
LightGBM model for IST retrieval.

Fig. 13 shows the spatial distribution of IST in austral summer
and winter for 2015 (year of annual AMSR2 IST maximum) and
2020 (year of annual AMSR2 IST minimum). Clearly, the IST
in West Antarctica exceeded that in East Antarctica. The IST in
coastal areas was higher than that in inland areas; ΔTsource was

Fig. 14. Variations of Antarctic IST from AMSR2 and SOI between 2013 and
2020.

small in austral summer and obvious in austral winter. This is
consistent with variations of monthly IST [see Fig. 12(b)]. We
examined the difference between IST in 2020 and IST in 2015
(ΔTyear). In summer, ΔTyear was positive over almost all of
Antarctica. In winter, clearly positive ΔTyear was found along
the coast and in West Antarctica. According to many studies, the
West Antarctic Ice Sheet is involved in more processes of change
than the East Antarctic Ice Sheet, including ice shelf calving,
elevation reduction, and surface melting [60], [61], [62]. There
is a step of approximately 2 K in IST across longitude ±180°
in the area of the Ross Ice Shelf. This is an artifact of longitude
±180° and a result of missing MOD/MYD11_L2 data in the
training set in this area.

Fig. 14 shows variations of the southern oscillation index
(SOI) (from https://www.cpc.ncep.noaa.gov/data/indices/) and
Antarctic IST between 2013 and 2020. The IST minimum in

https://www.cpc.ncep.noaa.gov/data/indices/
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2015 and maximum in 2020 could be explained by the El
Niño–Southern Oscillation, which has considerable influence
on the Antarctic environment and climate [63], [64]. In 2015,
SOI and IST are extremely low and Antarctic sea ice extent
is at its maximum since 1974 (data from Bremen Univer-
sity https://seaice.uni-bremen.de/sea-ice-concentration/amsre-
amsr2/time-series/). There is a positive correlation between SOI
and Antarctic IST (Pearson’s correlation coefficient = 0.664,
significance level p = 0.05). However, the SOI and Antarctic
IST variations from 2016 to 2018 are opposite. We infer that the
Antarctic IST is impacted only when the SOI is extremely low
or high (El Niño–Southern Oscillation event).

VI. CONCLUSION

We used AMSR2 swath data and a robust ensemble machine
learning algorithm to develop an instantaneous IST retrieval
framework. We used the MODIS IST product as ground truth
for model training. Auxiliary model inputs include terrain pa-
rameters and satellite observation information. To generate a
temporally continuous IST product, we developed an innova-
tive scheme based on the difference between the acquisition
time of AMSR2 swath data and that of MODIS data (i.e.,
STG). We used a testing sample set to evaluate the accuracy
of ISTs retrieved using typical machine learning models. The
performance of nonlinear models is superior to that of linear
models. The LightGBM model has the best performance in IST
retrieval and the RMSE of the lightGBM model is half that of
the linear model. For sets with more than 8 million samples, set
size has a negligible effect on model accuracy; RMSE stabilizes
at 1.67 K. We compared LightGBM IST with the IST from
Landsat-8, which we considered as ground truth. LightGBM
IST is consistent with Landsat-8 IST; RMSE is in the range of
1.39–2.32 K. The RMSE of IST from ERA5-Land reanalysis
ranges from 1.92 to 3.80 K. We compared LightGBM IST and
ERA5-Land IST with IST from a BSRN station. The difference
between LightGBM IST and BSRN IST is smaller than that
between ERA5-Land IST and BSRN IST.

We examined the variations of LightGBM IST RMSE and
mean bias with month, IST, and STG. Model accuracy is sensi-
tive to both month and IST and insensitive to STG. This indicates
that the introduction of STG hardly affects model accuracy. We
suggest that the accuracy of retrieved IST may be improved
if the models are trained using sample sets with different IST
ranges and the input data are assigned to the correct retrieval
models. We analyzed the bias between retrieved IST and NST.
The mean bias between IST and NST is larger in West Antarctica
and smaller in East Antarctica. In addition, the near-surface
temperature inversion in austral summer is weaker than that
in austral winter. Between 2013 and 2020, annual ASMR2 IST
and annual ERA5-Land IST exhibited similar variations. Annual
ASMR2 and ERA5-Land ISTs both decreased continuously
between 2013 and 2015. Between 2015 and 2020, Annual IST
increased with large fluctuations. In austral winter, AMSR IST
was lower than ERA5-Land IST. This might be a result of the
warm bias in ERA5-Land data. Pearson’s correlation coefficient

between SOI and IST is 0.664; SOI and IST minima both
occurred in 2015.

The focus of this study is to establish an empirical IST retrieval
model, which has the ability to generate spatially and temporally
continuous Antarctic IST data. On the contrary, this study lacks
research on the physical process of PM radiation transfer, espe-
cially the interaction among PM, snow, and atmosphere. Because
model accuracy is influenced by PM radiation transfer, we
will focus on deriving snow surface information by combining
physical clues with the empirical model in our future study.
In addition, MOD/MYD11_L2 is more uncertain during polar
nighttime than during polar daytime due to the lack of visible
channels during polar nighttime for cloud detection. Therefore,
more reliable thermal infrared IST products can improve the
empirical model accuracy.
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