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Siamese Meets Diffusion Network: SMDNet
for Enhanced Change Detection in

High-Resolution RS Imagery
Jia Jia , Geunho Lee , Zhibo Wang , Zhi Lyu , and Yuchu He

Abstract—In recent years, the application of deep learning to
change detection (CD) has significantly progressed in remote sens-
ing images. CD tasks have mostly used architectures, such as
CNN and Transformer to locate image changes. However, these
architectures have shortcomings in representing boundary details
and are prone to false alarms and missed detections under complex
lighting and weather conditions. For that, we propose a new net-
work, Siamese meets diffusion network (SMDNet), a CD model that
combines discriminative and generative architecture. By leveraging
the power of the Siam-U2Net feature differential encoder (SU-FDE)
and denoising diffusion implicit model (DDIM), it not only im-
proves the accuracy of object edge detection but also enhances
the data through iterative denoising and thinning reconstruction
detail detection accuracy. Improves the model’s robustness under
environmental changes. First, we propose an SU-FDE module that
uses shared weight features to capture differences between time
series images, refine edge detection, and combine it with the atten-
tion mechanism to identify vital coarse features, thereby improving
model sensitivity and accuracy. Finally, the progressive sampling of
DDIM is used to integrate further these key features, and the adapt-
ability of the model in different environments is enhanced with the
help of the denoising ability of the diffusion model and the accurate
capture of the probability distribution of image data. The perfor-
mance evaluation of SMDNet on LEVIR-CD, DSIFN-CD, and CDD
datasets yields validated F1 scores of 89.17%, 88.48%, and 88.23%,
respectively. This substantiates the advanced capabilities of our
model in accurately identifying variations and intricate details.

Index Terms—Change detection (CD), deep learning, diffusion
model (DM), remote sensing (RS), Siamese network.

I. INTRODUCTION

R EMOTE sensing (RS) [1], [2], [3], [4], [5] technol-
ogy has seen rapid advancements, fueled by Earth

Observation System projects launched by nations and interna-
tional coalitions, utilizing satellites like Landsat, Gaofen, SPOT,
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RADARSAT, and Sentinel. These advancements have led to
the generation of high-resolution RS images, which provide
detailed ground information for various applications. Progress
in multimodal high-resolution data analysis [6] and spectral RS
image processing [7] has further expanded our capabilities to
understand and apply RS imagery for detailed monitoring of
the Earth’s surface. RS image analysis [8], [9], particularly for
CD, allows us to compare alterations in objects or phenomena
over different time intervals within a consistent location. It is
crucial for tracking temporal changes in specific locations, prov-
ing essential in environmental monitoring, disaster assessment,
and urban planning. This process generates extensive data that
deepens our semantic understanding across disciplines and sig-
nificantly improves our grasp of the Earth’s dynamic landscape
and ongoing evolution.

Although CD technology in RS images [10], [11] has made
rapid progress, many problems still need to be solved in prac-
tical applications, especially when dealing with high-resolution
imagery. Issues, such as object occlusion, spectral confusion
from elements with similar spectral characteristics (e.g., trees,
buildings) [12], and environmental factors like climate and
lighting variations persist. These challenges impede the accu-
rate identification of distractors and the extraction of precise
edge details in high-resolution RS images [13], complicating
the reliable extraction of segmentation maps before and after
changes.

Traditionally, CD has evolved from manual visual analysis
to using algebraic techniques to calculate image pixel differ-
ences [14], [15] to employing data reduction strategies, such as
principal component analysis (PCA) [16]. With the rise in image
resolution, notably through CNN [17] and Transformer [18] in
deep learning, they have become the mainstream methods to
improve the accuracy and efficiency of RS image CD. However,
there is still room for improvement in feature processing and
detailed description.

The success of U-Net [19] in medical image segmentation
has inspired its application in RS image CD. The efficient
multiresolution network (EMRN) [20] addresses inconsisten-
cies in multiresolution images. UNet++ [21] enhances informa-
tion retention with its encoder–decoder architecture. Siamese
NestedUNet (SNUNet)-CD [22] merges a Siamese network
with UNet++ to blend deep and shallow features effectively,
while STANet [23] advances spatiotemporal analysis through
attention mechanisms. Despite these advancements, CNNs
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continue to face challenges in processing multitemporal images
within dynamic and complex settings.

The Transformer architecture was originally used in natural
language processing and is now widely used in the CD field of
RS. Models like the bitemporal image transformer (BIT) [23]
leverage CNN and Transformer synergy for enhanced change
recognition. PBSL [24] and Changeformer [25] refine feature
focus and information capture for CD, while SwinSUNet [26]
and CTS-Unet [27] integrate Siamese structures for improved
global information capture capabilities with low-resolution im-
ages and temporal relationships. Despite its proficiency in global
information processing, the Transformer architecture faces com-
putational and large-scale data challenges. We discovered the
advantages of Siamese networks in CNN and Transformer to
effectively analyze image pairs and adapt to the complex spa-
tiotemporal relationships in remote sensing image CD through
a shared weight mechanism.

Recent attention has turned toward diffusion models
(DMs) [28], [29], [30], [31], [32], advanced generative models
that produce intricate and lifelike images by systematically re-
versing added noise. Their main advantage is the ability to create
extremely realistic images due to their ability to process complex
patterns and their powerful learning capabilities to simulate and
reconstruct the subtle structure of the data. Unlike traditional
models, DMs excel in generating images with unparalleled
clarity and diversity, marking them as formidable tools in fields,
such as medicine [33], art, and media production. Notable ap-
plications include virtual dress-up [34], pose enhancement [35],
and video creation [36], [37]. Moreover, the authors in [38]
highlighted DMs’ efficiency in discriminative tasks–image seg-
mentation [39], [40], [41], [42], classification [43], and anomaly
detection [44], [45] underscoring their widespread applicability.
This breadth of use signals considerable potential for future
explorations in DM applications.

Despite the nascent application of DMs in RS image pro-
cessing, notable efforts have begun to explore their utility in
extracting essential semantic features [46]. Inspired by the
success of DDPM in multiple fields, we propose the Siamese
meets diffusion network (SMDNet) model. This model com-
bines Siam-U2Net feature differential encoder (SU-FDE) and
the denoising diffusion implicit model (DDIM) to innovatively
fuse discriminative learning and generation processes into the
change detection (CD) task to improve edge detection accuracy
in CD and robustness under different environmental condi-
tions. This hybrid architecture leverages the advantages of both
models in feature extraction and image generation to achieve
more refined recognition and reconstruction of changed areas.
Among them, the feature differential encoder SU-FDE is used
to improve the accuracy of edge description and is combined
with Siamese network contrastive learning to analyze the sim-
ilarity and difference of image pairs. In addition, multiscale
information fusion using nested U2Net improves edge detail
description, and identifies and enhances key coarse features
through the spatial attention (SA) [47] module. Subsequently,
the key feature maps are introduced into the encoder of the
diffusion model to enhance the robustness to illumination and
climate changes. DMs stepwise sampling integrates key features

effectively and iteratively generates more accurate CD maps.
The main contributions of our work are summarized as follows.

1) We propose SMDNet, a new model that combines Siamese
encoder and DDIM architecture to fuse discriminative
learning and generative processes in CD tasks. This model
not only optimizes the quality of CD maps but also effi-
ciently identifies changing areas.

2) SMDNet’s SU-FDE module adopts a deeply nested
U-shaped structure and multiscale feature extraction tech-
nology. It uses the characteristics of shared weights to en-
hance the model’s ability to identify spatial correlation and
difference and improve edge detail detection capabilities.

3) SMDNet uses denoising U-Net (DU) to learn pixel distri-
bution under different lighting and weather conditions to
improve model robustness and achieve good F1 scores of
89.17%, 88.48%, and 88.23% on three public datasets.

The rest of this article is as follows: Section II discusses related
work in DL and DMs applied to CD. Section III details the
methodology we propose. Section IV covers the experimental
setup and analysis of results. Finally, Section V concludes this
article.

II. RELATED WORK

A. Deep Learning-Based CD Methods

With the swift advancement of deep learning technology in
recent years, its strong potential in CD in RS images has received
extensive research attention. In particular, the ability of CNN
in pixel-level CD is outstanding in learning feature represen-
tations and identifying changed areas. In the realm of CD, the
approaches can be categorized into two types: 1) single-stream
and 2) dual-stream network methods.

Single-Stream Network: A singular deep learning network
structure is employed to learn the evolving features between
dual-temporal images. In this approach, a fully convolutional
neural network (FCNN) [48] primarily handles demanding pre-
diction tasks. To achieve this, two dual-temporal images before
and after changes are concatenated into a single input image,
and the CD feature map is extracted using a convolutional
network. Recognizing that the FCNN’s sampling process may
result in information loss and weak global perception ability,
the method incorporates U-Net [19]. This involves merging
dual-temporal images into a single image, fed into the network
with modifications. A recurrent neural network is introduced
in the skip connection to enhance responsiveness to temporal
changes in perception ability. PBSL [24] introduces a multi-
modal alignment approach to highlight relevant features and
suppress irrelevant information. To capture global and edge de-
tail information, the UNet++ network [21], [49] employs dense
skip connections in the encoder for CD tasks, enhancing the
segmentation network. The method adopts a deep supervision
strategy to improve detection in high-resolution images. Never-
theless, it encounters challenges in understanding temporal data
relationships, limiting its CD capability.

Dual-Stream Network: The approach involves processing
images from two temporal nodes through two parallel neural
networks, establishing a coupled architecture to discern features
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with significant material relationships, thus improving CD map
accuracy. Notably, FMCD [50] integrates feature encoding,
CD, and domain adaptation tasks within a cohesive two-stream
framework. Similarly, WS-Net [51] utilizes wavelet transform
to analyze spatial and frequency domain differences, while
MLA-Net [52] introduces a mask-guided attention mechanism
to enhance detection accuracy. In contrast to a single network
structure, the dual-stream network is divided into an asymmetric
dual-stream network (pseudo-Siamese) and a Siamese network,
each handling inputs from different time points. The asymmet-
ric network learns distinct features with independent weights,
whereas the Siamese network compares input similarities with
shared weights adapted to different time series data analysis
tasks. In addition, recurrent convolutional neural networks [53]
integrate CNNs with recurrent neural networks to form a pseudo-
Siamese network, and the dual-task constrained deep Siamese
convolutional network [54] utilizes fully convolutional networks
(FCNs) to extract multilevel features. Addressing the lack of
sufficient supervision for change feature learning, an intensely
supervised image fusion network (IFN) [55] is proposed using a
pretrained VGG16 as an encoder through the attention module
of the dual-stream architecture. In addition, TCRL [56] intro-
duces a contrastive learning method, and the densely connected
Siamese network (SNUNet) [22] merges Siamese network prin-
ciples with UNet++, further enriching the landscape of dual-
stream network methodologies.

B. Diffusion Model

DDPM as a generative model, is focused on reconstructing
data by inversely simulating the diffusion process of data from
its true distribution to the noise distribution. During training,
the model gradually masters the process of recovering from
the noisy state to the original data. Compared with traditional
deep learning frameworks, such as single-stream or dual-stream
networks, DDPM demonstrates multiple advantages: they can
capture pixel changes under different time and meteorological
conditions and enhance key features of the image when re-
constructing the real data, which improves image contrast and
clarity [57]. DDPM has shown its superiority in synthesizing
and recovering high-quality images [58]. In remote sensing
image analysis, diffusion models have proven effective, espe-
cially in enhancing image representation and detail supplemen-
tation [59], [60], [61]. Furthermore, the DM also demonstrates
its utility in cloud removal [62], [63], [64] and image segmen-
tation [65] tasks. In the field of CD in RS images, these models
effectively distinguish real changes from pseudo-changes due
to noise through an iterative denoising process, thus improving
the detection accuracy of details and edges. Although there are
not many cases of utilizing DMs in research literature on RS
image CD, recent innovative research has started investigating
the application of DDPM in processing RS images, especially
in feature extraction and construction of pretrainer encoders for
large-scale RS data [66]. Inspired by the successful application
of DDPM in other fields, this study proposes an innovative
method for RS image CD: the Siamese U2Net denoising dif-
fusion implicit model (SMDNet).

III. METHOD

This section will introduce the proposed SMDNet network.
Initially, the overall architecture of the network is presented.
The proposed feature differential encoder module (SU-FDE) is
described in detail. Next, is an explanation of the added attention
mechanism. Finally, DDIM is briefly explained.

A. Framework Overview

Fig. 1 mainly comprises an SU-FDE and a denoising module
(denosing U-net). SU-FDE is a bitemporal U2-Net feature differ-
ential encoder. Different from traditional CD methods and typi-
cal deep learning methods, DMs learn the process of denoising
and learn from the noise to produce clear detection results. Since
high-resolution remote sensing images have richer texture and
geometric semantic information than standard optical remote
sensing images, there is a higher demand for more advanced
feature extraction capabilities.

First, the dual-temporal image pairs (T1, T2) are input into
SU-FDE. This module utilizes the U-shaped structure and the
shared weight characteristics of the Siamese network to effec-
tively extract and aggregate the multiscale features of the image
pairs, enhancing the spatial correlation and difference of the
model pairs’ recognition ability. Next, SA is used to enhance
key spatial features, while L1 distance is used to calculate the
difference between feature maps at different scales to obtain the
difference map (f̂i). Further improve the detection accuracy of
edge details. The noise label map GTt is obtained by adding
t step noise to the binary classification (changed/unchanged)
label GT0. Bitemporal T1 and T2 and the added noise GTt are
combined along the channel dimension before being input to
the encoder of denoise-UNet (DU) to extract multiscale features
(IS). The model can learn from images before and after changes
and enhance its denoising ability by processing the noisy label
map GTt, allowing the encoder to obtain a more comprehensive
feature perspective at multiple scales. Since f̂i and IS have the
same number of features, we combine their corresponding scale
features to obtain fused features. Finally, the obtained fusion
features are input into the decoder of DU to obtain the prediction
result ĜT0 ∈ RC∗W ∗H

ĜT0 = DU(cat(T1, T2,GTt), t, f̂i). (1)

Here cat(·) is the concatenation operator.
The CD task is to detect changed and unchanged areas be-

tween pixels in an image. This is a discrete binary classification
task, and in CD tasks, changed areas usually look much smaller
than unchanged areas. Therefore, simultaneously using Dice
Loss and BCE Loss can improve the model’s sensitivity to
boundary pixels and overall pixel classification accuracy. The
total loss here is

Ltotal = Ldice(ĜT0,GT0) + Lbce(ĜT0,GT0). (2)

Here, Ldice is dice loss, Lbce is BCE loss, ĜT0 is the predicted
label value, and GT0 is the ground true label value.
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Fig. 1. Structural layout of the SMDNet network design. T1, T2, and GT0 are the prechange, postchange, and labeled images in the CDD dataset. (a) Proposed
SU-FDE. (b) DU for denoising. (c) SA Mechanism. In the model, SU-FDE extracts and processes spatiotemporal features from dual-temporal image pairs uses
SA to emphasize important regions, and calculates differential feature maps. After DU fuses the noise label map and the difference map, it gradually samples and
iterates the prediction results.

B. Siam-U2Net Feature Differential Encoder

In the current RS image CD research domain, dealing with
complex geographical environments and diverse ground object
types (Such as roads, buildings, plants, lakes, etc.) is a cru-
cial challenge. To overcome this challenge, researchers usually
employ various advanced techniques, such as feature pyramid
fusion, inception modules, skip dense connections, and residual
connections, to improve the performance of image detail capture
and edge detection. In this context, we introduced the Siamese
network and built a lightweight feature extractor named SU-
FDE. This feature extractor aims to enhance the understanding
of similarities and differences in images to improve the ability of
multiscale information fusion and edge detection. We achieved
satisfactory results by pretraining the complete Siam-U2Net
architecture and extracting the posttraining weights. These
weights are then used in the model’s feature extractor and frozen.

We pretrained the complete Siam-U2Net architecture to
shorten training time using the same dataset as the CD task. The
complete Siam-U2Net architecture, including the decoder, is
used in the pretraining stage. The decoder has a similar structure
to the encoder, and each stage combines the upsampled feature
map of the previous stage with the differential feature map of
the corresponding encoder stage as input. The decoder contains
five layers and is processed by a 3×3 convolutional layer to
generate five side-output binary images. After upsampling and
fusion, these binary images are fully trained through a 1×1
convolutional layer and a Sigmoid function. It is worth noting
that the decoder is only used in the pretraining stage to assist the
model in learning image features. In the subsequent training of

the CD task, we extract and freeze the encoder weights and do
not use the decoder.

The SU-FDE approach primarily consists of two main com-
ponents.

U-Shaped Structure Feature Extractor: We design a feature
encoder using a U-shaped structure containing ten residual
Residual U Block (RSU). RSU combines receptive fields of
various sizes and can capture contextual information at multiple
scales. These RSU blocks form a coherent U-shaped feature
extraction framework, which helps extract feature information of
complex geographical environments and diverse ground object
types. These RSU blocks can be divided into two main struc-
tures: 1) the first four layers and 2) the fifth layer. The first four
layers are four pairs of RSUs of different depths, namely, RSU-7,
RSU-6, RSU-5, and RSU-4. The numbers here (such as “7”, “6”,
“5”, “4”) represent the depth (D) of the RSU block (as shown
in Fig. 2). This depth can be adjusted based on the resolution of
the input feature map. In high-resolution remote sensing images,
deeper RSU blocks can be selected to capture more detailed
information. In addition, the fifth layer adopts another RSU-4F
(right in structure, where “F” represents the dilated convolution
version. These blocks are used to downsample to 16× deeper
and to keep the resolution of the feature maps not reduced. We
use dilated convolutions instead of traditional downsampling
and upsampling. This helps prevent the loss of useful contextual
information and ensures that the input and output resolutions of
the RSU-4F remain consistent.

Multilevel Feature Difference and Fusion: In the second part,
we leverage an SA module to augment the sensitivity of the
feature map in each layer of the Siamese network toward spatial
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Fig. 2. Residual U Block (RSU). It adopts the encoder and decoder designed
by U-Net, which is symmetrical and has D-layer depth. In the figure example,
the depth is seven layers for the RSU seven block.

changes in the context of the CD task. The feature map is
spatially enhanced through the SA module, which focuses on
critical areas for CD in RS images. The SA module combines
the information gathered through maximum and average pooling
to generate a salient feature map. This salient feature map is
then processed by the sigmoid activation function, resulting in
an attention map of the same size as the original feature map.
Attention maps highlight important spatial regions and suppress
less relevant areas, improving the model’s ability to recognize
subtle changes. We measure the difference between processed
feature maps through the L1 norm and effectively fuse the differ-
ence features into the encoding layer of Denoise-UNet, thereby
enhancing CD performance while maintaining computational
efficiency.

Combining the Siamese network and U2Net, the SU-FDE
module is more potent for detecting RS image change. It im-
proves the model’s comprehension of image similarities and
differences while enhancing the fusion of multiscale information
and edge detection capability.

C. Denoising Diffusion Implicit Models

DDIM serves as another crucial component within the SMD-
Net model. It plays a role in image denoising and enhancing
the model’s resilience to lighting and meteorological conditions
changes. DDIM proposes an accelerated diffusion model based
on DDPM. This generative model learns the noise distribution
and removes noise in the image, improving CD accuracy. Here
is a brief overview of DDPM and DDIM.

DDPM consists of a forward Markov denoising process,
denoted as q, and a reverse denoising process, denoted as p
([28]). The forward process starts fromx0 with a label map q(x0)
at T time steps, gradually introducing noise using a Gaussian
distribution

q(x1 : T |x0) =

T∏
t=1

q(xt|xt−1) (3)

where

q(xt|xt−1) = N(xt;
√

1− βtxt−1, βtI). (4)

Here, x0 is the label map. xt represents the state of the image at
time step t, and βt is a noise scale parameter.

In (3), as pointed out by [28], it is stated thatxt can be sampled
for any time step t, eliminating the need to reuse q. Here, αt :=
1− βt, and (ᾱt :

∏t
s=0 αt), can be written as

q(xt|x0) = N(xt;
√
αtx0, (1− ᾱt)I) (5)

xt =
√
αtx0 +

√
(1− ᾱt)ε, ε ∈ N(0, I). (6)

αt is defined as 1− βt, where αt is the complementary part of
the noise scale parameter. DDIM modulates the label map and
the impact of the noise introduced at each time step. ᾱt is the
cumulative product of αt from 0 to t. That is the total amount
of noise added at time step t. ε is a random noise added to the
image.

In simpler terms, the forward process of DDPM gradually
introduces noise to the image, transforming it from its initial
state to a fully noisy state over T time steps.

The reverse process of DDPM involves the neural network’s
prediction of the noise added during the forward process, en-
abling the step-by-step reconstruction of the original image from
its noisy state. This process portrays the neural network’s ability
to identify and subtract noise at each time step efficiently. The
reverse process, utilizing the Bayes’ theorem, discovers p(x0:T )
and decomposes it according to the chain rule formula

p(x0:T ) = p(xT )

1∏
t=T

p(xt−1|xt) (7)

where (p(xT ) ∈ N(0, I)) is a standard normal distribution

p(xt−1|xT ) = N(xt−1;μ(xt, t),
∑

(xt, t)). (8)

μ(xt, t) and
∑

(xt, t) represent the mean and variance used in
the reverse process, respectively.
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Marginalize through p(x0:T ) to get the marginal probability
p(x0) of x0

p(x0) =

∫
p(x0:T )dx1:T. (9)

By applying the Jensen’s inequality, we derive an evidence lower
bound for the logarithm of the likelihood function. We then train
the backward process to align its distribution with the forward
process distribution: −L(x0) <= log(p(x0))

L(x0) = Eq[LT (x0)

+
∑
t>1

DKL(q(xt−1|xt, x0)||p(xt−1|xt))− log p(x0|x1)]

(10)

where

LT (x0) = DKL(q(xT |x0)||p(xT )). (11)

There exist multiple approaches to parameterize μ(xt, t)
(8) the priors, and we can predict the formula with a neural
networkμ(xt, t), which can also predict noiseε. Here, we directly
expect x0 instead of noiseε and calculate the μ(xt, t). In [28],
the training objective of optimizing network parameters is sim-
plified, and the optimization objective is proposed; in addition,
a reweighted loss function is introduced as

Et,x0,ε ‖ ε− εxt,t ‖2 . (12)

After the diffusion model is trained, xT is sampled from
N(0, I), and xt is denoised and iterated to obtain a new x0

at each time step t

xt−1 =
√

¯αt−1

(
xt −

√
(1− ᾱt)ε(xt,t)√

ᾱt

)

+
√

1− ᾱt−1 − σ2
t ε(xt,t) + σtε. (13)

In [28], DDIM uses variance σ2 as a hyperparameter that can
be manually adjusted, and different effects can be obtained by
adjusting σ2

σ2
t =

(1− αt)(1− ᾱt−1)

1− ᾱt
. (14)

In DDPM

σt =
√

(1− ᾱt−1)/(1− ᾱt)
√
(1− ᾱt)/ᾱt−1. (15)

In DDIM, setting σt = 0 becomes deterministic sampling, and
the generation process is deterministic. When xt−1 and x0

are given, the forward process becomes deterministic, so the
resulting model is an implicit probability model. Samples are
generated from latent variables using a fixed process (from xT

to x0). When the sampling length is much smaller than T , and
the computational efficiency is substantially enhanced as a result
of the iterative nature of the sampling process.

As one of the key components of the SMDNet model, leverag-
ing DDIM accelerates the noise removal process in remote sens-
ing images, consequently enhancing the overall performance of
CD. DDIM gradually reduces noise through multiple iterative
diffusion processes, thereby removing noise and improving the

TABLE I
DATASET STATICS

image. This capability contributes to the model’s adeptness in
detecting subtle changes in RS images, thereby enhancing the
accuracy and reliability of the detection results.

IV. EXPERIMENTAL SETUP AND RESULT ANALYSIS

A. Datasets and Comparisons

In our experiments, we used three popular public datasets to
evaluate the performance of our model across diverse lighting
conditions, seasonal changes, different resolutions, and chang-
ing terrains and scenes. They are the LEVIR-CD dataset, the
DSIFN-CD dataset, and the CDD dataset, as summarized in
Table I. For the consistency of the test, the dataset was prepro-
cessed, cropped into image pairs of 256×256 size, and randomly
divided into three parts: train/test/val with 0.75/0.2/0.05, respec-
tively.

LEVIR-CD Dataset [23] collected 637 pairs of image patches
with very high resolution from Google Earth (GE). Each patch
had a pixel resolution of 0.5 m and a size of 1024×1024 pixels.
These image pairs come from more than 20 regions in the
United States, with time blocks ranging from 5 to 14 years,
with significant land changes and building growth, migration,
etc. Due to its extensive period and diverse range of building
types, this dataset presents a significant challenge for large-scale
remote sensing building CD.

DSIFN-CD Dataset [55] is six large bitemporal high-
resolution images collected from Google Earth. It covers six
cities in China (i.e., Beijing, Chengdu, Shenzhen, Chongqing,
Wuhan, and Xi’an) that contain significant differences among
the land objects collected. The five large images in the dataset
were segmented into 394 subimage pairs, each measuring
512×512 in size. Following data augmentation, a total of 3940
bitemporal image pairs were generated. Among them, the image
pairs of Xi’an are cropped to 48 as the test set. This dataset is
challenging due to its abundance of land objects and images that
vary seasonally.

Google Earth Change detection dataset(CDD) [67] has re-
mote sensing imagery of seasonal changes in an area. The dataset
comprises 11 pairs of images, including 7 image pairs with
dimensions of 4725×2700 pixels and 4 pairs of 1900×1000 pix-
els. The final output is a set of 16 000 cropped images, each
measuring 256×256 pixels. it is divided into 10 000 image pairs
for the training set and 3000 for testing and validation. With a
high spatial resolution ranging from 3–100 cm, it offers detailed
insights into changes in everyday structural objects like cars,
buildings, roads, and seasonal variations in natural objects, from
individual trees to extensive forest areas.

To validate the reliability of our method, we conducted com-
parisons with nine state-of-the-art CD methods from recent
years on the same three public datasets, using image block sizes
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consistent with those in the referenced papers. These methods
include fully convolutional early fusion (FC-EF), fully convo-
lutional siamese-difference (FC-Siam-diff), fully convolutional
siamese-concatenation (FC-Siam-Conc), spatial-temporal at-
tention neural network (STANet), a deeply supervised IFNet,
SNUNet, BIT, Changeformer, and mask-guided local–global
attentive network (MLA-Net). Each method demonstrates
effectiveness in various aspects of CD through different net-
work architectures. FC-EF, FC-Siam-diff, and FC-Siam-Conc
are three pioneering CD methods based on deep learning, all
proposed in the same research paper. STANet achieves better
spatiotemporal relationship modeling by introducing multiscale
subregion division and obtaining long-range spatiotemporal in-
formation in the self-attention module. IFNet employs a dual-
stream architecture to extract deep features and then fuses these
deep features with differential features via an attention module,
reconstructing the CD map in the process. SNUNet, which
merges the Siamese network with NestedUnet, enhances CD
performance by integrating deep and shallow features. This in-
tegration is achieved through efficient information transmission
and the application of attention modules, leading to a more
effective feature synthesis for CD tasks. A simple CNN back-
bone (ResNet18) is combined with an end-to-end transformer
to enhance the CD recognition of changing areas of interest. In
addition, another Siamese network combines the Changeformer
with a hierarchical Transformer encoder and MLP decoder to
achieve efficient, multiscale CD, effectively capturing the de-
tailed, long-range information required for precise CD tasks.
MLA-Net accurately captures local and global contextual in-
formation by fusing a memory-efficient local-global attention
module and introducing change masks.

B. Evaluation Metrics

In our evaluation framework, the primary metric for assessing
performance is the F1-score derived from the test’s precision and
recall values. The formula to calculate the F1-score(F1) is

F1− score = 2× Precision × Recall
Precision + Recall

. (16)

Furthermore, we also provide additional metrics for a com-
prehensive assessment, and These metrics take into account true
positives (TP), false positives (FP), false negatives (FN), and
true negatives (TN) in their calculations. TP represents correctly
identified changes, FP indicates incorrectly marked changes,
FN denotes missed actual changes, and TN refers to correctly
identified nonchanges. Specifically included are Precision (Pre.)
and Recall (Rec.) for the change category, the intersection over
union (IoU) for the same, and the overall accuracy (OA). The
formulas for these evaluation metrics are as follows:

Precision =
TP

TP + FP
(17)

Recall =
TP

TP+FN
(18)

IoU =
TP

TP+FN+FP
(19)

OA =
TP+TN

TP+TN+FN+FP
. (20)

C. Experimental Details and Analysis

Our network SMDNet is implemented using the PyTorch
framework and executed on a single NVIDIA A100 GPU. We
configured the batch size to 8 during training to ensure memory
usage. The AdamW optimizer is used with the learning rate set
to 1e-4, and the corresponding weight attenuation factor is also
set to 1e-4 to prevent overfitting. The warm-up period is set to
1% of the total period, and the learning rate is updated according
to the cosine annealing schedule. The model is regularly verified
every 10 epochs. During training and testing, DDIM selects ten
key points from 1000 time steps to guide the denoising process.

1) LEVIR-CD Dataset Analysis: LEVIR-CD is a dataset of
high-resolution images with an extended period, rich in building
types and changing scenes. In experiments conducted on the
LEVIR-CD dataset, as shown in Table II, the SMDNet model
achieved 92.71% and 89.17% in Pre. and F1, indicating that
the model performed well in detecting subtle significant archi-
tectural changes, such as the emergence of new buildings or
the demolition of old buildings. However, the model performed
slightly worse regarding recall (85.89%) and IoU (82.71%). This
may be because there are fewer samples of the changed category
in the dataset, causing the model to prefer predicting the “no
change” category. It improves accuracy but reduces recognition
of actual changes. Here, IFNet leads in Pre. with 94.02%, but its
performance in Rec. and IoU (82.93% and 78.77%, respectively)
is slightly insufficient, which reflects the performance tradeoff
between different models. MLA-Net performs outstandingly
regarding Rec. (91.38%), indicating that the model may need
to be selected and optimized according to specific application
scenarios in different CD tasks.

Fig. 3(a)–(c) show the images before and after the change
and the ground truth, respectively. Fig. 3(a) has the initial sur-
face state, such as lakes, farmland vegetation, and buildings.
In Fig. 3(b), changes that may involve building expansions,
land use conversions, or seasonal changes can be observed. The
ground truth Fig. 3(c) marks the areas of change and provides a
benchmark for evaluating the model’s performance in different
seasonal scenarios. It can be seen from the visualization effect
in Fig. 3(j) that the SMDNet model can accurately identify
the actual change areas in most cases, consistent with the
real change annotations on the ground. The visual effects of
other methods are also compared qualitatively. Judging from
the visual structure, SMDNet has a more precise division of
edge details. There is no adhesion between buildings, effectively
suppressing false changes between plants and buildings. The
model’s accuracy is critical in detecting new construction or
demolition of buildings and is essential for monitoring urban
expansion or redevelopment activity. However, the imbalance of
classes in the dataset may cause the model to be too conservative
when dealing with broad unchanged areas, lacking sensitivity to
subtle changes and hiding potential risks of missed detections.
Therefore, future research should explore data augmentation or
resampling techniques to balance class distribution or develop
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TABLE II
QUANTITATIVE COMPARISON ON THREE DATASETS

Fig. 3. Visualization of experimental results on the LEVIR-CD test set. (a) T1 image. (b) T2 image. (c) Ground truth. (d) FC-Siam-diff. (e) FC-Siam-Conc.
(f) STANet. (g) BIT. (h) ChangeFormer. (i) MLA-Net. (j) Our SMDNet.

more sensitive CD algorithms to improve recall and IoU to
ensure the model maintains high accuracy without sacrificing
detection capabilities.

2) DSIFN-CD Dataset Analysis: The DSIFN-CD dataset has
ground object scenes that change with seasons in different
cities. As can be seen from Table II, SMDNet surpasses other
comparison methods on multiple key performance indicators.
Especially in terms of precision and recall, SMDNet achieves a
higher balance, which shows that it can maintain a high CD
rate while reducing false detections. SMDNet demonstrates
its excellent overall performance in terms of F1 score, which
is an essential indicator for evaluating the accuracy of CD
methods. The IoU metric, combined with its high precision
and recall, performs well in distinguishing changing areas from
nonchanging areas. From the visual comparison of Fig. 4, we
discovered the accuracy and boundary recognition capabilities
of SMDNet in ground object CD. The model can more accurately
identify the changing areas between images, and the predicted
shape is consistent with the actual change boundaries of ground
objects, showing the model’s good sensitivity to the edges of
ground objects. However, there are also certain shortcomings.

For example, some misjudgment areas may appear in some com-
plex backgrounds. These areas may be caused by the model’s
sensitivity to subtle changes in the image. In addition, it can
be seen from Fig. 4 that the detailed part of the prediction may
capture tiny changes in labels that are not annotated, which may
be because the model has a certain sensitivity to these small-scale
changes when extracting deep features. At the same time, it has
specific suppression on some shadow changes.

3) CDD Dataset Analysis: The CDD dataset is mainly a
seasonal variation dataset developed for RS. Observation of
the graph shows that seasonal changes and different lighting
conditions may cause spurious changes, thus challenging the
model’s ability to discern real changes. Prediction result (j)
shows the sensitivity of our model SMDNet to various changes.
It can be seen from the visual comparison diagram in Fig. 5
that due to the shadow of the building and the change of the
lawn in the image centered on the first row, method (d)–(h) did
not complete good detection. In contrast, our method performs
well on changes in vegetation areas and building boundaries.
Highly sensitive and resistant to false shadow changes. At the
same time, the image pairs in the third and fourth rows also have



JIA et al.: SIAMESE MEETS DIFFUSION NETWORK: SMDNET FOR ENHANCED CHANGE DETECTION IN HIGH-RESOLUTION RS IMAGERY 8197

Fig. 4. Visualization of experimental results on the DSIFN-CD test set. (a) T1 image. (b) T2 image. (c) Ground truth. (d) FC-Siam-diff. (e) FC-Siam-Conc.
(f) STANet. (g) BIT. (h) ChangeFormer. (i) MLA-Net. (j) Our SMDNet.

Fig. 5. Visualization of experimental results on the CDD test set. (a) T1 image. (b) T2 image. (c) Ground truth. (d) FC-Siam-diff. (e) FC-Siam-Conc. (f) STANet.
(g) BIT. (h) ChangeFormer. (i) MLA-Net. (j) Our SMDNet.

corresponding performance. At the same time, in the second row
(j) in Fig. 5, a detailed depiction of the edge of the water body
is successfully identified. As can be seen from the visualization,
the model SMDNet can predict the boundary changes of objects
under different weather conditions, showing good sensitivity and
accuracy.

The performance evaluation results of the model in Table II
show its effectiveness on the CDD dataset. Although the Pre.
(89.13%) lags slightly behind the BIT method, reflecting the
model’s efficiency in noise suppression and classification accu-
racy. At the same time, SDMNet also performs well regarding
Rec., reaching 87.35%, ensuring that most real changes are
successfully detected and avoiding missed detections. The F1
is 88.23%, balancing precision and recall, making it a reliable
indicator of the model’s overall performance. The IoU ratio is

83.3%, indicating that the model has high consistency between
predicted and actual change areas. Furthermore, the OA reached
99.3%, demonstrating the model’s high prediction accuracy on
the entire dataset. However, OA may be overestimated due
to the prevalence of unchanged regions in the dataset, high-
lighting the importance of comprehensive and accurate model
evaluation using multiple performance metrics.

D. Ablation Experiments and Analysis

This subsection will help better understand the effectiveness
of the proposed architectural and modular changes on the perfor-
mance of SMDNet models in remote sensing image CD tasks.
We designed experiments from three aspects:

1) The impact of different layer depths in SU-FDE and DU.
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TABLE III
MODEL DEPTH RESULTS AT DIFFERENT LAYERS ON DSIFN-CD AND CDD DATASETS

2) Mainly the impact of adding different attention mecha-
nisms to the model.

3) Performance evaluation of added components in the
model.

4) The impact of the choice of diffusion step size in the
diffusion model on feature extraction in the dataset. The
ablation experiments used four evaluation metrics: F1-
score, Precision, Recall, and OA.

1) Effect of Layer Depth: The effect of different layers (four,
five, and six) of the SU-FDE and DU on the performance
of remote sensing image CD in the SMDNet model was first
evaluated. The number of channels for the three types of depths
were configured as follows: Four-layer network (64, 64, 64, 128),
five-layer network (64, 64, 64, 128, 128), and six-layer network
(64, 64, 64, 128, 128, 256). These experiments were conducted
on the CDD and DSIFN-CD datasets to explore the relationship
between network depth and model performance and parameter
memory consumption.

The results of the two datasets, DSIFN-CD and CDD in
Table III show that the F1 score and accuracy of the model
increase as the number of layers increases, and parameter
memory consumption also increases accordingly. Regarding the
evaluation metrics, the six-layer SMDNet performs well on the
DSIFN-CD and CDD datasets. The complexity of the scene is
higher due to the composite nature of the dataset, which includes
a variety of ground objects, such as buildings, roads, forests,
and lakes. The six-layer configuration demonstrates that the
deeper model structure can extract more complex and abstract
features, resulting in good evaluation metrics. However, it is
interesting to note that parameter memory consumption in the
six-layer network is about 28.31MiB, which is about 2.4 times
more than the four-layer network (approximately 11.89MiB).
The five-layer network is not as good as the six-layer net-
work regarding F1 score and accuracy, but it requires fewer
parameter memory consumption, about 19.19 MiB. Balancing
performance and parameter ratio efficiency, the five-layer net-
work structure maintains a certain level of performance while
effectively controlling the model size to ensure the practicability
of practical applications.

2) Impact of Attention Mechanism on the Model: We con-
duct ablation experiments using different attention mechanisms
after each SU-FDE layer and evaluate their impact on model
performance on the CDD dataset. As shown in Table IV and
Fig. 6, we examine nonlocal (NL) [69], axial attention (AX) [70],
efficient channel attention (ECA) [71], and SA mechanisms.
NL enhances the network’s ability to integrate long-range

TABLE IV
IMPACT OF USING DIFFERENT ATTENTION MECHANISMS IN SU-FDE ON

SMDNET ON THE CDD DATASET

Fig. 6. Histogram comparison on CDD dataset using different attention mech-
anisms in SU-FDE of SMDNet.

features by capturing global dependencies; AX attention main-
tains computational efficiency when processing large-scale data;
the ECA mechanism maintains a low parameter burden while
enhancing channel correlation; and the SA mechanism maintains
a low parameter burden in space. This enhances the recognition
of local details and boundaries of the image. Experimental re-
sults show that adding any attention mechanism can improve the
F1-score, Precision, Recall, and OA of SU-FDE. In particular,
when the SA mechanism [SU-FDE+(SA)] is integrated, the
model performance is most significantly improved, with F1-
score increasing to 88.23%, Precision increasing to 89.13%, and
Recall reaching 87.35%. At the same time, OA also improved
to 99.29%. This result highlights the detailed sensitivity of the
SA mechanism in capturing spatial dependencies in images to
enhance feature extraction capabilities and help maintain the
spatial consistency of detected changes, which helps interpret
and understand changes. The SA mechanism can potentially
improve model performance compared with other attention
mechanisms.
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TABLE V
PERFORMANCE COMPARISON OF DIFFERENT COMPONENTS ON THE CDD

DATASET

3) Module Ablation Analysis: Table V presents the results
of our ablation experiments on different model components to
evaluate their impact on the final model performance. The first
row contains only models of the SU-FDE encoding component
designed to capture key features in the image. We equipped a
simple decoder to form a complete network and test its per-
formance. This component model achieved 74.57%, 67.72%,
82.96%, and 98.68% in F1-score, Precision, Recall, and OA,
respectively. These results illustrate the potential of the SU-FDE
encoder in extracting effective features. In the second row, we
added the SA mechanism to the first complete Siam-U2Net net-
work, highlighting that SA can consider key spatial information
for enhancement on SU-FDE and has a 2.45% improvement on
F1. In the third row, we adopt the DU in the diffusion model as
our main architecture. Compared to using the SU-FDE encoder
add SA, this model significantly improves F1 score and accuracy.
At the same time, the recall decreases slightly, which may
indicate that the DU component is better at suppressing noise
and improving the model’s discriminative ability. The model
in the fourth row combines the SU-FDE encoding component
and the DU, improving all performance metrics. SU-FDE im-
proves model accuracy by introducing deep feature details into
the diffusion model. Finally, our proposed SMDNet method
integrates all components, where adding the SA mechanism
improves detection efficiency by prioritizing spatial information
when processing data. The last row shows that the comprehen-
sive model performs optimally on all performance indicators.
Compared with only DU, the F1 score increased by 7.26%,
the precision and recall rates increased by 7.74% and 6.94%,
respectively, and the overall accuracy was as high as 99.29%.
This result shows that the interaction between SU-FDE, SA,
and DU has no conflict and significantly improves the model’s
overall performance in remote sensing image CD.

4) Comparison of Efficiency: Table VI compares the number
of parameters and computational complexity of SMDNet and
several other models. The parameter amount of SMDNet is
controlled at 5.031 M. At the same time, the parameter amount of
our SU-FDE is only 0.617 M. Compared with FC-Siam-diff and
FC-Siam-Conc, our model has fewer parameters to balance low
parameter usage and sufficient learning ability. Regarding com-
putational complexity, SMDNet has reached 266.8 G GFLOPs,
higher than other models. However, this is mainly due to the
denoising diffusion model we use, which improves the quality
of model generation by repeatedly iteratively generating data.

TABLE VI
COMPARISON OF COMPUTATIONAL EFFICIENCY AND PARAMETER AMOUNTS OF

DIFFERENT MODELS

TABLE VII
CHOICE OF DIFFUSION STEP T CHANGES THE PERFORMANCE OF CD ON THE

CDD DATASET

Although the computational overhead is relatively large, accu-
racy and processing details improvement have certain potential
value. Compared with the 202.8 G computational complexity
of ChangeFormer, the number of parameters of SMDNet is
greatly reduced, successfully reducing the parameter burden of
the model. We will further study how to reduce computational
complexity while maintaining high accuracy in the future.

5) Effect of Diffusion Step Size: We conducted ablation ex-
periments to understand the impact of the time step t in the
denoising diffusion model on the feature extraction capability
for CD datasets. During the training phase of the model, we
considered multiple step settings to determine the appropriate
time step length, including values of t set to 500, 750, and 1000.
These experiments aimed to observe how different step length
settings affect the model’s performance on the CDD dataset.
Table VII provides a detailed breakdown of the model’s F1
scores, precision, recall rates, and overall accuracy at varying
step lengths. Upon examination of the results, it was noted that
the model achieved high values in all the aforementioned metrics
at t = 1000. This observation in our model, which tracks CD
over time, allows for a more detailed capture of changes in data
details. The choice of step size t is crucial to the model’s ability
to process RS image data. The model can perform CD tasks
more effectively under the setting of t = 1000.

V. CONCLUSION

In this study, we proposed the SMDNet model by introducing
a Siamese network to propose a combination of SU-FDE and
a DDIM. We successfully applied it to the CD task of high-
resolution remote sensing images. Experimental results show
that SMDNet’s CD performance on LEVIR-CD, DSIFN-CD,
and CDD datasets has been significantly improved compared
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with existing technologies. Use the denoising capabilities of the
diffusion model and the advantages of capturing data distribu-
tion. Add SU-FDE further to enhance the model’s capture of
edge details, thereby achieving more accurate CD in complex
scenes. Despite the good performance of this model, there are
still limitations.

1) In RS, due to the large amount of data and many resolutions
from low to high, if you want to obtain more information,
this will increase the time and cost of training, and it
is difficult to implement in practice. Therefore, how to
construct lightweight models to reduce training costs is
an important direction.

2) We will continue to pay attention to the impact of the
attention mechanism on the model. Explore an attention
mechanism more suitable for RS images and conduct
further research.

3) Considering the rapid advancements in RS hardware, a
substantial volume of unlabeled data remains underuti-
lized. Manually labeling data is time-consuming and often
requires specific prior knowledge, yet it is still prone
to inaccuracies, such as underlabeling or mislabeling.
Therefore, it is necessary to explore semisupervised or
self-supervised methods to leverage more data.

Future research will focus on further optimizing the model
structure to reduce training costs, improve robustness under
complex environmental conditions, and explore the potential
of the SMDNet model in processing tasks in unlabeled remote
sensing images.
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