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Abstract—Synthetic aperture radar automatic target recogni-
tion (SAR-ATR) models based on deep neural networks (DNNs)
are vulnerable to attacks of adversarial examples. Universal ad-
versarial attack algorithms can help evaluate and improve the
robustness of the SAR-ATR models and have become a research
hotspot. However, current universal adversarial attack algorithms
have limitations. First, considering the difficulty in obtaining in-
formation on the attacking SAR-ATR models, there is an urgent
need to design a universal adversarial attack algorithm under
a black-box scenario. Second, given the difficulty of acquiring
synthetic aperture radar images, the effectiveness of attacks under
small-sample conditions requires improvement. To address these
limitations, this study proposed a black-box universal adversar-
ial attack algorithm: transferable universal adversarial network
(TUAN). Based on the idea of the generative adversarial network,
we implemented the game of generator and attenuator to improve
the transferability of universal adversarial perturbation (UAP). We
designed loss functions for the generator and the attenuator, respec-
tively, which can effectively improve the success rate of black-box
attacks and the stealthiness of attacks. In addition, U-Net was used
as a network structure of the generator and the attenuator to fully
learn the distribution of examples, thereby enhancing the attack
success rate under small-sample conditions. The TUAN attained a
higher black-box attack success rate and superior stealthiness than
up-to-date UAP algorithms in non-targeted and targeted attacks.

Index Terms—Adversarial example, automatic target
recognition, deep neural network (DNN), synthetic aperture
radar (SAR), transferability, universal adversarial perturbation
(UAP).

I. INTRODUCTION

IN RECENT years, deep neural networks (DNNs) have been
widely used in the field of synthetic aperture radar automatic

target recognition (SAR-ATR) [1], [2], [3]. However, existing
research proves that SAR-ATR models based on DNNs [4], [5],
[6], [7], [8] are vulnerable to adversarial examples. Therefore,
studying universal adversarial attack algorithms is conducive to
evaluating and improving the recognition performance of SAR-
ATR models under small disturbance conditions.
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At present, the adversarial attack algorithm for the SAR-ATR
model is in its infancy, and scholars mainly migrate the adversar-
ial attack algorithm in optical images to synthetic aperture radar
(SAR) images. In the field of optical imaging, many adversarial
attack algorithms have been proposed. Szegedy et al. [9] first
proposed the concept of adversarial examples, which injects
small perturbations that are imperceptible to the human eye
into the image, thereby causing model recognition errors. This
method is called an adversarial attack. On this basis, researchers
have proposed a series of universal adversarial attack algo-
rithms. Moosavi-Dezfooli et al. [10] first proposed a universal
adversarial perturbation (UAP) generation algorithm. This type
of attack algorithm can generate adversarial examples that are
independent of the input image. It does not need to generate
a specific perturbation image for each input image and can
attack most examples. Subsequently, Hayes and Danezis [11]
designed a trainable DNN to learn the mapping of noise to UAP
and demonstrated that this method can quickly and effectively
deceive the victim model. Mopuri et al. [12], [13] considered
that it is difficult for attackers to obtain the training dataset of the
victim model and proposed a data-free attack method to generate
UAP. Mopuri et al. [14] first proposed a generative method to
simulate the distribution of adversarial perturbations. Li et al.
[15] proved that adversarial examples can effectively attack the
SAR-ATR model. Subsequently, scholars began to study UAP
algorithms for SAR images. Wang et al. [16] used the method
proposed in [10] to construct UAP, which effectively reduced the
recognition success rate of the SAR-ATR model. Xia et al. [17]
combined the principle of SAR interference to generate UAP in
the signal domain. Du et al. [18] proposed an adversarial attack
algorithm based on the universal local adversarial network. This
algorithm only needs to perturb one-fourth of the original SAR
image to achieve an attack success rate comparable to that of
global perturbation. Zhou et al. [19] proposed a UAP method for
SAR image adversarial attacks based on a lightweight generative
model without a discriminator template. Tested on eight SAR-
ATR models, the experimental results indicated that SAR-UAP
obtained a high attack success rate.

Adversarial attack algorithms can be divided into white- and
black-box attacks. In a white-box attack scenario, the attacker
knows all the information, such as the structure, parameters,
and training data of the victim model. Typical white-box attack
methods include gradient-based attacks [20], [21], boundary-
based attacks [22], and saliency-map-based attacks [23]. On
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the contrary, in the black-box attack scenario, it is difficult
for the attacker to obtain the information of the victim model.
In general, black-box attacks can be divided into probabilis-
tic label-based attacks [24], [25], [26], decision-based attacks
[27], and transferred attacks [28], [29]. Among the above three
black-box attacks, the first two black-box attacks usually require
a large number of queries to the neural network. However, this
is difficult to achieve in actual scenarios. Therefore, transferable
black-box attacks are the current research focus.

Although the existing UAP algorithms for SAR images can
effectively deceive the SAR-ATR model, they are fragile and
inefficient in practical applications. In actual applications, the
SAR-ATR model is unknown to attackers, and the black-box
attack success rate of the existing universal adversarial attack
algorithms is low. Therefore, there is an urgent need to develop
a UAP algorithm for SAR images under black-box scenarios.
In addition, the number of SAR sensors is significantly smaller
than that of optical sensors, and SAR sensors are limited by
airborne or spaceborne platforms. Therefore, the amount of SAR
data that can be obtained in practice are limited, and the attack
success rate of the existing UAP algorithms is significantly lower
under small-sample conditions. Thus, it is of great significance
to improve the attack success rate of universal adversarial attack
algorithms under small-sample conditions.

To solve these problems, this study proposes a transferable
universal adversarial network (TUAN). Based on the idea of
the generative adversarial network (GAN), this method quickly
maps noise to UAP in one step through the generator and then
uses the attenuator to weaken the attack effectiveness of the
adversarial examples. We argue that if the adversarial examples
crafted by the generator are robust to the deformations produced
by the attenuator, i.e., the attenuated adversarial examples re-
main effective to DNN models, then they can be transferred to
other victim models [30].

The main contributions of this article are as follows.
1) A TUAN based on a generator and an attenuator is de-

signed. Similar to the GAN, we leverage the game of
the generator and attenuator to boost the transferability of
UAP. We utilize U-Net to improve the attack success rate
under small-sample conditions. Therefore, our algorithm
has wide application prospects in the field of SAR-ATR
attacks.

2) We design loss functions separately for the generator and
the attenuator, which effectively enhance the black-box
attack capability and attack stealthiness of universal ad-
versarial examples in both the non-targeted and targeted
attacks.

3) The proposed algorithm was tested on the MSTAR and
SEN1-2 datasets. The experimental results show that
compared with the existing universal adversarial attack
algorithms, the TUAN has the strongest transferability
and small-sample attack performance in non-targeted and
targeted attacks.

4) We systematically evaluate the transferability of UAP
among DNN-based SAR-ATR models; the experimental
results showed that the SAR-ATR models have the same
vulnerabilities when performing the same tasks.

The rest of this article is organized as follows. Section II
introduces the relevant preparation knowledge. Section III de-
scribes the proposed method in detail. Section IV presents the
experimental results. Section V discusses the results. Finally,
Section VI concludes this article.

II. PRELIMINARIES

A. UAPs for SAR Target Recognition

Suppose thatχ is the SAR image dataset,xn ∈ [0, 255]W×H is
the nth SAR image example, and f(·) is the output of the m-class
SAR-ATR model that has not passed the softmax layer. The m-
dimensional vector f(xn) = [f(xn)1, f(xn)2, . . . , f(xn)m]is
the output result, where f(xn)i ∈ Ris the probability that
xn is recognized by the model as category i. Let Sp =
argmaxi(f(xn)i) represent the model prediction class ofxn.
UAP is independent of the input data, and instead of generating
perturbations for a particular image, most samples in the dataset
result in incorrect model identification when UAP is added

for′′most′′xn ∈ χ s.t.

{
argmax(f(xn + δ)i) �= Sp

i

‖δ‖p ≤ ζ
(1)

‖δ‖p =

(∑
i

|δi|p
) 1

p

(2)

where δ is UAP and ζ controls the disturbance amplitude of
UAP.

At the same time, attack methods are classified as non-targeted
and targeted attacks depending on the attacker’s intent and
expectations. Targeted attacks require the attacker to cause the
DNN models to produce the desired results, as opposed to
non-targeted attacks, which merely require the attacker to mis-
classify the DNN model. Therefore, (1) is transformed into the
following optimization problem:

minimize

⎛
⎜⎝
∑N

n=1 Z(argmax(f(xn+δ)i)
i

==Ctr)

N

⎞
⎟⎠ ,

s.t. ‖δ‖p ≤ ζ (3)

maximize

⎛
⎜⎝
∑N

n=1 Z(argmax(f(xn+δ)i)
i

==Cta)

N

⎞
⎟⎠ ,

s.t. ‖δ‖p ≤ ζ (4)

where if the equation holds, then the discriminant function
Z(·) = 1, and conversely, Z(·) = 0. N represents the total
number of input samples, and Ctr and Cta represent its true
and target categories, respectively.

B. Transferability of Adversarial Examples

Research based on transferable black-box attacks has impor-
tant value as an attacker cannot obtain information or feedback
from the victim model. Fig. 1 demonstrates the transferability
of adversarial examples.
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Fig. 1. Transferability of adversarial examples.

In Fig. 1, for an image multiclassification task, f1(·), …,
fn(·), along with fs(·), are the trained identification models.
δ is the adversarial perturbation. x and x̃ are the input example
and the adversarial example, respectively. Among them, fs(·)
is used as a white-box model to generate adversarial examples,
whereasf1(·), …, fn(·) are black-box models. The histogram on
the right-hand side of Fig. 1 shows the classification results. The
greater the height of the bar, the higher the confidence. The red
bars represent the classes that the neural network misclassified,
and the yellow bars represent the correct classes. As shown in
the figure, the adversarial example x̃ generated by fs(·) can suc-
cessfully cause f1(·), …, fn(·) to output incorrect classification
results.

III. METHODS

The framework of the TUAN is shown in Fig. 2. Based on
the idea of GAN [31], the transferability of UAP is enhanced by
the TUAN through the utilization of a mutual game involving
the generator G(·) and the attenuator A(·). During the training
process of the TUAN, the generator G(·) is first used to train
the mapping of the normally distributed noise Z to the UAP δ,
and δ is added to the input example x to obtain the adversar-
ial examplex̃. Then, the attenuator A(·) can reduce the attack
effectiveness of adversarial example x̃. To improve the success
rate of the black-box attack and the stealthiness of the attack, we
designed the corresponding loss functions LG and LA for the
generator G(·) and the attenuator A(·), respectively. If the atten-
uated adversarial example x̃# can effectively attack the DNN
victim modelfv(·), that is, the adversarial example x̃ constructed
by the generator G(·) is robust to the deformations produced
by the attenuator A(·) [30], then x̃ can successfully attack the
black-box victim model. In addition, we used the U-Net [32]
model as a network structure of the generator and attenuator to
improve the attack success rate under small-sample conditions.

A. Network Structure of the Generator and Attenuator

The characteristics of SAR images were fully considered in
the selection of the generator and attenuator. As shown in Fig. 3,
the SAR image contains a target, shadow, and background. The

characteristics identified by the DNN model are mainly focused
on the target area. Moreover, considering the confidentiality of
SAR images, attackers find it difficult to obtain SAR datasets.
Therefore, the attacker must consider adversarial attacks under
small-sample conditions.

Even though there are numerous improved networks [33], [34]
based on U-Net, but the U-Net model has its unique advantages
in SAR attacks, and it is widely used in mainstream SAR
adversarial attack algorithms [18], [35], [36]. The reasons for
selecting U-Net as the network architecture can be outlined as
follows.

First, combined with the real-time and limited computing
resources of SAR attacks, the U-Net model can be quickly
and effectively deployed in actual attacks with its lightweight
network structure.

Then, U-Net is a fully convolutional network that uses skip
connections and feature combination to effectively capture
important features under small-sample conditions. Researches
show that U-Net can be trained with very few training samples
but produces results with high accuracy [37], [38], [39], [40],
[41], which is of great significance for solving small-sample
problems.

Besides, the size of the output adversarial example must be
the same as that of the original SAR image. The U-Net model
can effectively ensure the size consistency of input and output.

Based on the above considerations, this study utilized U-Net
as the encoder/decoder. The network structure of U-Net is shown
in Fig. 4. The encoder, located on the left, functions as feature
extraction, while the decoder, positioned on the right, acts as an
upsampling component.

B. Loss Function of the Generator

Fig. 5 shows the loss function of the generatorG(·). Note that,
during the training phase, the white-box model was selected as
the surrogate model fv(·). The algorithm in this study uses a
generator G(·) to map the normally distributed noise Z to the
UAP δ. In the testing phase, the algorithm does not need to
create specific perturbations for each SAR image. UAP δ can
attack most of the SAR images in the testing set

δ = G(Z), Z ∼ N(0, 1). (5)

UAP δ is then added to the input example x to obtain the
adversarial example x̃

x̃ = x+ δ. (6)

Simultaneously, the adversarial example x̃ is passed through
the attenuator A(·) to obtain the attenuated adversarial example
x̃#

x̃# = A(x̃). (7)

The loss function LG designed in this article can realize
non-targeted and targeted attacks, and the attacker can choose
the corresponding attack mode according to actual needs. In
particular, we designed different loss functions LG for each
attack mode, with each consisting of three parts.
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Fig. 2. Framework of the TUAN.

Fig. 3. Example of SAR image region analysis. (a) Original SAR images.
(b) Three regions of the image. (c) Vehicle region.

Fig. 4. U-Net network structure.

For non-targeted attacks, to effectively deceive the DNN
model, it is important to decrease the confidence level that x̃
is identified as the true category Ctr and increase the confidence
level that the adversarial example x̃ is identified as another
category. Therefore, LG1 can be represented by the following
equation:

LG1(fv(x̃), Ctr) = − log

(∑
i�=Ctr

exp(fv(x̃)i)∑
i exp(fv(x̃)i)

)
. (8)

To increase the transferability of the adversarial example x̃,
LG2 aims to improve the attack success rate of attenuated ad-
versarial examples x̃#. Therefore, LG2 is expressed as follows:

LG2(fv(x̃
#), Ctr) = − log

(∑
i�=Ctr

exp(fv(x̃
#)i)∑

i exp(fv(x̃
#)i)

)
. (9)

Finally, to limit the amplitude of disturbance, we used
Lp−norm to measure the distance between the adversarial
example x̃ and the original example x. The specific formula

is as follows:

LG3(x, x̃) = ‖x̃− x‖p =

(∑
i

|Δxi|p
) 1

p

. (10)

To sum up, this study used the linear weighting method to
balance the relationship between LG1, LG2, and LG3. LG is
calculated as follows:

LG = wG1 · LG1(fv(x̃), Ctr) + wG2 · LG2(fv(x̃
#), Ctr)

+ wG3 · LG3(x, x̃) (11)

wG1 + wG2 + wG3 = 1 (12)

where wG1, wG2, and wG3 are the weight coefficients of LG1,
LG2, and LG3, respectively. In the loss function designed in this
article, the attacker can adjust the weight coefficient of each item
according to actual needs. Therefore, the algorithm proposed in
this article has good flexibility.

For targeted attacks, to designate the output of the DNN
models as a certain category Cta, it is necessary to increase
the confidence that the adversarial example x̃ is identified by
DNN models as a specific category Cta. Thus, LG1 is given as
follows:

LG1(fv(x̃), Cta) = − log

(
exp(fv(x̃)Cta

)∑
i exp(fv(x̃)i)

)
. (13)

Meanwhile, it is necessary to maintain the attenuated adver-
sarial example x̃# to successfully attack the DNN model fv(·).
Therefore, LG2 can be represented as follows:

LG2(fv(x̃
#), Cta) = − log

(
exp(fv(x̃

#)Cta
)∑

i exp(fv(x̃
#)i)

)
. (14)

LG3 in the targeted attack is the same as that in the non-
targeted attack, and the expression for the targeted attack LG is
as follows:

LG = wG1 · LG1(fv(x̃), Cta) + wG2 · LG2(fv(x̃
#), Cta)

+ wG3 · LG3(x, x̃). (15)

C. Loss Function of the Attenuator

The loss function of the attenuator has been illustrated in
Fig. 6. We introduce the attenuator A(·) to play games with the
generator G(·) while effectively preserving the semantic infor-
mation of x and weakening x̃. The loss function LA comprises
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Fig. 5. Generator loss function diagram.

Fig. 6. Attenuator loss function diagram.

three parts. In the first part, LA1, to retain the semantic infor-
mation of x, the DNN model needs to increase the identification
accuracy of x#, as follows:

LA1(fv(x
#), Ctr) = − log

(
exp(fv(x

#)Ctr
)∑

i exp(fv(x
#)i)

)
. (16)

Simultaneously, to weaken the effectiveness of the attack of
x̃, LA2 aims to improve the confidence that x̃# is identified as
the correct category Ctr by the DNN model. Therefore, LA2 is
expressed as follows:

LA2(fv(x̃
#), Ctr) = − log

(
exp(fv(x̃

#)Ctr
)∑

i exp(fv(x̃
#)i)

)
. (17)

Finally, as shown in (18), by introducing the traditional
Lp−norm to limit the deformation amplitude, the attenuator
A(·) is prevented from producing serious image deformation

LA3(x, x
#) =

∥∥x# − x
∥∥
p
=

(∑
i

|Δxi|p
) 1

p

. (18)

To sum up, similar to the calculation method of LG, we used
three weight coefficients, i.e., wA1, wA2, and wA3, to balance
the relationship between LA1, LA2, and LA3. Therefore, LAis
calculated as follows:

LA = wA1 · LA1(fv(x
#), Ctr) + wA2 · LA2(fv(x̃

#), Ctr)

+ wA3 · LA3(x, x
#). (19)

D. Complete Training Process of the TUAN

Similar to the GAN, the TUAN uses the mutual game of the
generatorG(·) and attenuatorA(·) to improve the transferability
of UAP δ. Therefore, during the training process of the TUAN,
we used the alternating training method to train the generator
G(·) and the attenuator A(·). For the dataset χ, assuming that
the training batch size is κ, the dataset χ is divided into N
batches according to the batch size κ before the start of each
training session. Second, to prevent the attenuator from being
too powerful for the generator to optimize the parameters, the
training ratio r ∈ N ∗ was set. This means that during the training
process, the generator was trained r times, and the attenuator
was trained once. Our complete training process for the TUAN
is summarized in Algorithm 1.

IV. EXPERIMENTS

A. Data Descriptions

The experiments in this study used two SAR datasets: MSTAR
[42] and SEN1-2 [43]. The MSTAR dataset is extensively
utilized in the domain of SAR ground target identification.
As shown in Table I, the MSTAR dataset includes a total of
ten categories of military objectives under standard operating
conditions (SOCs). Fig. 7 shows the SAR and optical images of
each target type. The SEN1-2 dataset was developed to make it
easier to combine optical and SAR images. This dataset covers
all the regions of the world and every weather season. In this
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Fig. 7. Optical image (top) and the SAR image (bottom) of the MSTAR dataset.

Algorithm 1: Transferable Universal Adversarial Network.

Input: Dataset χ; surrogate model fv(·); batch size κ;
target class Cta; training iteration number T ;
learning rate η; training ratio r; training loss
function of the generator LG; training loss function
of the attenuator LA

Output: The parameter θG of the well-trained generator.
1: Randomly initialize θG and θA
2: For t = 1 to T do

3: According to κ, randomly divide χ into N
batches{b1, b2, . . . , bN}

4: For n = 1 to N do
5: Calculate LG(θG, θA, fv, bn, Cta)
6: Update θG = θG − η · ∂

∂θG
LG

7: if n% r= = 0 then
8: Calculate LA(θG, θA, fv, bn)
9: Update θA = θA − η · ∂

∂θA
LA

10: else
11: θA = θA

12: End For
14: End For

TABLE I
INFORMATION ABOUT THE MSTAR DATASET UNDER SOC

experiment, as shown in Fig. 8, five types of scene images taken
in the summer (2017.6.1–2017.8.31) were selected. The specific
information from the dataset is shown in Table II.

TABLE II
INFORMATION ABOUT THE SEN1-2 DATASET

B. Implementation Details

In terms of DNN model selection, the proposed algorithm was
evaluated on six DNN models: DenseNet121 [44], GoogLeNet
[45], InceptionV3 [46], MobileNet [47], ResNet50 [48], and
ShuffleNet [49]. To preprocess the data, the images in the
MSTAR and SEN1-2 datasets were resized to 128 × 128 pixels.
At the same time, the verification dataset was randomly sampled
at 10% in the training dataset. As shown in Figs. 9 and 10,
the six DNN models were trained on the MSTAR and SEN1-2
datasets. The classification accuracies of the six DNN models
for the MSTAR test dataset were 98.06%, 97.24%, 97.44%,
97.65%, 97.82%, and 97.77%, respectively. The classification
accuracies of the six DNN models for the SEN1-2 test datasets
were 94.39%, 97.87%, 99.36%, 96.11%, 99.03%, and 95.85%,
respectively. In the training phase of the TUAN, as described
in Sections II-B and II-C, this study adopted the traditional
L2−norm to evaluate the image distortion. The loss weight
of the generator [wG1, wG2, wG3] defaulted to[0.25, 0.25, 0.5],
and the loss weight of the attenuator [wA1, wA2, wA3] defaulted
to[0.25, 0.25, 0.5]. The training ratio r defaulted to 3. The
number of training iteration T defaulted to 100, the batch size
defaulted to 8, and the learning rate η defaulted to 0.0001.

In the comparison experiments, we used the method proposed
in the literature [11], [13], [14], [16], [19], [50] as the baseline
comparison method. In particular, the algorithm proposed in [16]
cannot be applied to targeted attacks. The experiment used the
Windows 10 operating system, PyTorch deep learning develop-
ment framework, and Python as the development language. The
CPU used in the experiment was an Intel Core i9-11900H, and
the GPU was an NVIDIA GeForce RTX 3080.
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Fig. 8. Optical image (top) and the SAR image (bottom) of the SEN1-2 dataset.

Fig. 9. Confusion matrix of the DNN models on the MSTAR dataset. (a) DenseNet121. (b) GoogLeNet. (c) InceptionV3. (d) MobileNet. (e) ResNet50.
(f) ShuffleNet. Numbers from 0 to 9 indicate, respectively, the following classes: 2S1, BMP2, BRDM2, BTR60, BTR70, D7, T62, T72, ZIL131, and ZSU234.



8680 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 10. Confusion matrix of the DNN models on the SEN1-2 dataset. (a) DenseNet121. (b) GoogLeNet. (c) InceptionV3. (d) MobileNet. (e) ResNet50.
(f). ShuffleNet. Numbers from 0 to 4 indicate, respectively, the following classes: s1_106, s1_47, s1_51, s1_58, and s1_78.

C. Evaluation Metrics

This study examined the performance of the attack algorithm
from two comprehensive perspectives: effectiveness and stealth-
iness of the attack.

The effectiveness of the attack is directly correlated with
the accuracy of classification Ãcc [18], [51]. For non-targeted
attacks, Ãcc demonstrates the likelihood that the DNN model
will identify the adversarial example x̃ as the true category Ctr.
For targeted attacks, Ãcc demonstrates the likelihood that the
DNN model will identify the adversarial example x̃ as the target
category Cta. Therefore, in non-targeted attacks, a lower Ãcc
indicates a reduced probability of the DNN model correctly
identifying adversarial examples, signifying a more effective
attack; in targeted attacks, a higher Ãcc indicates a higher
probability of the DNN model recognizing adversarial examples
as the specified categoryCta; thus, the attack is more effective. In
summary, the effectiveness of non-targeted attacks is inversely
proportional to Ãcc, while the effectiveness of targeted attacks is
directly proportional to Ãcc. The formula for Ãcc is as follows:

Ãcc ={∑N
n=1

Z(argmaxi(fs(x̃n)i)==Ctr)
N non-targeted attack∑K

Cta=1

∑N
n=1

Z(argmaxi(fs(x̃n)i)==Cta)
K×N targeted attack

(20)

where K is the number of target classes and Z(·) is a discrimi-
nant function.

In addition, there are three indicators similar to Ãcc: Acc,
Acc#, and Ãcc#. Acc denotes the identification accuracy of the
DNN model for the original example x, Acc# denotes the iden-
tification accuracy of the DNN model for the attenuated original
example x#, and Ãcc# denotes the identification accuracy of
the DNN model for the attenuated adversarial example x̃#. In
particular, the value Ãcc# indirectly reflects the transferability
performance.

The second factor is the stealthiness of the attack. As indicated
in (21), we employed Lp−norm to quantify the extent of
distortion present in both the input examples and adversarial
examples{

L̃P = 1
N

∑N
n=1 ‖x̃n − xn‖p for the generator

Lp
# = 1

N

∑N
n=1

∥∥x#
n − xn

∥∥
p

for the attenuator
(21)

where L̃p and Lp
# are the extent of image distortion induced

by the adversarial example subsequent to its passage through
the generator and the attenuator, respectively. The smaller
the L̃p andLp

#, the better the stealthiness of the adversarial
example.
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TABLE III
NON-TARGETED ATTACK RESULTS OF THE TUAN ON THE MSTAR AND SEN1-2 DATASETS

TABLE IV
TARGETED ATTACK RESULTS OF THE TUAN ON THE MSTAR AND SEN1-2 DATASETS

D. Comparison of Attack Performance

This section presents an evaluation of the proposed algorithm
using the MSTAR and SEN1-2 datasets. In the training phase,
the algorithm in this study considered six DNN models
as surrogate models and evaluated the index parameters in
Section III-C after each round of training. The outcomes are
displayed in Tables III and IV.

In non-targeted attacks, the identification accuracies of the
six DNN models on the MSTAR and SEN1-2 datasets were
mostly greater than 95%. However, on the MSTAR dataset, the
identification accuracy Ãcc was below 15%, and L̃2 was below
5. For the SEN1-2 dataset, the identification accuracy Ãcc was
below 26.5%, and L̃2 was below 7.5. Based on the integration of
these two points, it can be inferred that the proposed algorithm
can generate adversarial examples that can successfully exploit
the vulnerabilities of the DNN model without being detectable
by human visual perception. The attenuator performance was
simultaneously evaluated during the TUAN training phase. In

the MSTAR dataset, the average values of Acc# and L#
2 for

the six DNN models were 94.04% and 2.357, respectively. In
the SEN1-2 dataset, the average values of Acc# and L#

2 for the
six DNN models were 92.05% and 3.204, respectively. Based
on the findings above, it can be concluded that the attenuator
effectively preserves a high level of identification accuracy for
the original input examples while minimizing the occurrence of
significant image distortions, that is, the attenuator can preserve
most of the semantic information of the original input examples.
Ãcc# denotes the identification accuracy of the DNN model
for the attenuated adversarial example x̃#, which indirectly
reflects the transferability of adversarial examples. The average
Ãcc# value was 46.18% in the MSTAR dataset; this indicates
that the attenuator increased the identification accuracy of
the adversarial examples on the DNN model by an average
of 35.52%. For the SEN1-2 dataset, the average Ãcc# value
was 48.84%, that is, the attenuator improved the identification
accuracy of the adversarial examples on the DNN model by an
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Fig. 11. Visualization of attack results against ShuffleNet. (a) Original examples. (b) Adversarial examples. (c) Adversarial perturbations. (d) Attenuated examples.
(e) Deformation distortion. (f) Attenuated adversarial examples.

average of 27.64%. Hence, the attenuator can effectively reduce
the attack potency of adversarial examples.

In targeted attacks, Acc represents the probability that the
DNN model identifies the original input example as the target
class, so it can reflect the distribution of the dataset, that is, each
category on the MSTAR dataset accounted for about 10% and
each category on the SEN1-2 dataset accounted for about 20%.
Ãcc is used to measure the probability that each DNN model
recognizes the adversarial example as the target class, and L̃2

indicates the degree of image distortion caused by the adversarial
example. For the MSTAR dataset, the average Ãcc for all the
DNN models was 97.51%, and average L̃2 was 4.336. On the
SEN1-2 dataset, the average Ãcc of all the DNN models was
93.12%, and average L̃2 was 5.778. The generator in the TUAN
can construct adversarial examples that effectively prompt the
DNN model to classify them as the intended target class. Im-
portantly, these adversarial examples do not result in signif-
icant image distortion. Like non-targeted attacks, in targeted
attacks, the performance of attenuators was evaluated during
the training process of the TUAN. For the MSTAR dataset, the
meanAcc#, Ãcc#, and L̃2 were 95.01%, 85.17%, and 2.206,
respectively. For the SEN1-2 dataset, the meanAcc#, Ãcc#,

and L̃2 were 92.24%, 57.64%, and 3.152, respectively. These
results demonstrate that the attenuator can effectively reduce
the attack performance of adversarial examples by introducing
minimal image distortion. In addition, it successfully maintains
the semantic information of the input examples.

In summary, the adversarial examples constructed by the
algorithm generator in this article effectively deceived the DNN
model. Simultaneously, the attenuator utilized minor deforma-
tion to diminish the effectiveness of adversarial examples in
terms of attack performance while maintaining the semantic in-
formation of the original examples. To ensure that the generator
is better than the attenuator, this study used r to adjust the train-
ing ratio between the generator and the attenuator. Furthermore,
Fig. 11 presents the visualization of the attack result graph of
the TUAN, utilizing ShuffleNet as a surrogate model.

This study compared the proposed algorithm with state-of-
the-art UAP algorithms on the DNN-based SAR-ATR model
using the MSTAR and SEN1-2 datasets. The results are shown
in Tables V and VI. It is evident that the attack performance of
the proposed algorithm under the six DNN models was better
than that of the other three algorithms when the degree of image
distortion was comparable.
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TABLE V
ATTACK PERFORMANCE OF THE TUAN (OURS), UAN [11], U-NET, RESGENERATOR [50], NAG [14], GD-UAP [13], DEEPFOOL-UAP [16], AND SAR-UAP [19]

ON DNN-BASED SAR-ATR MODELS ON THE MSTAR DATASET
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TABLE VI
ATTACK PERFORMANCE OF THE TUAN (OURS), UAN [11], U-NET, RESGENERATOR [50], NAG [14], GD-UAP [13], DEEPFOOL-UAP [16], AND SAR-UAP [19]

ON DNN-BASED SAR-ATR MODELS ON THE SEN1-2 DATASET
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Fig. 12. Transferability of adversarial examples under non-targeted attacks on the MSTAR dataset. (a) TUAN. (b) UAN. (c) U-Net. (d) ResG. (e) NAG.
(f) GD-UAP. (g) DeepFool-UAP. (h) SAR-UAP.

E. Comparative Analysis of Transferability

This section focuses on assessing the transferability of
adversarial examples on the MSTAR and SEN1-2 datasets. In
the experiment, all the DNN models were attacked with adver-
sarial examples. To evaluate the transferability of adversarial
examples, the identification results were assessed on different
DNN models. Figs. 12 and 13 depict the non-targeted and
targeted attacks conducted on the MSTAR dataset, respectively;
the non-targeted and targeted attacks on the SEN1-2 dataset are
shown in Figs. 14 and 15, respectively.

In non-targeted attacks, the proposed algorithm used six DNN
models as surrogate models. In the MSTAR dataset, the highest
identification accuracies of the victim model were 32.85%,
23.07%, 34.38%, 46.41%, 55.98%, and 34.95%. For the SEN1-2
dataset, the highest identification accuracies of the victim model
were 72.53%, 78.26%, 83.09%, 71.49%, 78.38%, and 65.52%.
As for baseline algorithms, on the MSTAR dataset, the highest
identification accuracies of the victim model were 88.82%,
86.36%, 86.31%, 91.30%, 90.68%, and 91.26%. For the SEN1-2
dataset, the highest identification accuracies of the victim model
were 94.61%, 89.03%, 90.83%, 89.71%, 89.84%, and 89.36%.
By analyzing the data in Figs. 12 and 14, for each surrogate
model, the adversarial examples created by the method in this
study had a higher attack success rate against the six DNN
models than the baseline algorithm, that is, they had the highest
transferability.

In targeted attacks, similar to non-targeted attacks, the algo-
rithms in this study used six DNN models as the surrogate mod-
els. In the MSTAR dataset, the lowest probabilities for the victim
model to identify adversarial examples as the target category

were 56.05%, 57.01%, 53.92%, 31.04%, 34.68%, and 49.43%.
In the SEN1-2 dataset, the lowest probabilities for the victim
model to identify adversarial examples as the target category
were 43.73%, 31.09%, 24.73%, 30.60%, 32.17%, and 31.87%.
Simultaneously, on the MSTAR dataset, the lowest probabilities
for the victim model to identify adversarial examples generated
by the baseline algorithm as the target category were 7.88%,
3.49%, 11.93%, 11.45%, 9.36%, and 10.18%. In the SEN1-2
dataset, the lowest probabilities of the victim model identifying
adversarial examples generated by the baseline algorithm as
the target category were 17.82%, 11.90%, 10.03%, 13.81%,
13.18%, and 14.75%. In contrast to the baseline algorithm,
the proposed algorithm consistently identified the adversarial
examples produced by the surrogate model as the target category
with the highest probability, that is, in a targeted attack, the
proposed algorithm had the best transferability.

F. Adversarial Attacks Under Small-Sample Conditions

The above experiments are based on the fact that an attacker
can obtain all the arbitrary training images. However, due to
the professionalism and confidentiality of SAR images, this is
difficult to obtain SAR data. Therefore, an attacker must consider
attacking the victim model with a limited number of training
images.

In this section, we consider an extreme case in which the
attacker can obtain only 50 samples (five for each class) in
the MSTAR dataset. The 50 examples were randomly selected
from the complete training dataset. Tables VII and VIII show
the non-targeted and targeted attack results of the eight attack
algorithms for different scale datasets, respectively. The results
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Fig. 13 Transferability of adversarial examples under targeted attacks on the MSTAR dataset. (a) TUAN. (b) UAN. (c) U-Net. (d) ResG. (e) NAG. (f) GD-UAP.
(g) SAR-UAP.

Fig. 14. Transferability of adversarial examples under non-targeted attacks on the SEN1-2 dataset. (a) TUAN. (b) UAN. (c) U-Net. (d) ResG. (e) NAG.
(f) GD-UAP. (g) DeepFool-UAP. (h) SAR-UAP.
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Fig. 15. Transferability of adversarial examples under targeted attacks on the SEN1-2 dataset. (a) TUAN. (b) UAN. (c) U-Net. (d) ResG. (e) NAG. (f) GD-UAP.
(g) SAR-UAP.

TABLE VII
NON-TARGETED ATTACK RESULTS
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TABLE VIII
TARGETED ATTACK RESULTS

showed that the attack performances of UAN, ResG, NAG,
GD-UAP, DeepFool-UAP, and SAR-UAP on the small-sample
dataset were significantly degraded; however, the adversarial
examples generated by the TUAN and U-Net were not greatly
affected.

The rationale behind these findings is that both the TUAN and
U-Net employ the U-Net model as a generator. With the struc-
tural characteristics of the U-Net model decoder, the generator
can effectively integrate the features of other network layers.
Therefore, even on a small-sample dataset, it can fully learn
the distribution characteristics of the data, thereby generating
aggressive SAR image adversarial examples.

G. Influence of Parameters

This section evaluates and analyzes the impact of different
parameter settings on TUAN attack performance on the MSTAR
dataset. Specifically, Sections III-G1 and III-G2 discuss and
analyze the influence of the generator G(·) and attenuator
A(·) weight coefficients on attack performance. Section III-G3
evaluates the impact of different training ratios r on attack
performance.

1) Loss Weight Coefficient of the Generator: As mentioned
in Section III-B, in the above experiments, we set the loss
weight [wG1, wG2, wG3] of the generator to[0.25, 0.25, 0.5]. As
mentioned in Section II-B, wG1 and wG2 were used to improve
the white-box attack performance and black-box attack perfor-
mance of adversarial examples, respectively, that is, the ability to
attack the surrogate model and the ability to attack other victim
models, both of which are considered equally important in this

study. Therefore, in this section, we explore the effects on the
TUAN performance when wG3 = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, and 0.9 under the assumption of wG1 = wG2.

Fig. 16(a) and (d) shows the attack success rate on the sur-
rogate model, i.e., the white-box attack performance. For non-
targeted attacks, Ãcc increased as wG3 increased. For targeted
attacks, Ãcc decreased as wG3 increased. To analyze the impact
of wG3 on transferability, Fig. 16(c) and (f) uses the adversarial
examples generated in DenseNet as an example to show the
black-box attack performance. Similar to the trend shown in
Fig. 16(a) and (d), for non-targeted attacks, Ãcc increased as
wG3 increased. For targeted attacks, Ãcc decreased as wG3

increased. Fig. 16(b) and (e) shows the effects of wG3 on L̃2.
For non-targeted attacks, L̃2 decreased as wG3 increased, while
for targeted attacks, L̃2 decreased as wG3 increased.

In summary, as wG3 increased, the attack performance grad-
ually weakened and the attack stealthiness gradually increased.
This can be explained as when wG3 increased, wG1 and wG2

decreased accordingly, and the TUAN paid more attention to
the stealthiness of the attack during the process of training the
generator. This weakened the effectiveness of the attack. When
attackers need to improve the stealth performance of adversarial
examples, wG3 should be appropriately increased. Conversely,
when attackers focus more on the effectiveness of attacks, wG3

should be reduced.
2) Loss Weight Coefficient of the Attenuator: This section

explores the effects of different weight loss coefficients on the
performance of the TUAN. As described in Section II-C, the
attenuator loss weight coefficients wA1 and wA2 were used to
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Fig. 16. Effect of the generator G(·) weight coefficients on TUAN performance. (a)–(c) Non-targeted attack results. (d)–(f) Targeted attack results.

Fig. 17. Effect of the attenuator A(·) weight coefficient on TUAN performance. (a)–(c) Non-targeted attack results. (d)–(f) Targeted attack results.

weaken the effectiveness of x̃ and preserve the semantic informa-
tion of x, respectively. The algorithm in this article treats both as
equally important. Therefore, under the assumptionwA1 = wA2,
this section evaluates the impact on the attack performance when
wA3 is equal to 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, and 0.9. The
results are shown in Fig. 17. In both the attack modes, Acc# and
L#
2 decreased as wA3 increased. Therefore, as wA3 increased,

the weakening performance of the attenuator on the adversarial

example x̃ decreased and the preserved semantic information
decreased; however, the degree of deformation of the image
by the attenuator decreased. To investigate the impact on the
transferability of the algorithm, an analysis was conducted
based on the findings presented in Fig. 17(c) and (f). The
DenseNet model produced adversarial examples that attacked
six models, and the transferability decreased with increasing
wA3.
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Fig. 18. Effect of training ratio r on TUAN performance. (a)–(c) Non-targeted attack results. (d)–(f) Targeted attack results.

TABLE IX
ATTACK RESULTS UNDER DIFFERENT DISTANCE METRICS

3) Training Ratio: The training ratio r was used to control
the attenuator training time. This section investigates the impact
of various training ratios r on TUAN performance. Fig. 18
displays the experimental findings. With an increase in the
training ratio r in the two attack modes, Acc# gradually de-
creased, L#

2 gradually increased, and the transfer performance
gradually weakened. This is because, similar to the analysis in
the previous section, when the number of generator training
sets is fixed, the greater training ratios r correspond to lesser
attenuator participation in the training. Therefore, when the
training ratio r is excessively large, it can fail to provide sufficient

training time for the attenuator to weaken the attack effectiveness
of the adversarial example. When the training ratio r is too
small, the combination of the attenuator and surrogate models is
too powerful, and the adversarial examples constructed by the
generator cannot be successfully attacked.

4) Type of LP−Norm: The above experiments employed
the L2−norm as a metric for quantifying the level of image
distortion.

In this section, we add the L∞−norm to compare the attack
effect of the TUAN. Table IX presents the attack results for
the six surrogate models. To evaluate the transferability of
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Fig. 19. Transferability under different distance metrics. (a) Non-targeted results. (b) Targeted results.

Fig. 20. Feature maps learned by the generator (U-Net).

the algorithm, Fig. 19 shows the attack results of the adver-
sarial examples generated by DenseNet training on the other
victim models. The attack effectiveness of the TUAN under the
L2−norm was more effective than that under the L∞−norm.
Therefore, when an attacker trains the network model, this study
recommends using the L2−norm as a distance measure.

H. Display of the Process of Generating Adversarial Examples

To visualize how the generator G(·) maps from random noise
to UAPs, this section presents the output feature maps of each
layer of the generator on the MSTAR dataset. Based on the
analysis of Fig. 20, it can be inferred that as the network layer

became more proximate to the input random noise, the resulting
feature map exhibited random fluctuations in pixel values; when
the network layer was closer to the output layer of the decoder,
the high pixel value points of the feature map output were mainly
concentrated on the target area of SAR images.

I. Misclassified Category Distributions of the Non-Targeted
Adversarial Attack

The existing studies have shown that on the MSTAR dataset,
the white-box attack algorithm exhibits attack selectivity under
non-targeted attacks [15], [52]. This section explores the dis-
tribution of incorrectly labeled categories of adversarial exam-
ples generated by DenseNet training on six models under non-
targeted attacks. The results are presented in Fig. 21 . Through
observation, the adversarial examples generated by DenseNet
training were mainly identified as two to four categories on
the other five types of victim models, which shows that the
adversarial examples can lead to similar misidentification of
other victim models. This phenomenon confirmed that different
DNN models have similar decision boundaries [53].

J. Display of the Target Adversarial Attack

t-Distributed stochastic neighbor embedding (t-SNE) was
used to map the high-dimensional features of the SAR images
extracted by the DNN model in a 2-D space. As shown in Fig. 22,
DenseNet was used as the surrogate model. Fig. 22(a) shows the
classification results of DenseNet on the clean original MSTAR
dataset, and Fig. 22(b)–(f) shows the attack result diagrams,
where the specified targets are classified as 0, 2, 4, 6, and 8. In
each subgraph, this section names the ten types of targets as 0–9
in sequence, and each type of target corresponds to a different
color. Taking Fig. 22(c) as an example, most of the categories in
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Fig. 21. Distribution of adversarial categories of the TUAN attack. (a) DenseNet121. (b) GoogLeNet. (c) InceptionV3. (d) MobileNet. (e) ResNet50. (f) ShuffleNet.
Numbers from 0 to 9 indicate, respectively, the following classes: 2S1, BMP2, BRDM2, BTR60, BTR70, D7, T62, T72, ZIL131, and ZSU234.

Fig. 22. t-SNE visualization. (a) Original classification results. (b)–(f) Targeted attack results. Each color denotes a category.
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Fig. 23. Visualization of adversarial examples under non-targeted attacks. (a) TUAN. (b) UAN. (c) U-Net. (d) ResG. (e) NAG. (f) GD-UAP. (g) DeepFool-UAP.
(h) SAR-UAP.

Fig. 24. Visualization of adversarial examples under targeted attack. (a) TUAN. (b) UAN. (c) U-Net. (d) ResG. (e) NAG. (f) GD-UAP. (g) SAR-UAP.

the figure were identified as specified target category 2, that is,
the DNN model recognized the adversarial examples as specified
categories.

K. Visualization of Adversarial Examples

DenseNet was employed as a surrogate model for the MSTAR
dataset. Figs. 23 and 24 visualize adversarial examples generated
by different methods. It is evident that our algorithm mostly
produces adversarial perturbations that are concentrated in the
target area, regardless of whether the attack is non-targeted or
targeted. Nevertheless, the disturbances yielded by baseline al-
gorithms exhibit a broad spatial distribution and mostly manifest
as distinct entities.

First, the adversarial perturbations generated by the algorithm
in this study were more attack specific than those generated
by the baseline method, as shown in Fig. 25, which uses
GradCAM++ [54] to visualize the output feature map weights
of the last convolutional layer of DenseNet, where the darker

Fig. 25. Identification result map generated by GradCAM++.

region represents a greater contribution to the neural network
identification process. Expectedly, when the DNN model recog-
nizes correctly, the weight of the feature map is mainly concen-
trated in the target area. However, when the DNN model obtains
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wrong results in identifying adversarial examples, the weight of
the feature map is mainly concentrated in the background area.
Therefore, from a feature extraction standpoint, the adversarial
perturbations primarily focus on the target area rather than
the background clutter area. Second, from the perspective of
physical realization, the adversarial disturbance generated by the
algorithm is mainly concentrated in the target area; therefore, it
can provide convenient conditions for the practical application
deployment of SAR target identification network adversarial
attacks.

V. DISCUSSION

The in silico results presented above indicated that the pro-
posed TUAN can effectively attack SAR images. The exper-
imental findings presented in Section IV-E demonstrated that
the suggested method outperforms the baseline approach in
terms of transferability, thereby enhancing the potential for
increasing the transferability of adversarial examples. This is
because the TUAN uses a mutual game between the generator
and the attenuator to improve the transferability of adversarial
examples. Briefly, throughout the training process, the generator
simulates an adversarial attack against a hard-to-attack victim
model using a combination of an attack surrogate model and an
attenuator. Therefore, once training is completed, the generator
can yield a UAP with strong transferability through one-step
mapping. In terms of small-sample attacks, the experimental
results of Section IV-F showed that the TUAN can maintain
good attack effectiveness and stealthiness in the absence of
samples. This is because the generator U-Net has a strong data
distribution learning ability due to its unique network structure
design; thus, it can still effectively attack the DNN model even
on small samples. In terms of parameter setting, Section IV-G
evaluated the weight coefficient of the generator, the weight
coefficient of the attenuator, and the influence of the training
ratio on the TUAN on the MSTAR dataset. To obtain a better
attack performance, attackers can flexibly adjust the parameters
during the training phase according to actual needs. Section IV-H
visualized the process of the generator mapping random noise
to the UAP step-by-step because the generator can effectively
establish the mapping from random noise to UAP through
extensive training. Section IV-I explored the misclassification
of adversarial examples generated by the surrogate model on
other victim models under non-targeted attacks, and the results
showed that DNN models with different network structures show
similar misclassification results. This is because DNN models
have similar decision boundaries even if they are structurally
different. Section IV-J visualized the classification results of
targeted attacks, proving that the proposed algorithm had a
strong attack performance in targeted attacks. Section IV-K
showed adversarial example images of different algorithms,
demonstrating that the perturbation region generated by the
TUAN was more focused on the target region than the baseline
algorithm. This was because the features of the target region
have the most remarkable impact on the DNN model identi-
fication process; therefore, to improve the attack effectiveness
of adversarial examples, the attenuator forces the generator to
produce adversarial perturbations for the target region.

VI. CONCLUSION

This study proposed the TUAN for DNN-based SAR-ATR
models. First, the TUAN used the mutual game of the generator
and attenuator to improve the transferability of universal ad-
versarial examples. Second, with the unique network structure
characteristics of U-Net, the TUAN effectively improved the
attack performance of universal adversarial examples under
small-sample conditions. The in silico results showed that the
TUAN had better attack performance in both the non-targeted
and targeted attacks than baseline algorithms. In addition, UAPs
generated by the TUAN were mainly concentrated in the target
region, which provides theoretical support for future physical
practical deployment.

In future research, we plan to design network structure of the
generator and attenuator to further improve the performance of
black-box attack and small-sample attack.
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