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Abstract—This study introduces a novel method for estimating
hourly concentrations of particulate matter 2.5 µm (PM2.5) us-
ing satellite data. The pollution control department of Thailand
collected hourly PM2.5 data nationwide in 2020. NASA’s Earth
Observing System Data and Information System encompasses all
moderate resolution imaging spectroradiometer satellite data. We
employed aerosol optical depth (AOD), land surface temperature
(LST), normalized difference vegetation index (NDVI), and eleva-
tion (EV) in our analysis. The approach incorporates a weighted
sum contrast log-linear regression model that integrates satellite
data, allowing for the examination of small-scale hourly variations
in PM2.5 concentrations. The results reveal a high correlation
between hourly PM2.5 levels and AOD, LST, NDVI, EV, time, and
week of the year in terms of spatial distribution, with an R2 value of
53.8%. The mean hourly PM2.5 concentration was 23.1µg/m3, dis-
playing elevated concentrations during the dry season (November
to March) and peak hours (8 to 11 A.M. and 8 to 12 P.M.). Positive
correlations between AOD and PM2.5, especially when AOD ex-
ceeded 0.52, and between LST and PM2.5, particularly when LST
exceeded 33.9 °C, along with NDVI ranging from−0.08 to 0.18 and
EV above 67.9 m, resulted in higher PM2.5 levels than the overall
mean. The proposed model proved valuable for interpretation and
practical application, offering comparable estimated hourly PM2.5

concentrations at a 1-km resolution with monitoring stations. This
suggests that researchers or policymakers may use the model to
understand hourly PM2.5 fluctuations and their impact on human
health and the environment.

Index Terms—Hourly PM2.5, log-linear regression, satellite
data, weighted sum contrast.
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I. INTRODUCTION

SUSPENDED particulate matter from human and natural
sources significantly impacts the climate and environment

[1], [2]. Epidemiological studies indicate that atmospheric par-
ticles with an aerodynamic diameter of less than 2.5 µm (PM2.5)
can cause severe harm to human health, resulting in increased
deaths due to cardiovascular and respiratory diseases and lung
cancer [3], [4], [5]. Due to the uneven distribution of moni-
toring sites, analyzing the spatial and temporal distribution of
PM2.5 particles through traditional ground-based monitoring
is restricted. Hence, it is crucial to acquire precise and de-
pendable estimates of PM2.5 concentrations with high coverage
and resolution to evaluate the impact of air quality on public
health.

Various studies have revealed a substantial correlation be-
tween surface PM2.5 concentrations and the aerosol optical
depth (AOD) obtained from satellite data. However, to en-
hance the accuracy of the modeling, other variable factors
are frequently incorporated [6], [7]. With advancements in
satellite technology, it is now possible to estimate ground-
level PM2.5 concentrations using satellite data products. This
approach is expected to provide accurate and reliable esti-
mates of PM2.5 concentrations with high coverage and res-
olution, overcoming the limitations of conventional ground-
based monitoring systems. While the previously mentioned
studies primarily used AOD data from the moderate resolu-
tion imaging spectroradiometer (MODIS), other satellite sen-
sors, including the visible infrared imaging radiometer suite,
multiangle imaging spectro radiometer, and Korean geosta-
tionary ocean color imager, also offer AOD products [8], [9],
[10], [11], [12]. However, these sensors, situated on polar or-
bit satellites, provide only one observation per day, leading
to a limited representation of aerosol distribution during the
day [13], [14].

Studies have established a strong correlation between AOD
and PM2.5, with statistical models developed to relate the two
[15], [16], [17]. By combining satellite remote sensing AOD
with ground-based PM2.5 observations and employing statistical
methods, it is possible to generate PM2.5 estimates with exten-
sive spatial coverage [18]. In a review on predicting ground
PM2.5 concentrations using satellite AOD, multiple linear re-
gression (MLR) (25 articles), mixed-effect model (MEM) (23
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articles), chemical transport model (16 articles), and geographi-
cally weighted regression (10 articles) were widely employed
[6]. However, no clear “best” model was identified, as each
method has its strengths and limitations.

The MLR model has been extensively employed since 2005
to predict PM2.5 levels using satellite AOD data. In this model,
AOD is the independent variable, while ground-level PM2.5

is the dependent variable. Previous research utilized the MLR
model to forecast PM2.5 concentrations in various regions, in-
cluding cities, suburbs, and the countryside in the eastern United
States during 2001 [19]. They observed significant variations
in coefficients among regions, resulting in low R-squared (R2)
values of 0.420, 0.490, 0.590, and 0.430 in cities, suburban
areas, the countryside, and the entire region, respectively. Recent
studies have explored covariate factors within the MLR model to
enhance the model’s performance across different circumstances
[20], [21], [22], [23], [24].

To estimate PM2.5 using satellite data analysis with MLR, it
is necessary to utilize treatment contrasts when the independent
variables are categorical. Treatment contrasts in linear regression
involve a linear combination of predictors whose coefficients
add up to zero, facilitating the comparison of various treatments
[25]. Initially, this method was developed to compare one or
more treatment groups with a control group by setting the control
group’s parameter to zero and allowing the treatment parameters
to reflect their respective treatment effects. Nonetheless, the pro-
pose an alternative approach for constructing 95% confidence
intervals (CI) to compare means without selecting a reference
group [26]. This approach provides informative 95% CIs for
comparing each mean with the overall mean and employs differ-
ent contrasts referred to as “sum” contrasts when a control group
is absent. Sum contrasts restrict the parameters associated with
each factor level, indicating the difference between that level
and the overall mean outcome. It is worth noting that this tech-
nique has not yet been applied to estimate PM2.5 using satellite
data.

Weighted sum contrasts have been commonly utilized in pre-
vious studies employing linear and logistic regression models.
For instance, utilized weighted sum contrasts in linear regres-
sion to evaluate the influence of land-cover transformation and
elevation (EV) on decadal changes in land surface temperature
(LST) by comparing the adjusted mean of all factors [27]. Con-
ducted a comparison of blood lead levels among children in the
Pattani River region of Thailand [28], while the examined HIV
mortality by age group and gender in Thailand between 2014
and 2015 [29]. In addition, employed weighted sum contrasts
logistic regression to investigate land-use change in Thailand
[30], [31], [32]. Furthermore, utilized the same technique to
explore the increase in LST in Bali, Indonesia, from 2001 to
2020 [33].

PM2.5 concentration exhibits temporal and spatial variations
that require high-resolution monitoring, typically not met by
polar-orbiting satellites [34]. To address this issue, geostationary
meteorological satellites have been increasingly used to estimate
PM2.5 [35]. The PM2.5 data collected at ground station sites
are typically recorded hourly, necessitating the development of

accurate methods to estimate hourly levels to cover all areas of
study. No study has been done for the estimation of ground-
level hourly PM2.5 in Thailand. Some have been done for the
estimation of daily PM2.5 [36], [37]. Our previous research also
mentioned the satellite data that can be used to estimate PM2.5

in Thailand and to model daily PM2.5 in Thailand [38], [39]. It
begins with AOD as a base factor and then adds other variables
to improve accuracy in estimating PM2.5 levels in Thailand.
Specifically, we have selected LST, normalized difference veg-
etation index (NDVI), and EV data to represent land use and
cover, as well as time and week of the year (WOY) as time and
seasoning factors. Therefore, this study uses satellite data from
our previous research to estimate ground-level hourly PM2.5.
We aim to develop an easily interpretable method for estimating
hourly PM2.5 levels using a weighted sum contrasts linear
regression approach. Our proposed method will be valuable
for researchers and policymakers in understanding the hourly
fluctuations of PM2.5 and their impact on human health and the
environment.

II. MATERIALS AND METHODS

A. Study Area

Thailand, a dynamic nation in Southeast Asia, boasts a diverse
geography that encompasses the Andaman Sea and the Gulf
of Thailand. With a population of approximately 70 million,
Thailand is traditionally divided into four regions: central, north,
northeast, and south. The four-region system is the adminis-
trative classification developed by the Ministry of Interior and
used for statistical or academic purposes. It holds significant
regional importance, consisting of 77 provinces and covering an
extensive area of 513 120 km2. The pollution control department
(PCD) is a legally recognized government agency in Thailand
that collects data on air pollution parameters throughout the
country. We utilized hourly PM2.5 data from 67 stations in 2020,
as displayed in Fig. 1.

B. Satellite Data

In this study, we utilized AOD, LST, NDVI, and EV data
obtained from the satellite products of MODIS. All the data
used in this research were retrieved from the Distributed Active
Archive Center, made available through the National Aeronau-
tics and Space Administration (NASA) Earth Observing System
Data and Information System.

We processed data obtained from the MCD19A2 product,
including AOD (AOD at 045 Microns) retrieved from Terra
and Aqua satellites. The AOD data are collected twice daily
at 10:30 A.M. and 1:30 P.M. local standard time, with a spatial
resolution of 1 kilometer (km) per pixel. The LST data from
Terra (MOD11A1 product) and Aqua (MYD11A1 product)
satellites were combined to calculate the daily average LST
values, taking the arithmetic mean when data from both satellites
were available or using the data from a single satellite if only
one was operational on a specific day.
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Fig. 1. PM2.5 station in 2020.

In addition, the MOD13A1 NDVI product, with a temporal
resolution of 16 days and a spatial resolution of 500 m, was
employed to depict land cover changes and monitor global
vegetation conditions. This dataset provides valuable insights
for modeling biogeochemical and hydrologic processes, un-
derstanding climates at global and regional scales, and char-
acterizing various biophysical features and processes on the
ground surface. Lastly, the EV data from the “Land Digital
Elevation Model (MODDEM1KM) - Land/sea mask and dig-
ital elevation model” with a spatial resolution of 1 km were
utilized.

C. Data Analysis

1) Study Variables: We examine the association between
hourly PM2.5 concentrations and satellite data in 2020. To
achieve this, we matched the PM2.5 concentrations for each

TABLE I
SUMMARY OF THE DATA USED IN THIS STUDY

station with the average satellite data within a 5 km radius.
In addition, we employed data imputation techniques, specifi-
cally using the nearest date and pixel. This matching process
was accomplished using station latitude-longitude and date
variables. We then analyzed the relationship between hourly
PM2.5 concentrations and various satellite variables, including
AOD, LST, NDVI, and EV, as well as the time and WOY
variables. The satellite data were grouped into ten levels using
the ten quantiles to facilitate our analysis. It is important to
note that the time variable was measured over 24 h, while the
WOY variable was measured over 53 weeks. The summary of
the data used in this study, including variables, units, tempo-
ral resolution, spatial resolution, and source, is displayed in
Table I.

2) Linear Regression Based Weighted Sum Contrasts: This
study focused on hourly PM2.5 values as the outcome of interest,
along with a group of AOD, LST, NDVI, and EV, as well as
categories of WOY and time variables as determinants. When
a categorical variable is used as a determinant in a regression
model, it is referred to as a factor. The model formula features
a set of k–1 parameters, where k refers to the number of distinct
categories. The linear regression model formulated as y = a +
factor(x1) + factor(x2) + factor(x3) + factor(x4) + factor(x5)
+ factor(x6), where y is the hourly PM2.5, a is the constant
term, x1 is AOD group, x2 is LST group, x3 is NDVI group,
x4 is EV group, x5 is time, and x6 is WOY. Since the factors
only have a k-1 parameter, then the model was formulated as
follows:

y = a+

k=10∑

i=2

bix1i +

k=10∑

i=2

cix2i +

k=10∑

i=2

dix3i

+

k=10∑

i=2

eix4i +

k=24∑

i=2

fix5i +

k=53∑

i=2

gix6i (1)

where bi, ci, di, ei, fi, and gi were the coefficients of x1, x2, x3,
x4, x5, and x6 at identity i, respectively, and b1, c1, d1, e1, f1, and
g1 were equal to 0 in the case that no contrast option was selected
when specifying the model. Usually, without a specified contrast
option, the parameters are alphabetically assigned to each factor
level, with the first parameter being set to 0. Termed “treatment”
contrasts, these contrasts were initially employed in experiments
that compared one or more treatment groups to a control group.
By setting the parameter corresponding to the control group to
0, these contrasts ensure that the parameters associated with the
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treatments accurately capture the real treatment effects. How-
ever, given that our research did not incorporate a control group,
we excluded six categories from our analysis of determinants and
covariates.

Our study aimed to compare the mean of all relevant factors to
evaluate their impact on hourly PM2.5 levels. In order to achieve
our objective, we implemented the weighted sum contrasts [26].
This approach recommends constructing 95% CI to compare
means without the need for selecting a reference group, thereby
offering informative intervals for comparing each mean with
the overall mean. When there is no control group available,
we employed “sum” contrasts, which restrict the parameters
linked to each factor level, allowing us to measure the differ-
ence between that level and the overall mean of the outcome.
The formulation bears a resemblance to that of treatment con-
trasts but includes extra terms (b1, c1, d1, e1, f1, and g1), that
is

y = a+ b1x11 +

k=10∑

i=2

bix1i + c1x21 +

k=10∑

i=2

cix2i

+ d1x31 +

k=10∑

i=2

dix3i + e1x41 +

k=10∑

i=2

eix4i

+ f1x51 +
k=24∑

i=2

fix5i + g1x61 +
k=53∑

i=2

gix6i. (2)

During the linear regression using the weighted sum contrasts
method, several statistical model parameters were calculated,
including the overall mean (the average hourly PM2.5), over-
all adjusted R2 (derived from the regression model without
contrast option), crude mean (the PM2.5 mean in each fac-
tor category), and adjusted R2 and p-value for each factor.
These parameters were compared and investigated. Further-
more, 95% CI were computed for each factor category using
the “democratic” approach to evaluate the mean variation. To
compare means effectively, 95% CI for the difference between
means were employed, representing the difference between
each mean and the overall mean. These 95% CI align with
the p-value and do not necessitate the selection of a con-
trol group for comparison, rendering them “democratic” in
nature.

III. RESULTS

A. Normal Distribution Test

The left-hand plot of Fig. 2 displays the quantile-quantile
(Q-Q) plot of PM2.5, revealing a highly skewed distribution.
In contrast, the right-hand plot depicts the distribution after
log-transforming PM2.5, which appears to follow a normal
distribution. Consequently, we will utilize the log-transformed
PM2.5 outcome in this study, as it aligns with the assumption of
the linear regression model.

Fig. 2. Normal Q-Q plots of PM2.5 (left) and log-transformed PM2.5 (right).

TABLE II
VARIABLE SELECTION IN A STEPWISE REGRESSION MODEL

B. Select Variables

We generated a log-linear regression model by iteratively
adding and removing predictor variables based on their p-values,
starting from a set of potential predictor variables. The final
model, displayed in Table II, incorporates all the variables,
resulting in an R2 value of 53.8%, supported by significantly low
p-values (<0.001). Notably, the factor variables WOY (+22.4)
and AOD (+20) contributed the most to the model’s accuracy
improvement.

C. Log-Linear Model With Sum Contrast Analysis Results

Fig. 3 displays the estimated mean of hourly PM2.5 and
the comparative 95% CI (plus sign) after adjusting for vari-
ous factors, including AOD, LST, NDVI, EV, time, and WOY,
relative to the overall mean for each factor. The horizontal
red lines represent the simple average hourly PM2.5 from all
stations, while the blue dots indicate the crude means for
each factor group. The “r-sq:” label indicates the adjusted R2

value obtained from regression fitting with separated deter-
minants. The “Overall r-sq:” label denotes the adjusted R2

value obtained from the regression model adjusting for all
factors.

The overall mean of hourly PM2.5 in 2020 was 23.1 µg/m3,
falling below the National Ambient Air Quality Standards
(NAAQS) of 25 µg/m3 but still exceeding the World Health
Organization (WHO) guidelines of 5 µg/m3. The overall R2

value was 53.8%, and all factors were significant, with p-values
< 0.001. The individual R2 values were ranked in descending
order, with WOY accounting for 33.8%, followed by AOD
(18.7%), NDVI (9.8%), EV (6.4%), LST (4.8%), and time
(1.2%).
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Fig. 3. Mean and confidence intervals of hourly PM2.5 based on a log-linear regression model fitting using weighted sum contrast with satellite and time variables
as determinants.

The analysis revealed that the WOY factor had higher than
the overall mean and NAAQS hourly PM2.5 levels from Jan-
uary to March (1–9) and November to December (46–53). The
AOD factor was positively correlated with PM2.5, particularly
when it exceeded 0.52, resulting in PM2.5 levels higher than
the overall mean. Similarly, LST was positively associated
with PM2.5, particularly when it exceeded 33.9 °C, leading
to PM2.5 levels higher than the overall mean. For NDVI,
PM2.5 levels were higher than the overall mean within the
range of −0.08–0.18, indicating areas likely with no green
leaves and possibly urbanized. Furthermore, the EV factor
showed higher PM2.5 levels than the overall mean in areas
above 67.9 m. Lastly, the time variable indicated that PM2.5

levels were higher than the overall mean during 8–11 A.M.
and 20–24 P.M.

The 95% CI plot in Fig. 3 demonstrates that it is relatively
easy to estimate the hourly concentration of PM2.5 based on
each factor. For instance, if we are aware of the values of AOD
(0.55), LST (35.5 °C), NDVI (0.15), EV (300 m), time (12 A.M.),
and WOY (14), we can examine the graph for each factor to
determine the corresponding PM2.5 values (24.5, 24.7, 24.2,
30.5, 23.3, and 20, respectively (see actual values in Table III).
We can estimate hourly PM2.5 as follows:

where the constant term is− 15.69,

y = log (24.5) + log (24.7) + log (24.2) + log (30.5)
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Fig. 4. Hourly PM2.5 at stations (left) and estimated hourly PM2.5 in each
pixel 1 km resolution (right) in WOY 2 in Thailand 2020.

+ log (23.3) + log (20)− 15.69 = 3.465

Hourly PM2.5 = exp (3.465) = 32µg/m3

Consequently, we can infer that the hourly PM2.5 concen-
tration in this area is around 32 µg/m3. This straightforward
approach lets us quickly estimate the hourly PM2.5 concentration
by hand and easily interpret the results.

D. Estimation Hourly PM2.5 at 1 km Resolution

Fig. 4 displays the hourly PM2.5 levels recorded by moni-
toring stations on the left and the estimated levels at a 1 km
resolution on the right. The estimation used a log-linear re-
gression model with a weighted sum contrast in WOY 2 (6–12
January) of 2020. Both the hourly PM2.5 levels at monitoring
stations and the estimated levels show comparable values. This
method enables us to obtain PM2.5 data for every small area
since 2000, when MODIS satellite data became available for
download.

Fig. 5 displays the estimation of hourly PM2.5 levels, cat-
egorized by region. The R2 values in the northeast (46.3%),
central (44.1%), and north (36.2%) regions are higher than
those in the south (11.1%). In the north, the average hourly
PM2.5 is 42.7 µg/m3, a level that may impact health. On
the other hand, the northeast and central regions have av-
erage hourly PM2.5 levels of 33.3 and 27.5 µg/m3, respec-
tively, which represent median range values. Only the south
region exhibits an average PM2.5 lower than 15 µg/m3, in-
dicating good air quality in this area. The standard levels
for 24 h of NAAQS are 37.5 µg/m3, and WHO recommends
15 µg/m3.

IV. DISCUSSION

The log-linear regression model we propose, incorporating
weighted sum contrasts, enhances the understanding of the
relationship between satellite data and PM2.5, enabling the esti-
mation of hourly PM2.5 concentrations in Thailand with a high
spatial resolution of 1 km. This model facilitates the examination
of spatiotemporal variations in hourly PM2.5 concentrations at
fine scales, offering valuable insights for epidemiological re-
search and empowering individuals to make informed decisions
regarding air pollution.

Although we used a linear regression model, assuming that
the response variables follow a normal distribution, the Q-Q
plot applied to the test revealed that log-transformation was
more appropriate for the hourly PM2.5 outcome, given its
skewed distribution. Previous studies have also shown that
log-transformation can reduce skewness in the distribution of
PM2.5, increasing the accuracy of estimation [40], [41], [42],
[43]. This finding is consistent with others who similarly found
log-transformation to be appropriate for their study on the hos-
pital cost of Chronic-Disease Patients in Southern Thailand, as
demonstrated by the Q-Q plot [44]. In statistics, a Q-Q plot is a
graphical representation of the differences between observed
and expected values based on the assumption of a normal
distribution. A horizontal band close to zero without any dis-
cernible pattern indicates that the observed scores are normally
distributed [45].

Using the log-linear regression model, we performed an
iterative process of adding and removing predictor variables
based on their p-values. The variables included satellite vari-
ables (AOD, LST, NDVI, and EV), time, and WOY. This
process resulted in a final R2 value of 53.8%. Notably, the
WOY and AOD factor variables contributed the most to the
model’s accuracy improvement. This finding is consistent with
previous studies in China, highlighting the significant con-
tribution of AOD to PM2.5 modeling [46], [47]. Moreover,
time variables, such as year, month, WOY, and time, explain
the seasonal variation in PM2.5 levels and the trend over
time [48].

This study has identified various factors associated with ele-
vated levels of PM2.5. Specifically, the analysis has shown that
PM2.5 levels were higher than the overall mean and NAAQS
hourly PM2.5 levels during particular months, namely January
to March and November to December, as indicated by the WOY
factor. In addition, the AOD factor was found to be positively
correlated with PM2.5 levels, particularly when exceeding 0.52,
while LST was positively associated with PM2.5 levels ex-
ceeding 33.9 °C. According to research in northern Thailand,
the dry season occurring from November to April experiences
high levels of ground PM10 and PM2.5 concentrations due to
AODs [49]. These high levels result from extensive agricultural
field burning and open-air biomass burning in the region and
neighboring countries. The study also found that NDVI within
the range of –0.08 to 0.18 and EV in areas above 67.9 m
were associated with higher PM2.5 levels than the overall mean,
indicating a relationship with the urbanization area in the central
part and higher areas in the northern part of Thailand.
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Fig. 5. Estimation of hourly PM2.5 levels separated by region.

The time variable revealed higher PM2.5 levels during specific
hours, specifically 8–11 A.M. and 20–24 P.M., which may be
related to working hours in the Bangkok Metropolitan Region
(BMR), the capital of central Thailand. In the BMR, auto-
mobiles, road dust, biomass burning, and meat cooking are
significant sources of PM2.5, contributing to the elevated levels
observed in the region [50], [51]. The rapid urbanization of
Southeast Asia in recent years has increased the likelihood
of air pollution from vehicles, industries, and construction ac-
tivities [52]. Also, the study in China described that PM2.5

had greater effects on mortality in urban cities than rural
areas [53].

The weighted sum contrast linear regression model helps
estimate hourly PM2.5 levels and understand the relation-
ship between determinants and PM2.5. Although some stud-
ies indicate that machine learning models may offer more
precise estimates than linear regression [46], [47], the lat-
ter is still valuable due to its simplicity and practicality.
In contrast, machine learning models may need more inter-
pretability, require expensive computing resources, and rely
on high-resolution satellite images, which can be challeng-
ing for researchers with limited budgetary support for ana-
lyzing satellite data. Thus, the weighted sum contrast linear
regression model remains viable to overcome these limitations.
Statistics make population inferences from a sample, while
machine learning identifies generalizable predictive patterns
[54].

This method produces hourly PM2.5 estimates at a resolution
of 1 km that are similar to those obtained from monitoring
stations. By leveraging MODIS satellite data, which has been
accessible for download since 2000, this approach allows for the
estimation of PM2.5 data in small areas, facilitating the appli-
cation of the weighted sum contrast linear regression model for
hourly PM2.5 estimation. This enables policymakers to acquire
data on short-term and long-term PM2.5 fluctuations and their
effects on human health and the environment.

V. CONCLUSION

This study utilized a weighted sum contrast log-linear re-
gression model to examine the impact of various factors on
hourly PM2.5 concentrations in Thailand. The model included
six predictor variables: AOD, LST, NDVI, EV, time, and WOY,
resulting in an R2 of 53.8%. The WOY and AOD factors
contributed the most to the model’s accuracy improvement.
The analysis also revealed specific periods and thresholds for
each factor correlated with higher hourly PM2.5 levels. The
95% CI plot demonstrated that it is easy to estimate hourly
PM2.5 concentrations based on each factor. The map revealed
that the spatial distribution of PM2.5 levels was comparable to
those observed at the monitoring stations. Overall, the study
provides valuable insights into the factors influencing hourly
PM2.5 concentrations in Thailand and the potential for uti-
lizing satellite data to estimate hourly PM2.5 levels in small
areas.
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APPENDIX

TABLE III
WEIGHED SUM CONTRASTS LOG-LINEAR REGRESSION MODEL RESULTS
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